

Understanding the stratospheric circulation changes in the past decades using a Chemistry-Climate Model (WACCM)

Daniele Minganti

ACCROSS: an overview

(Atmospheric Composition and Circulation investigated with meteorological Reanalyses, Observational datasets and models for the Study of the Stratosphere and its changes)

Aim of the project:

Improve our understanding of the circulation changes in the stratosphere during the past three decades through the use of observation and model simulation time series of selected long-lived tracers (HF, N_2O , CH_2).

Goals of the research:

- Characterize the long-term trends and impact of the circulation changes on the selected tracers using ground based data and satellite data.
- Evaluate and compare the representation of those trends and circulation changes in a number of leading meteorological reanalyses. In this comparison the *BASCOE* CTM will be used as a transfer tool to model the changes of the tracers stratospheric abundances.
- Evaluate the ability of a state of the art climate model, WACCM, to simulate the observed changes of the stratospheric circulation. How well would such a model capture the observed changes in the stratospheric circulation?

<u>Success</u>: identification of the responsible processes or feedbacks thanks to sensitivity tests.

ACCROSS: state of the art

Atmospheric circulation changes

One of the major sources of uncertainty in climate projections, ---> major area of scientific research, modeling, etc.

Atmospheric composition <---> Atmospheric circulation climate feedbacks (e.g. *ghg*), ozone recovery, ...

Major subject of research:

Brewer-Dobson Circulation (BDC) (generated by breaking of tropospheric waves) transports chemical tracers from the troposphere to the stratosphere ---> projected to change (slowdown or speed-up ??)

<u>Model simulations</u> ---> increasing sea and surface temperatures (driven by *ghg*) ---> amplification of the tropical upward mass flux (i.e. amplified wave activity) ---> speed-up of the *BDC* ---> drop of the mean age of air (younger air).

<u>Balloon time series</u> and <u>MIPAS observations</u> ---> slowdown of the <u>BDC ---></u> increase of the mean age of air in the NH (e.g. *HCl* results from <u>Mahieu et al.</u>, 2014)

Change of the *BDC* ---> affects stratospheric tracers (e.g. HF, CH_4 , H_2O , O_3) ---> impact on their abundance and in turn on surface climate, surface UV (through H_2O and/or CH_4 redistribution), or O_3 abundance and the species involved in its depletion ---> <u>feedbacks processes</u>.

Specific configuration of the atmospheric model (*CAM*) of *CESM* (Community Earth System Model)

Developed at National Center for Atmospheric Research (NCAR) in Boulder, Colorado

WACCM: the <u>high-top</u> model

CCM: Chemistry-Climate Model.

Three-dimensional model of atmospheric circulation coupled with a chemistry module.

Why WACCM?

- Extends from surface to 5.1x10-6 hPa (~150 km), with 66 vertical levels.
- Detailed chemistry model (MOZART-3) for the middle atmosphere, characterized by:
 - Heterogeneous chemistry on PSCs and sulfate aerosols.
 - Heating due to chemistry reactions.
 - Possibility of extended tropospheric chemistry.
- Modules of ion chemistry in the mesosphere/lower-thermosphere (MLT), ion drag, auroral processes, and solar photons events.
- EUV (Extreme UV) and non-LTE (non-Local Thermodynamic Equilibrium) longwave radiation parameterisations.
- QBO imposed: based on cyclic, fixed-period, or observed winds.
- Volcanic aerosol heating calculated explicitly.
- Parameterisation of gravity wave drag from vertically propagating GWs driven by orography, fronts and convection.
- Molecular diffusion and constituent separation.
- Possible thermosphere extension (WACCMX) to ~500 km.

Default Chemistry scheme brief description

Species included: O_x , NO_x , HO_x , CIO_x , BrO_x , CH_4 + its degradation products (e.g. CH_3O_2). Includes also some CFCs and HFC22

59 total species, one invariant (N_3) , 127 neutral gas-phase reactions,

48 neutral photolytic reactions (74 photolysis reactions in total) and 17 heterogeneous reactions (rates from JPL06).

Non-neutral species:

Ion chemistry: 6 constituents (O^+ , O_2^+ , N^+ , N_2^+ , NO^+ and electrons) in the ionosphere.

17 of those species are solved using implicit numerical scheme (backward Euler).

42 are solved using explicit numerical scheme (forward Euler).

Current status

- Download, install and port the model to our machine.
- Perform simple runs for testing.
- Explore the representation of the photochemistry.
- **Long run 1** (20 years) with specified dynamics (perpetual year 2000) and <u>simplified chemistry</u> in order to see the transport of a theoretical tracer (exp. number: 018).
- Update chemistry scheme (add HF and additional CFCs, HCFs and halogens) and perform test runs.
- Long run 2 (30 years) with specified dynamics (perpetual year 2000) (low resolution), <u>full and updated chemistry</u>, state-of-the-art time-varying *lbc* (lower boundary conditions), *ic* (initial conditions) from a specified reanalysis. (currently running) (exp. number: 029).

Long run 1 (exp. number: 018)

- Specified dynamics, i.e. offline dynamical fields (*U*, *V*, *T*,...), from the MERRA-2 reanalysis, using perpetual year 2000.
- Simplified chemistry: 5 species (simplified reactions), no photolysis reactions, prescribed ozone.
- Chemistry and dynamics both not relevant: focus on the transport of a theoretical tracer (study of age of air).
 How does this WACCM configuration compare with BASCOE CTM?
- Result to be compared with a free dynamics experiment using the same configuration (exp. number: 030).
- Result for a possible paper.

Long run 1 (exp. number: 018)

Air much *younger* over all the latitudes ---> transport much *faster* wrt BASCOE CTM and ref. WACCM.

MERRA-2 reanalysis are *not* the same between green (BASCOE), red (ref. WACCM) and blue (exp 018).

Possible causes:

- 1) Differences in the reanalysis (preprocessing).
- 2) Problems in the WACCM advection scheme.

Need to be investigated

Updating chemistry: account for *HF* production in the stratosphere

- HF added as a product of existing reactions (e.g. CFC11+O1D reactions).
- Add HF producing species (CFC114, CFC115, HFC23, HFC125, HFC134a, HFC143a, HCFC141b, HCFC142b, HA2402, HA1211, HA1301).
- Adjust reaction rates for CH₄ and N₂O loss.
- Reaction rates for the new reactions are taken from the latest JPL recommendation (JPL2015).

Long run 2 (exp. number: 029)

- Specified dynamics, from MERRA-2 reanalysis, using fixed year 2000.
- Low resolution (4x5 lat,lon).
- Updated chemistry.
- State-of-the-art time-varying *lbc* from *Meinshausen et al.*, 2016.
- *ic* from *BRAM* (BASCOE Reanalysis of Aura MLS), a dataset providing an estimation of stratospheric chemical state based on data assimilation of Aura MLS (NASA satellite).
- Aim: evaluate the results and maybe use those results as *lbc* for BASCOE CTM.

Future perspectives:

- For the moment there is "consistency" between WACCM and BASCOE CTM:
 - Use of a chemistry scheme as much similar as possible.
 - Use of perpetual dynamical fields from reanalysis (MERRA-2).
- WACCM will move to its fully-coupled configuration (<u>free dynamics</u> + <u>detailed updated chemistry</u>):
 - Investigate possible differences with respect to the reanalysis and the CTM, and perform sensitivity tests.

Backup slides

Model: For theoretical tracers (AOA1 in WACCM) with linear increase at the surface, the time-lag at each gridpoint is the mean age of air (mAoA).

Backup slides

WACCM output:

vmr(ntime,nlev,nlat,nlon) (AOA1) ---> kg/kg, mol/mol time ---> days

Post-processing:

$$y-y_0=m(x-x_0)$$
 Solve for $x \rightarrow x=x_0+(y-y_0)/m$

x= time when ref value (y_0) was the same as the current gridpoint.

 m, x_0, y, y_0 are known

 x_0 = first timestep.

m= slope of the line

y= ∨mr.

 y_0 = (ref value) vmr at first timestep, at the equator, and the maximum on the vertical (should be at the surface, but for WACCM it is at ~260 *hPa*).

mAoA=(time-x)/365

<u>That is possible because AOA1</u> <u>increases linearly at surface.</u>

Backup slides

Why CH4, HF and N2O? ===> long-lived and high quality remote sensing observations from the ground and space.