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The properties of a Schrodinger equation involving a variable collective mass, which can be negative, are investigated
within a simple model. In particular, it is shown that such an equation can yield a ground state below the minimum of

the potential.

Recently, several authors [1—5] have pointed out
that negative collective mass parameters can occur in
some theories of the collective motion. This raises the
following question: does a negative collective mass
have a physical meaning? Our purpose here is to in-
vestigate this question in the framework of a simple
model. We study a Schrédinger equation with a vari-
able mass parameter, which can be negative and we
show that the energy spectrum and the wave func-
tions are physically acceptable. We recall that the re-
quired properties for the wave function are [6]: i)
square integrability, ii) uniformity, iii) the possibility
of defining a probability density and a probability
current, which are integrable upon any interval of the
domain of variation of the position variable, and
which satisfy the continuity condition. In general,
the last requirement is presented in the following
stronger formulation: the probability density and the
probability current must be finite everywhere. How-
ever, since any measurement involves a non zero inter-
val of the position variable, and not a geometrical
point, one may require only that the probability densi-
ty and the probability current must be integrable over
any non-zero interval [6], as we have announced
above.

We will also show that the ground state yielded by
the Schrédinger equation with negative mass may lie
below the minimum of the potential. This contrasts
with the situation where a positive mass {e.g. the
cranking mass) is used together with a collective
potential given a constrained Hartree-Fock (HF) meth-
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od (as e.g. in fission). When the mass is positive every-
where, the lowest state could never be below the
minimum of the potential, and is generally quite
above. This, however, is in contradiction with the
fact that the HF minimum is an upper bound for the
ground state energy, the difference being precisely
due to the correlations brought in by the collective
degree freedom.

Here, we investigate the properties of the equation
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where « is the collective variable, and where the func-
tion f{w) is allowed to be negative for some values of
a. We will take the simplest model in order to exhibit
the general features associated with the negative mass.
For the potential, we take a square well: V{a)=0 for
0<a<a,and Vi{a)=co elsewhere. More precisely
we allow the system to move between 0 and 4 only.

The mass could change from positive to negative
values by continuity. We, however, disregard this case
here for two reasons: a) it is straightforward to see
that this case is equivalent to the case of an energy de-
pendent potential, whose physical meaning is well es-
tablished. b) in each of the example cited above [1-5]
the mass is not continuous through a changement of
sign. Rather, its inverse is continuous and the mass
changes of sign by passing from +° to —ee, We thus
take a continuous function f{a). The simplest form is
a linear one:
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The quantity M plays the role of a reference mass,






Volume 578, number 4

since, whatever the value of oy is, — and we allow it
to change — the mass is always equal to M, for a=a.
By using the reduced variable x=a"1 (a—ay), eq. (1)
can be written as:
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This differential equation can be solved by standard
techniques [7]. The general solution is a linear com-
bination of two linearly independent solutions whose
forms are:

yl = Z) an xn> (5)
n=0

y2=20bnxn+3’1 Inx, 6)
n:

where

ﬂn =“‘;;%(ln_1, Cl():}., (7)

bn=—£§['ybn_l+2nan], by=1. 8
Requiring the wave function to vanish at =0 and
a=g completely determines the solution and generates
a spectrum.

We see from (5}, that the wave function has a
logarithmic singularity, but this is not critical, since
such a singularity is square integrable: the wave func-
tion thus possesses property i) cited above. It has
evidently property ii} also. Moreover, it is easy to
verify that the probability density and the probability
current, as defined as usual, are integrable over any
non-zero interval. The continuity equation is a trivial
consequence of the self-adjointness of eq. (1). So, the
wave function possesses property iii).

We analyse now the energy spectrum generated by
our model. The variation of the spectrum versus oy is
shown in fig. 1. As oy goes to *oo, one retrieves the
original spectrum of a square well with constant mass
My. As @y increases from — o0 to 0, the variable mass
is larger than the reference mass M,y and the spectrum
lowers. This effect has been shown by Hofmann and
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Fig. 1. Vasiation of the spectrum with the parameter o, for
the model described in the text. The horizontal lines on bot]
sides of the figure show the spectrum for the constant refer-
ences mass M. The units for the x-axis is the length @ of the
interval. The energy is expressed in 722(21‘1/1(){:2)“1 units.

Dietrich [8]. On the other hand, as & decreases fron
+oo to @, the variable mass is smaller than the refer-
ence mass My, which raises the spectrum.

When oy lies between 0 and a, the mass is negative
somewhere in the interval and the situation is change
dramatically. A part of the spectrum has a one-to-on
correspondence with the spectrum obtained with a
non-negative mass. This is true as far as the energy is
concerned, when ag goes from negative to positive
values. However, the wave function has one more
node when o lies in the interval [0,4]. For instance,
the state which corresponds to the lowest state for ¢
negative, has 2 wave function with one mode if
0 <ay <a, while it has no mode if ey <0 (or ag >t
as is shown in fig. 2. This state which can be interpre
ed as the ground state for a positive mass (o < 0)
cannot keep this property as the mass is negative
somewhere (0 < ag <a). On the contrary, the state
represented by the dot-and-dashed in fig. 1, and whic
does not exist for positive mass, can be interpreted as
the ground state. It has the required properties for
that i) its energy can be negative, i.e., below the mini
murn of the potential, as least for some values of ag.
This is in keeping with the discussion above ii) its
wave function has no node, as shown in fig. 2. Clas-
sifying the upper states following the number of
nodes of their wave function, they can be regarded as
one-, two-, three-... phonon states, although the work
“phonon” is improperly nsed here, since the collec-
tive motion is not harmonic.
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Fig. 2. The full curve () represents the wave function of the
state labelled (1) in fig. 1 for oy = —0.05. The other curves
refer to ¢ = 0.05 and to the state labelled (1}in fig. 1 (long
dashes), to the ground state (full curve (b}) and to the state
abelled (1) in fig. 1 (small dashes), respectively.

Finally the lower states, indicated by the dashes in
fig. 1 can be regarded as unphysical, because they are
lying below the ground state. They have, however, an
interesting property. Their wave function has nodes:
one, two, thiree,... nodes starting from the highest
level: In other words they have the same number of
nodes as their symmetrical with respect to the ground
state (see fig. 2). This situation bears a resemblance
with the RPA. The resemblance is particularly striking
when « is at the middle of the interval. Then the
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ground state is exactly at zero energy and the positive
and negative levels are exactly symmetrical to-each
other with respect to the ground state.

In conclusion, we have shown that a Schrédinger
equation involving a variable collective mags, which is
negative for some values of the position variable have
interesting properties. In particular, the wave function
are physically acceptable. Another interesting effect
is that this equation can yield a ground state below the
minimum of the potential.
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