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The particle transfer between heavy ions under the Coulomb barrier plays an 
interesting role in recent studies of nuclear as well as atomic physics. I t  is usually 
studied in the frame of the DWBA theory (1). The complexity of the formalism requires 
a numerical integration. Hence, the influence of some physical parameters on the 
energy dependence as well as the angular dependence of the cross-section or of the 
optimum Q-value is not clear. I t  is then desirable to obtain accurate approxi- 
mations allowing to calculate the DWBA integral in a closed analytical form. The 
WKB approximation of the wave functions for the relative motion almost fits this 
desire. Recently (2), another method has been proposed, which lies on a suitable 
approximation of the relative motion wave function (which is described below) and 
on neglecting the radial variation of the form factor. The latter approximation is satis- 
factory for the charged-particle transfer case, where the effective domain of integration 
is very limited. Here, we go beyond this l imitat ion and still get analytical form for the 
transit ion probabili ty.  

Our starting point  will be the DWBA integral in the prior representation (1) 

(1) I = fzI' (r) I'(r) z~(r) dr, 

where the Xl and Z2 are the relative-motion wave functions in the entrance and exit 
channels respectively, and where r is the relative distance between the ions or between 
the cores, since at  this stage, we neglect recoil effects. The quant i ty  F(r) is the form 
factor which is often written as 

(2) F(r) ---- _V exp [-- qr/~] 
r 

(~) P . J . k .  BUTTLE a n d  L.  J .  B. GOLDFARB: N u c l .  P h y s . , 1 7 6 A ,  299 (1971). 
(2) J .  CUGNON, D. GARDES a n d  R.  Dx  SILVJ~IRA: tO be  publ i shed  (1977) a n d  European Conference on 
Nuclear  Phys i c s  wi th  Heavy  Ions  (Caen, 1976), c o m m .  no. 28. 
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In  order to have an analyt ic  expression for the integral (1), we invoke the fact that  
most of the contribution to the integral (1) comes from a relatively narrow domain 
of values of r near the classical turning points (1). Hence, we construct the functions Z~, 
i = 1, 2 by approximating the ion-ion potentials in  channels 1 and 2 by constant  gra- 
dient potentials in the region of interest, i t  is to say by approximating the potential  
energy curves by their tangents.  We choose the tangential  point  as the one corre- 
sponding to the largest of the closest distances of approach in the two channels. We 
denote by  ~ the associated relative distance. This choice is motivated by the classical 
situation, where the transfer mainly takes place at  R. We neglect the variat ion of r -~ 
in the form factor and make i t  equal to R -x, since its variat ion is not impor tant  on the 
effective domain of integration. 

The transition probabil i ty is given by 

C3) co q 2 ~'=N~ (p. p;)~ a2(p' ) @ d p '  

where the a / s  are the Fourier  transforms of the Z's. For constant gradient potentials, 
the wave functions aflp) are given, with the right normalization, in ref. (s) 

(4)  

1 a~(p) - -  _ _  e x p  (E--  U~)p-- ~ , 

where U 1 and U s are the w~lue of the potential-energy curves r and r at point  R, 
and where/~1 and F 2 arc minus their gradient at this point.  We assume for the t ime 
being that  the largest of the closest distances of approach corresponds to channel 2. 
In  other words, E = /72. Hence, eqs. (3)-(5) yield 

(5) a~ N ~ i UDp]" 

fdp' q q~ -t- (p '--p)~ 

The second integrand is peaked at  p'_~ p. Hence, we expand the argument of the 
exponential  in power series of ~ = p ' - - p  and stop it  at  the first order. We obtain, 
after integration on ~, 

+m 

(6) ~o = 2~8~2-~-1F2/~2 exp [i(~p + flp3)__rp2] , 

(a) L. D. L~N~)~U and E. lYI. LIFSHITZ: Quantum Mechanics (Oxford, 1965), chapt. III. 
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where  we h a v e  p u t  

1 1(, 1) 
= __ _ _  , , ~ - -  2F~/~2 

(7) ~ ~ (E-- ~ )  # = ~ F~-~ ~-~ 

T h e  f u n c t i o n  in  t h e  i n t e g r a l  is a n a l y t i c  in  t h e  whole  c o m p l e x  p l a n e  p = x + iy .  I n  
o rder  to  t r a n s f o r m  t h e  i n t e g r a l  in  eq. (6), t h a t  we cal l  I ( a ,  8, 7), we i n t e g r a t e  a long  
t h e  c o n t o u r s  s h o w n  i n  fig. l .  I t  c a n  b e  seen t h a t  t h e  i n t e g r a t i o n  a long  t h e  l a t e r a l  p a r t s  

-~/3p 

H- ) 

--~/3fl 

a) b) 

Fig. I. - Contours of integration used for the evaluation of integral (6) according to the sign of 8: 
a) f l>O, b) f l < 0 .  

of t he  c o n t o u r  is v a n i s h i n g  w h e n  these  p a r t s  are  p u s h e d  t o w a r d s  in f in i ty .  A l i t t l e  a lgebra  
leads  to  t h e  fo l lowing resu l t s  

If [" ] is) I(~, #, ~,) = exp ~ ( 9 ~ r  + 273) dp exp ~ (r ~ + 3 ~ / +  i#p8 . 

--lID 

The  r e m a i n i n g  i n t e g r a l  is a r e p r e s e n t a t i o n  of t he  A i ry  f u n c t i o n  (see (4)). Hence  

(9) I (~ ,  fl, ~') = ( ~  exp  [3(3~fl + 7 ~) - -  7 3] a *  ~3fl(3fl)t  " 

I t  c an  b e  of i n t e r e s t  to  m e n t i o n  t h e  fo l lowing  a s y m p t o t i c  f o r m s  

0o )  [ - , ] '  ] I (~ ,  fl, 7) = i 3 ~ ' ~  ~ )  e x p  [3(3~r + F ~) - -  r 2] �9 

�9 exp 2 ~  ( 3 ~  + r2)! , 

(4) 1~[. ABRAMOWITZ and I. A. STEGUN: Handbook el Mathematical Functions (New York), chapt. 10. 
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which is valid if 3aft + 7~>> ~ (fla)t, and 

- ] [ ] I :r �89 
(11) I(~,fl, 7 ) = 2  ( _ 3 o ~ - ) j  exp 2 ~ [ 3 ( 3 a f l + ? ~ ) - - T z ]  �9 

�9 cos (-- ~'~-- 3zefl)~-- ~t , 

which holds for 73+ 3aft< 0 and ]3aft + 72[ >> 5(f14) t ,  

In  the 7-+ 0 limit, eq. (12) reduces to the result obtained in (2) 

2 ~  ~g 
(12) I(zr fl, 0) = ( ~  Ai  (3fl)h " 

Because of the behaviour of the Airy function, ~ "~ 0 plays, in the 7----0 case, the 
role of an effective threshold for the reaction. In  other words, the reaction yield is 
drastically reduced for positive values of a/(3fl)~. According to eq. (7), it  is clear that  
the effective threshold corresponds to a crossing point  of the energy curves in the entrance 
and in the exit channel. The variation of the form factor (? # 0) changes this effective 
threshold. 

The method we have sketched here can be extended to / # 0 transfer case�9 Further-  
more, it is possible to use it  together with semi-classical approximations to derive for- 
mulae for the differential cross-section and for the opt imum Q-value as a function of 
angle and energy. This will be shown in detail in a subsequent paper (s) as well as the 
comparison with the experiment and with other methods (e.s) in the same spirit. In  the 
following, we just  give a few typical remarks concerning the neutral-particle transfer 
c a s e .  

Let Z~Z s be the product of the charges and let us consider an exothermic reaction 
Q > o .  In  that  case, F I = F ~ = - F = Z 1 Z ~ e 2 B  -~, and the distance :R is given by 
1~ = (Z1Z2)e2E -1, where E is the incident energy. The coefficients cr fl, 7 (see eq. (10)) 
a r e  n o w  

6 (1 1) 
(13) r = ~--~, fl = - -  , r = 2F/~1 

We define the optimum Q-value as the Q-value for which II[ ~ (or to) is maximum, 
or, in other words, for which ~1II2/~ = 0. Looking at eq. (9), and considering that  fl 
is always small for neutron transfer, one can see tha t  large values of 7 can shift the 
maximum of lit ~ significantly from the maximum of the Airy function towards the posi- 
tive value of 3aft + ?~. Approximating the Airy function as in eq. (13), we find that  
QoDt ----- 0. This corresponds to the classical result. However, if 7 is small, the effect 
of the quantum nature  of the relative motion can be important .  Indeed, in tha t  case, 
the maximum of o~ 2 lies in the vicinity of the maximum of the Airy function. Approxi- 
mat ing the latter by a Gaussian, we find 

(14) Qop~ 

(5) J .  CUGNON: to  be pub l i shed .  
(e) Z. E.  SWITKOWSKI, R.  • .  ~VIELAND and  A. WINTItER: Phys.  Rev. Left. ,  33, 840 (1974). 
(~) TER-]VIARTIROSYA.'r ~urn.  ~ksP. Teor. Fiz. ,  29, 713 (1955). 
(0 W. E .  FRAHI~: Nucl. Phys . ,  2 7 2 A ,  413 (1976). 
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All these three terms are due to quan tum effects. The last term arises from the differ- 
ence of relative motion between the entrance and the exit channels. That  is the only 
term given in ref. (2). The first two terms originate from the form factor. The first 
one looks like the expression proposed in ref. (e). However, it  contains the influence of 
the sign t**--/~1, which changes according as the particle is transferred from the heavy 
or from the light ion. This aspect is absent from the formula provided in ref. (~) in the 
neutron transfer case. 

Another interesting point is the energy dependence of o) at  low energy, a question 
which has an interest of the astrophysical point of view. The relevant values of Q are 
the positive ones. Otherwise, ~o is drastically reduced. Since fl is small, ~2 + 3aft is 
expected to be positive and large enough in order that  expression (10) is valid. We 
expand in power series of 3afl/? ~, and get, to the second order, 

Q~ ~1 

where ~ is the Sommerfeld parameter. This expression is slightly different from the 
one proposed in ref. (s), but  it  also predicts that  the transfer reaction yield can be 
larger than the compound reaction yield at low energies, provided that  the Q-value is 
not very different from the opt imum value. 

In  conclusion, we have worked out analytical expressions of the reaction yield for 
heavy ions induced transfer under  the Coulomb barrier. They have been obtained 
under acceptable simplifying assumptions. We have discussed some aspects of the 
neutron transfer case. We think that  our formulae could be useful for qualitative 
discussions of several aspects of the transfer reaction. Among these, let us mention 
the Q-dependence of the cross-section. 


