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Coulomb effects in nuclear collisions
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We compare the analytic approximation to the Coulomb phase space factor recently

given by Gyulassy and Kauffmann to the expression obtained from an exact solution of
the Klein-Gordon equation. We find that while the agreement is excellent for pions in

field of small Z (Ne) nuclei, a difference in magnitude of order 10 may occur for low en-

ergy pions in high Z (Pb) fields, thus suggesting that an exact solution to the Klein-
Gordon equation may be useful in the analysis of Coulomb effects in nuclear collisions of
heavy elements.

NUCLEAR REACTIONS Coulomb final state interaction in pion
production. Exact solution of Klein-Gordon equation. Comparison

with simple approximation.

Gyulassy and Kauffmann' recently gave simple
analytic formulas to study Coulomb final state in-

teractions in a relativistic field theory model,
which they applied to study recent data on nuclear
collisions involving production of ~+ and m par-
ticles. Specifically, if one writes the charged pion
inclusive cross section o+(p) in the form

o+(p) =o'0(p+5p)D+(p),

where o.o(p) is the corresponding cross section for
neutral pions, 5p is the momentum shift due to the
Coulomb field, and D( p ) is the Coulomb phase
space factor, the authors of Ref. 1 propose the fol-
lowing form for D(p):

F(p) = —tan
2 i 1 1 pR

pR vr 1+(pR)2
(5)

Equations (2) —(5) are valid in the frame of a

single static nuclear charge. The authors of Ref.
1 expect formulas (2) —(5) to provide a good ap-

proximation to the exact result

In these equations, E and p are the energy and

momentum of the produced particle, o. is the fine

structure constant, and F (p) takes the finite size of
the nucleus into account. For an exponential

charge distribution of radius R, this quantity is

given by'

D+(p)=G + 5D
7T

in the case of a single nuclear charge Z. In this
expression, G is the usual Gamow factor

for a wide range of the physical parameters. In

this expression, f( r ) is a solution of the Klein-

Gordon equation, normalized to an incident plane

wave e'

G( )
21TX

e 27lz
1

[(E—V)~ —p —m ]P( r ) =0,

while

with

5D =n F(p),uZE

p
(4)

where V is the nuclear Coulomb field and m is the
mass of the charged particle. Furthermore, ac-
cording to Ref. 1, the exact form of F(p) is not
crucial; what matters is that it has the same
asymptotic behavior when p~ op and R ~0 as the
one arising, for instance, from a static potential
V(r) of the form
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V(r)=, r )R,cxZ

r

V(r)=, r &R .aZ
R

(8)

The procedure is quite standard. We just give the
final result

i (ms. /2)
k(n/2)+i(n/'4) g e

M ( ip )
I (1+2m)

As it would be useful indeed to have "pocket
formulas" for the production cross section o.+(p),
we wish to study here in what range of the param-
eters r)=aZE/'p and p=pR expressions (2)—(5)
provide a good approximation to the exact solution
obtained by solving the Klein-Gordon equation (7)
with the interaction (8).

We therefore solved the s-wave radial Klein-
Gordon equation [other partial waves give a van-

ishing contribution to f(0)]:
d2

+[E—V(r)] —m .u (r) =0 .

radial wave function P(r) =u—(r)lr diverges at
r =0, in contrast with the corresponding result in
the nonrelativistic case, which is finite.

We show in Fig. 1 the results of our calculation
for

~
P(r =0)

~

in the t) —p plane, as curves of
equal value. The long-dashed curves correspond to
a vr+ in the field of a Ne nucleus (lower curve) and
of a Pb nucleus (upper curve) and, in both cases, to
an energy range extending from 3 to 300 MeV ki-
netic energy. The curves have been obtained by
considering: several nuclei from Ne to Pb, with, in
each case, several radii between the ordinary radius
and —1.4 times this value. Larger radii have some
interest in relativistic nuclear collisions, as the nu-
clear system is expanding. ' '

The small-dashed curves delineate the physical
domain in the (g —p) plane, considering the pos-
sible charges, radii, and the minimum value of
detectable kinetic energy for a pion. We think the
curves will be useful to experimentalists to analyze
their pion production data. Let us furthermore
mention that the programming code requires quite

Q(r =0)

e—i(mm/2)

~(1 2 )
ik—m , PM i—

(10)

10~10 exact

for r g R, and

u (r) =C sinEr

for r &R. Mk (z) is the Whittaker function' and 0

p =2pp',

m=( ——aZ )'/

(12) 1.05

k =EaZ(E2 m 2) —I/2 (14)

QZ
R

2—Pl (15)
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Note that, since

( )
m+1/2

p.~(j
(17)

it follows that, in the point charge limit, the full

The coefficients A, B, and C have been determined

by requiring that the wave function u (r) and its
derivatives be continuous at r =R and that

i(pr+g hosp')+f —(E)ei(prpvl losp|'FIG. 1. Curves of equal value of the exact expression
of

~
g(r =0)

~

as calculated from Eqs. (9)—(16) for dif-
ferent values of the parameters g=uZEp ' and p=pR
(see text). The small dashes enclose the physical domain
corresponding to detectable positive pions in usual nu-
clei. The long-dashed curves correspond to Ne {lower
curve) and Pb (upper curve) cases, respectively. The lit-
tle bars across these curves correspond to pion kinetic
energies of 3, 10, 20, 50, 100, 200, and 300 MeV, succes-
sively, starting from the left. The lower part of the fig-
ure gives the result for negative pions.
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1
2g&p ——.

P
(18)

We therefore conclude that exact wave functions
should be useful in analyzing Coulomb effects
coming from large Coulomb fields. In the context

a small time (-0.15 sec for one case on an IBM
370/158).

We wish, ho~ever, to emphasize that the Klein-
Gordon equation we study here cannot describe the
full complexity of the final state interaction even

in a multicenter static Coulomb field. In addi-

tion, charges are even nonstatic in relativistic
nucleus-nucleus collisions. Reference 1 provides
acceptable prescriptions to deal with such a non-
static situation. Our purpose- here is merely to pro-
vide a better description of the Coulomb phase fac-
tor D+ ( p ) [Eq. ( I)], whose importance extends

beyond heavy-ion physics. For instance, Eq. (1)
applies to (N, n)reac.tions as well.

In Fig. 2, we also show, in the g —p plane, the
ratio between the exact value of

~
lb(0)

~

and the
approximations (2)—(5) of Ref. 1. We notice that
in the case of Ne, formulas (2) —(5) provide a good
approximation to the exact wave function at the
origin, as long as p is not too close to zero. For
heavier elements, however, we see that the approxi-
mation of Ref. 1 may lead to large deviations
from the exact result for small energy. This is in

agreement with the discussion of the validity of
Eqs. (2)—(5) given in Ref. 1. In more general

terms, the discrepancy appears in the "quantum
domain" defined in Ref. 1, i.e., for

Q{r=0)
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of relativistic nuclear collisions, this remark espe-
cially applies to pions in the mid-rapidity region.
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FIG. 2. Ratio of the approximated value proposed in
Ref. I to the exact value of

~

l((r =0)
~

as calculated
from Eqs. (9)—(16). The same convention as in Fig. 1

has been used.
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