Basic numerical processing in genetic syndromes: The role of visuo-spatial processing and working memory.

Laurence Rousselle
Lucie Attout
Line Vossius
Marie-Pascale Noël

Mathematics

Basic numerical processing

1. Approximate Number System
\cong Early sensitivity to numerosities

- Approximate : increasing imprecision with numerosity
- Innate/precocious : Independent of learning : babies could discriminate numerosities
- Basis of subsequent learning :
- Connection with verbal number words
- Connection with arabic numbers

Basic numerical processing

2. Object-file mecanism : pre-attentional process for keeping track of the location of about 4 stimuli in parallel, without serial displacement of attention

- Subitizing

Basic numerical processing

2. Object-file mecanism : pre-attentional process for keeping track of the location of about 4 stimuli in parallel, without serial displacement of attention

- Subitizing
- Fast and precise
- Innate/precocious : Independent of learning
- Basis of the learning of number word cardinal meaning in young children

A central magnitude system

Walsh (2003) :

Simon (2008, 22q11 deletion syndrome) : Spatiotemporal processing form the basis of numerical and mathematical competence: Spatiotemporal processing deficit create "suboptimal foundation for the subsequent development of numerical and mathematical competence, thereby "cascading" impairments into those more academic domains"

Mathematic learning disabilities

- Specific developmental disorder occuring in children with IQ in the normal range
- Difficulty in
- learning or comprehending arithmetic
- in understanding and manipulating numbers
- and learning arithmetic facts $(3 \times 4,2+3)$
- Frequent co-morbidities with reading learning disorders and ADHD
- Multi-determined learning disorder

Mathematic learning disabilities

Functional origins of MLD?

- Non numerical factors:
- working memory (calculation and arithmetic fact)
- sensitivity to interference (arithmetic fact)
- finger agnosia (calculation and learning arithmetic fact)
- Numerical factors:
- Basic inability to represent quantities (number sense)
- Basic impairment of the ability to connect symbolic numbers to their meaning

Genetic influences

- Familly studies (including 1 child with poor math competence) : Higher prevalence of poor math competence in father, mother and siblings (Shalev et al., 2001)
- Twin studies : Concordance rate of math learning disability reach 58\% in monozygotic twins and 39\% in dizygotic twins (Light \& Defries, 1995)
- Higher prevalence of MLD in patients with Turner, X-Fragile, Williams or 22Q11 deletion syndrome.

Ex : 42-79 \% prevalence of MLD in girls with Turner
\Rightarrow interindividual \neq in math partially accounted for by the genotype

Mathematical development in genetic syndromes

- Genetic syndromesWhy?
- Better understand genotype-phenotype relationships
- Opportunity to track early the origin of their math learning disorders
\Rightarrow Model of Mathematics learning difficulties (MLD):
- Distinguishing different trajectories leading to MLD
- Examing how their particular cognitive profile can contribute to number processing difficulties (working memory impairment, visuo-spatial disorders)

Cross syndrome studies

- Three genetic syndromes
\Rightarrow Turner, 22q11.2 and Williams
- Associated with MLD
- Divergent IQ
- Similar cognitive profile

Overall description

Turner	22q11.2	Williams
- Deletion of one of the two X chromosome X : Complete (45X0), Partial (45X^), Mosaïc (45X0/46XX)	- Deletion of 30 à 40 genes on the long arm (q) of the chromosome 22, region 11.2	Deletion of 20 à 30 genes on the long arm (q) of the chromosome 7, region 11.23
- 1 昇: 1900 à 4500	- 1:4000 à 6000	- $1: 7500$
-IQ : in the average range	- IQ~70:[average IQ-moderate intellectual disability]	- QI~60:[limited to severe intellectual disability
	\rightarrow most: IQ limited to -mild intellectual disability	\rightarrow Most: mild intellectual disability
- Verbal IQ > non verbal IQ	- Verbal IQ > non verbal IQ	- Verbal IQ > non verbal IQ

Cognitive phenotype

Turner	22q11.2	Williams
- visuo-spatial impairments	- visuo-spatial impairments	- visuo-spatial impairments
- Working memory : - Verbal component OK - VSSP component : inconsistent - Executive component : KO	- Working memory : - Verbal component OK - VSSP component: KO - Executive component : KO	Working memory : - Verbal component relatively preserved - VSSP component : KO - Executive component : KO
- Executive control impairment : inhibition, switching, planification	Executive control restriction: inhibition and switching	Executive control impairment

Mathematics

Turner	22q11.2	Williams
- Calculation procedures KO	- Calculation procedures KO	- Restriction +++ of math learning
- Arithmetic facts quite	- Arithmetic facts OK	- Calculation procedure KO
preserved		some arithmetic facts could be stored in memory
- Number processing OK	- Number processing OK	- Number processing: Reading single digit OK but two digits KO
```-Symbolic number magnitude (digit comparison) : inconsistent results```	- Symbolic number magnitude KO (digit comparison)	<S. Down   - Symbolic number magnitude KO (digit comparison)

## What about the origins?

- Up to now : Information about the nature of the difficulties experienced quite late in the development
- But no information about the origins of these difficulties, about basic numerical processing (= foundation of math competence)

Magnitude representation Subitizing


## Basic numerical processing



## Basic numerical processing in genetic syndromes

Premature conclusion...
$\rightarrow$ Only tested with visual stimuli, some of them requiring to process their spatial position

But, all have visuo-spatial processing impairment
$\Rightarrow$ How do they process numerical and non numerical magnitudes in tasks with no visuo-spatial processing requirement?
$\Rightarrow$ What is the impact of their cognitive profile (visuo-spatial and working memory deficit) on their ability to process magnitude?

## Participants

## Turner

- 20 patients with TS (mean CA: 18 [7-33 y-o])
- 20 typically developping children and adults matched on chronological age (mean CA : 18 [7-34 y-o])

22q11.2

- 27 patients with 22q11DS (mean CA : 10;7 [5-23 y-o])
- 27 typically developping children matched on verbal mental age
(mean CA: 7;10 [3-13 y-o])
- 27 typically developping children matched on visuospatial abilities (mean CA: 7;2 [3-12 y-o])


## Williams

- 21 patients with WS (mean CA : 22;1 [5-52 y-o])
- 21 typically developping children matched on verbal mental age
(mean CA: 7;6 [4-11 y-o])
- 21 typically developping children matched on visuospatial abilities
(mean CA: 6;1 [3-10 y-o])


## Tasks

Contrasting magnitude comparison tasks with different visuo-spatial and working memory processing requirements

## Non numerical magnitudes

Visual	Auditive
«the longest stick ?»	«the longest sounds ?»

## Tasks

Contrasting magnitude comparison tasks with different visuo-spatial and working memory processing requirements

## Numerical magnitudes

Visuo-Spatial ++	Visuo-spatial --	Auditive
«who has more pieces of puzzle?»	«Who flashed more »	«Who buzzed more ?»
	,	

## Stimuli

Table 1. Pairs of Magnitudes Presented in the Numerical and Non-Numerical Comparison Tasks.

	Ratios					
	1/2	2/3	3/4	5/6	7/8	8/9
Numerosities	7-14	6-9	6-8	5-6	7-8	8-9
	8-16	10-15	12-16	10-12	14-16	16-18
Lengths ${ }^{\text {a }}$	70-140	60-90	60-80	50-60	70-80	80-90
	80-160	100-150	120-160	100-120	140-160	160-180
Durations ${ }^{\text {b }}$	525-1050	450-675	450-600	375-450	525-600	600-675
	600-1200	750-1125	900-1200	750-900	1050-1200	1200-1350

Weber fraction :

- Measure < from psychophysics to determine the smallest perceptual difference that could be perceived > acuity
- index of numerical acuity


## Tasks

Contrasting magnitude comparison tasks with different visuo-spatial and working memory processing requirements

## Subitizing task

200 ms

## Predictions: <br> Global magnitude deficit

- All tasks impaired except subitizing
- Length
- Duration
- Collection
- Sequences of dots and sounds



## Predictions: <br> Approximate Number System

- Deficit in non symbolic numerical comparison tasks
- Collection
- Sequence of dots
- Sequence of sounds



## Predictions: Non numerical factors

- Impact of visuo-spatial deficit
- Lengths
- Collections
- Impact of working memory impairment
- Sequence of dots
- Sequence of sounds



## PLOS ${ }^{\text {ONE }}$

research article
The role of short-term memory and visuospatial skills in numerical magnitude processing: Evidence from Turner syndrome
Lucie Attout ${ }^{1,2 *}$, Marie-Pascale Noël', Marie-Cécile Nassogne ${ }^{3}$, Laurence Rousselle ${ }^{2}$









Magnitude Representations in Williams Syndrome: Differential Acuity in Time, Space and Number Processing
Laurence Rousselle ${ }^{1 *}$, Guy Dembour ${ }^{2}$, Marie-Pascale Noël ${ }^{1}$

Williams




## Conclusion

None the genetic condition is associated with a global magnitude deficit

None of them presented a specific deficit non symbolic number magnitude

Their deficit in basic numerical processing tasks results from other non-numerical impairment :

- Working memory impairement in Turner syndrome
- Visuo-spatial deficit in 22q11DS syndrome
- A mix of both for Williams syndrome


Table 2. Data and paired t -tests for general measures in TS and C groups.

	TS group		C group		t	p
	Mean	SD	Mean	SD		
Age (months)	219.20	87.09	219.75	91.75	-. 21	. 83
IQ measures						
Vocabulary (max. 68)	32.85	11.08	33.90	10.21	-1.57	. 13
Similarities (max. 44)	20.15	6.12	20.35	6.11	-. 45	. 66
Block design (max. 68)	35.40	11.50	42.45	10.07	-3.45	. 003
Picture concepts (max. 28)	17.45	4.32	18.70	2.92	-1.70	. 11
Working memory						
Visuo-spatial sketchpad (max. 42)	35.15	7.00	38.75	5.54	-2.52	. 02
Phonological loop (max. 16)	7.70	1.63	9.00	2.29	-2.80	. 01
Central executive (max. 16)	6.75	1.86	7.25	2.20	-. 85	. 41
Mathematical fluency						
Addition (Accuracy) (max. 81)	42.55	23.51	49.95	23.53	-1.90	. 07
Subtraction (Accuracy) (max. 81)	33.75	20.19	40.00	18.32	-2.01	. 06
Multiplication (Accuracy) (max. 81)	25.05	17.18	34.50	16.21	-2.74	. 01
Complex arithmetic (Accuracy) (max. 36)	10.71	5.02	13.65	5.29	-2.53	. 02
Counting speed (ms/item)	437.83	151.26	433.20	113.70	. 14	. 89
Speed processing (ms)	567.62	98.11	565.40	95.28	. 08	. 94

doi:10.1371/journal.pone.0171454.t002

Table 3
Data and paired $t$-tests for general measures in 22q11DS, verbal and visuo-spatial control groups.

	22q11DS		TD ${ }_{\text {VERbaL }}$		TD ${ }_{\text {VSSP }}$	
	Mean	SD	Mean	SD	Mean	SD
Age	127.52	49.69	94.59***	28.38	86.74***	30.44
IQ measures (raw score)						
Vocabulary	22.44	7.78	23.63	8.25	23.00	10.52
Similarities	18	5.88	17.04	5.32	15.63	8.65
Block design	25.19	10.64	29.19	9.64	25.37	10.54
Concept identification	14.48	3.83	15.93	3.32	13.15	4.64
Working memory						
Visuo-spatial sketchpad	4.48	1.67	5.11	1.63	4.19	1.44
Phonological loop	6.04	2.01	6.04	1.43	5.67	1.57
Central executive	5.00	2.22	5.26	1.70	4.96	1.74
Mathematical fluency						
Pictorial additive fluency	8.00	6.13	$11.27{ }^{\text {a }}$	5.71	$10.82^{\text {a }}$	6.29
Pictorial additive fluency (errors)	4.45	3.33	$1.00^{\mathrm{a}^{*}}$	1.55	$2.00^{\mathrm{a}^{*}}$	1.90
Addition fluency	24.93	13.19	$19.07{ }^{\text {b }}$	10.96	$20.60{ }^{\text {c }}$	7.37
Subtraction fluency	19.40	11.35	$16.27{ }^{\text {b }}$	9.96	$19.60{ }^{\text {c }}$	6.33
Multiplication fluency	18.80	12.62	$12.60{ }^{\text {b }}$	9.65	$16.90^{\text {c }}$	11.29

Table 2. Mean Chronological Age and Mean Performance in Working Memory, Processing Speed and Counting Speed by Group.

		N	WS		TDv		TDnv	
			Mean	SD	Mean	SD	Mean	SD
Age (months)		20	265.4	139.4	90.4**	22.2	72.8**	21.5
Working Memory	Visuo-spatial span	20	8.1	3.3	11.6**	2.9	9.4	3.3
	Letter span	20	5.2	1.8	5.9	1.0	5.2	1.4

