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Abstract. A local energy-dependent optical potential is cons-
tructed for the a-a elastic scattering, taking account of
the Pauli principle and of the relative motion. The energy
dependence is due partly to the Pauli principle and partly

to the nucleon-nuclecon force.
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1. Introduction

The concept of an optical model potential has proved to
be useful in the analysis of elastic heavy ion scattering l)e
However, the theoretical calculations of this potential are
not yet satisfactory. There are two main approaches to the
problem. The first one is based on the definition of the op-
tical model potential as the variation of the potential energy
of the system of two ions with their relative distance. This
variation may be evaluated using an energy~density formula 2)
or using a two centre shell-model 3’“). We refer to these ap-
proaches as "static", because they do not account for the
relative motion microscopically. In the second class, we put
the generator coordinate method and the resonating group
method. In these theories, the problem arises to define the
optical model potential properly. In the résonating group
method, one has the advantage of dealing with an equation for
the relative wave Ffunction. Unfortunately, in practice, the
optical potential can only be defined trivially 5). That intro-
duces non-physical poles in the dependence versus the relative
distance. In the generator coordinate methods, the definition
of an optical potential is ambiguous 6).

In the last two mefhods, the optical model potential may
be considered as an intermediate (and non necessary) step bet-
ween the dynamics (i.e. the many-body Hamiltonian) and the
cross sections. Nevertheless, the success of the optical model
potential for the heavy ion scattering supports the role of
the potential scattering in the process. Moreover, the descrip-
tion of the ion-ion interaction by a potential is the most ap-
propriate one to study the molecular-like structure of some
states of the system.

In the present paper, we want to investigate the influence
of the relative motion on the ion-ion potential. The definition

of the potential we adopt here is a generalization of the pres-
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cription of the cluster model or of the two centre shell-model.
We allow the ions to have a non-zero relative momentum. This
method is equivalent to the one proposed by Fliessbach 6)5 He
apply it to the case of alpha-alpha elastic scattering, since
this case has been investigated by many methods.

in sect. 2, we briefly recall the definition of the opti-
cal model potential. In sect. 3, we give explicit formulae for
a nucleon-nucleon force which has the form of the sum of the
two gaussians, and we discuss qualitatively the effect of the
relative motion. Finally, in sect. 4, we discuss the numerical

results. Sect. 5 contains the conclusion.

2. Definition of the optical model potential

He start with the generator coordinate wave functions

D D
|k,p> = N(xgn)ﬁ{(exp(ix,RH)es;gM(— fg—m@ ()1 (2.1)

SM~2

where ¢2M(x) is the shell-model wave function of a fragment
centered at the point =x and where ng is the relative centre-
cf-mass coordinate. The operator VY antisymmetrizes between

each cluster. The quantity N(X,D}) is a normalization factor.
The definition of the optical potential proceeds as follews.

Let X(D} be a trajectory in the K;D space. The optical poten-
tial is defined as the variation of the potential energy along

this trajectory from infinity to a certain point D

Uoe(D) = [n(K(D),D) NS SALH ,’
- [h(K(=),») - ﬁ%&l] ; (2.2)

where
hCK.D) = <K.D|H|K,D> o

while M is the reduced mass of the system. The trajectory is
determined by assuming that (2.2) is a good definition, i.e.
that the following energy conservation low holds along the

trajectory



%2K2(D) -
5H + Uopt(n) = EK,O . (2.4)
The quantity EK 0 is the asymptotic kinetic energy. The tra-
3

jectory K(D) <can be regarded as the mean trajectory along
which the wave packet propagates. Egqs. (2.2) and (2.4) define
the potential in a self-consistent way : one first chooses a
function K(D) ; one then calculates Uopt(D) from eq. (2.2}
introducing then this value in eq. (2.4), one obtains another
function K(D) , that one puts back in eq.. (2.2), etc. until
convergence is reached. Below, we neglect the dependence upon
the angle between K and D , assuming no angular momentunm
dependence, as it is usually done in the two centre shell-model
and we can thus use scalar quantities. For D =+ = , egs. (2.2)
and (2.4) show that the optical potential approaches zeroc and
that K{(D) tends to the physical asymptotic relative momentum.
The connection between the optical potential (2.2) and the

generator coordinate formalism has been investigated in ref. 6.

3. Explicit formulae

Here, we evaluate the expectation value of the Hamiltonian
for the wave function (2.1). We closely follow ref. 7 and re-

write (2.1} as

|K,0> = N(X,D)/B(s,(0)¢ (D)) (3.1a)
with
Ay
- - I '
o1 jgi gj(rj) , gj(r) z exp(iKr/AI)¢j(r) (3.1b)
AII 11
$yp E fj(rj) s fj(r) = exp(»:Kr/AII)¢j (r) , (3.1c)

Here, the ¢§’II’

functions. By a Schmidt procedure we can transform the gj's

¢ are the single-particle shell-model wave



s

in functions gj which are orthogonal to the fj's . This 1is

very suitable since in second quantized form, we have

lk,p> = N(X,D) I g

n fi}o> . (3.2)
3 i i

One can consider the states fi as a filled Fermi sea which
remains unchanged during the whole scattering process. Using
the usual form of the Hamiltonian

H = z £, v L vl s ) (3.3)

we can write, with the help of egs. (2.2) and (2.3},

Uopt(ﬁ) = E(K(D),D) - E(K(»),=) = BE(K(D),D) , (3.4)
where

E(K,D) = T(X,D) + V(K,D) + th(K,D§ . (3.5)
with

T(K,D) = § <éj§t!éj> - §2§; . (3.6a)

. 1 .o 2 -z
V(X,p) = 1o <ey gsilvliey g5 o (3.6b)
373 (
1 AI AII - -
th(K,D) = 3 izi jzl <gj fi{v[g§ fi>AS . {(3.6¢)

The quantity mp is the mass of the ion. The quantity AT =
T(X,D) - T(K,») describes the variation of internal kinetic
energy of one ion because of the Pauli correlations induced

by the presence of the other jon. The guantity AV = V(X,D)

- V(K,»} measures the variation of potential energy due to

the same correlations. All the Pauli correlations are contained

v

in the function gj . One can suppress these correlations by



replacing in eqs. (3.6) the ;5“3 by the gj*s . Then, the
quantities AT and AV vanish automatically, since the gquan-
tities T(K,D) and V(K,D) do not depend upon D any more.
Finally, th descpribes the interaction between the two ions.
We emphasize that this term igs influenced by the Paull corre-
lations but that it vanishes with infinite separation distance.

For the o-a system, if the functions @I R éII {egs.
(3.2)) are Os harmonic oscillator wave functions, the inte-
grals appearing in egs. (3.6) can be-evaluated analitically,
using a nucleon-nucleon force of the form : ‘

2

2 r.°,
Vij = 2 vn exp(- ~il) (1 - m + m Pm) . (3.7}
n=l pnz .

where Pm exchanges the spatial coordinates. Special care must,

K,0
k2 is negative, by eq. (2.4). One can replace K by ix in

however, be taken when Uopt(D) is larger than E . Then,
egs. (3.1b) and (3.1c), but the Schmidt procedure is then more
complicated because the functions fj {(see eq. (3.1)) are no
longer orthogonal (except for the a-a case). Additional terms
should appear in eqs. (3.6a) and (3.6b).

Gf course, fhe results are equal for K2 or k% + 0 .
As a matter of fact, if we use (3.4) for K(D) = K(w) = 0 , we
obtain the adiabatic value of the potential, which contains
the effect of the Pauli principle for each value of D . By
this we mean the following. Let us for instance take two a-
particles from infinity and bring them at a certain relative
distance D and fix them at this position. The Pauli principle
forces the occupation of the shells to change. For insténce9
if D = 0 , four particles are promoted from the 0Os to the
Op-shell. This process takes a finite time. In a real collision,
which can be considered as described by the states (2.1} (when
the relative distance is equal to D) , the shells are not re-

arranged like in the case when the jons are at rest. This is

reflected by the fact that the overlap between the gj and



the fi is different from the overlap between the ¢§I and
the ég . In fact, as K tends to infinity, the gj and fi
no longer overlap whatever the value of D is : this expresses
that the Pauli principle is relaxed by the relative motion. In
the adiabatic approximation, the relaxation of the Pauli prin-

ciple is inexistant. We have

Uad(n) = E(0,D) - E(0,=) . ' (3.8)

LR ‘. v
- a5

On the other hahd, we can find the sudden value of the potential

1t

by setting K(D) K(e) = » in eq. (3.4). This corresponds to

an infinitely rapid collision. We have

i

u (D)

cud E(®,D) - E(=,=)

3

2

13}
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In this case, the Pauli principle is completely relaxed and
only the th term in eq. (3.5) has a non-vanishing contribution
in the sudden case. We come back to this point later.

We stress that our sudden and adiabatic potentials sh;;ld
not be confused with the sudden and adiabatic potentials as de-
fined in the two centre shell-model (see ref. 3 for instance).
As the two ions are coming near each other, the shells are dis~
torted by the nuclear interaction : the dynamical correlations
and the occupation of the shells are changed because of the
Pauli correlations. The relative motion modifies the effect of
both types of correlations. In the two centre shell-model, the
two ions are always considered at rest, and, thus, the potential

is always an adiabatic approximation inasmuch as the Pauli corpr-

relations are concerned. In our approach, the potential is al-




ways sudden with respect to the dynamic correlations since we

neglect the deformation of the fragments. In Fig. 1, we illus-
tpate our discussion. Our potentials (3.8) and (3.9) are indi-
cated by crosses and the potentials extracted from the two cen-
tre shell-model are denoted by circles. This figure also shows
t+hat our adiabatic potential is equivalent to the sudden poten-
tial of the two centre shell-model. The empty sguare in Fig. 1
should correspond to a very rapid collision between very soft

iO‘ﬂS ® o e VTR R C o

4, Numerical results

Here, we present the results of a calculation for the case
a-a . The optical potential has been computed for two different
forces, the Brink and Boeker Bl force 8) and the Volkov V2
force 9), with, for the latter, the parameters @ V1 = 4+ 60 MeV
V2 =z - B0 MeV , My, = 1.01 fm , ¥, = 1.80 £ m, = m z 0.6 .
The oscillator parameter b is equal to 1.36 fm .

Prudbutiihngsegipuaipuapieetg PR adathalhad

Fig. 2 shows the results of the calculation using the Bl
force. The potential is attractive at long distances and repul-
sive at short distances. This repulsion is an essential feature
of the Pauli principle. By switching off the Pauli correlations
(i.e. putting g5 instead of éj in eqs. (3.6)), one obtains
a fully attractive potential with a maximum depth of 60 MeV
for BK90 = 1 MeV . One can see that the potential is ngf very
energy-dependent in the range ELab = 0 to 40 MeV . This can
be checked as follows. For a fixed value of D , egs. (2.4)

and (3.4%) show that Uopt(ﬂ) is the intersection point of the

;grvz Uopt = AE(K,D) = £(X2) with the straight line Ucpt =
5% K + BK50 in the (Uopt’Kz) plane. The inspection of the

curves (not displayed in the figures) £(x%) = AE(K,D = 0) ,
and f(k2) = AE(X,D = 3 fm) (around the minimum) shows that



i) the optical potential remains approximately constant at

D = 0 and D = 3 fm between O - and 40 MeV . ii) At higher
energlies, the potential decreases slowly to reach a shallow
minimum and then goes upc‘iii} When sz passes through O

(X passes from real to pure imaginary), the quantity AE(K,D)
is continuous, but not its derivative (hencé, the small angu-
iar points in the curves of Fig. 1 and Fig. &). This is due to
the fact that, as K2 passes through 0 , the norm of the
states fj and gj is continuous but‘noﬁ_continuously deri-
vable.

We finally emphasize that the potential at zero incident
energy i3 not equal to the adiabatic energy, since the function
K(D} can be locally different from zero.

Fig. 3 displays the results with the V2 force. The po-
tential is less repulsive at short distances, which is presu-
mably due to the smaller repulsive part of V2 3 it depends
much more upon the energy. If we use the rough approximation
Uopt(D) = U(Q)(D) - a(D)ECM between 0 and 20 MeV (CHM) , we
get at D
V2 . Avround D = 3 fm , o = 0.15 for the Bi and o = 0.8

1

0, o = 0,15 for the Bl and o = 2 for the

for the V2 . We discuss below the interpretation of the

energy dependence.

4,2, Contributions to the ogtical potential

mmmmmmmmmmmmmmmmmmmmmmmmmmmm i v e o s e G oo

In Fig. %, we display the different contributions to the
optical potential. We see that the interaction between the ions
(th) is essentially attractive, whilc the variation of inter-
nal kinetic and potential energy is repulsive. As the two ions
are coming near each other, the pr term starts increasing
(in modulus) more rapidly than the AT and AV  terms. This
can be interpreted as follows : the Pauli principle, mainly in

AT and AV , comes into play when the orbitals are cverlapping

However, the nuclear interaction is already effective before



this stage, because of the non-zeroc range of the nuclear forces.
This seems to be a quite general effect independent of the size
of the fragments.

If we switch off the th term, i.e. the ion-ion interac-
tion, we see from Fig. % that the Pauli correlations alone are
generating phase shifts. The effect is so large that we believe
this result not to be bound to our approximations, although
this question is not solved yet 10), The orthogonality scatte-
ring model yields a quite similar result. This model assumes
that the scattering particle does not experience a potential,
but that its wave function must be orthogonal to some wave
functions (in general localized and of finite norm). It has
been shown that this model generates phase shifts (see ref. 11

and other refs. thereinj).

It is now well accepted that the Pauli correlations are
essentially repulsive and that this effect is becoming less and
less important as the energy increases. However, we also find
that the nucleon-nucleon potential plays a role in the energy
dependence. At different energies, the system is particularly
sensitive to different Fourier components of the nucleon-nucleon
force. For the Bl , as the energy increases, the Fourier com-
ponents are more and more repulsive, while the opposite is true
for the V2 force. This is illustrated by Fig. 5 which shows,
for each force, the adiabatic potential, neglecting the Pauli
correlations and the sudden potential. We have thus thrown away
the Pauli correlations, since the sudden potential is not in-
fluenced by the latter, and we are left with the nucleon~-nucleon
force effects only. It is clear that Bl is more and more re-
pulsive while the V2 force is more and more attractive. In
'the region 0 - 40 MeV (Lab) , the effect of the force on the

‘energy dependence is of the same order as the effect of the



Pauli correlations. For the B1 force, the two effects prac-
tically cancel each other, while for V2 , they add coherently.
One observes (see vrefs., 12, 13, 1% and below} that the V2

is closer to the physical situation. In summary, we find that
the variation of the optical potential is partly due to the
Pauli correlations and partly due to the "excited™ Fourier com-

ponents of the nucleon-nucleon force.

4,4, Phase shifts

In order to test the calculation, our potential has been
introduced in a Schrddinger equation in order to calculate the
phase shifts. The Coulomb interaction has been included by ad-

ding the following term to the nuclear interaction

Z.,% 3
172 D

= {3 - Z < <

v (D) I LI I L M
a

2.7
i72

= 5 5 D>Xﬁ s

where Xa is the sum of the radii of the two a-particles. The
results for L = 0 are shown in Fig. 5. The results are quite
encouraging. The V2 force gives better results than the Bl

. . ; o 12
force. This agrees with the results of Lumbroso 3

5, Conclusions

We have computed, in the a-a case, an optical potential
which takes full account of the Pauli principle and of the rela-
tive motion. The results are force-dependent. The V2 force
is closer to the physical situation and leads to the following
conclusions. 1) The optical potential is more and more attrac-
tive as the energy increases.

ii) The energy dependence is due to the relaxation
of the Pauli principle at increasing relative momentum on one

hand, and to the selection by the relative motion of certain



Fourier components of the nucleon-nucleon force on the other
hand. These two effects are of the same order and are both
attractive.

141) The ion-ion potential is essentially attractive
at large distances and repulsive (because of the Pauli princi-
ple) at short distances. This is presumably related to the non-

zero range of the nucleon-nucleon force.

We are grateful to E. Donni for his numerical helip.
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Fig.

Figure captions

1. See the text for the explanation.

Fig. 2. Optical model potentials calculated with the Bl force

Fig.

Fig.

Fig.

at By, = 1 MeV {(long dashes) , 25 HeV (small dashes)

40 MeV (dash-and-dots) . The full curve corresponds to
the adiabatic approximation (eq. (3.8)}).

3.0ptical model potentials calculated with the V2 force
at Ep_, = 0 MeV (small dashes) , 7.5 MeV {(long dashes)
The adiabatic approximation (eq. (3.8)) is represented

by the full curve.

4.Representation of the different terms of eqs. (3.8} and
(3.5) for the optical model potential calculated with

the Bl force at ELab = 15 MeV : AT {(small dashes),

AV (dash-and-dots), th (long dashes). The full poten-

tial is represented by the full curve.

5.Adiabatic optical model potentials without Pauli corre-

lations (long dashes) and sudden potentials (full curves)

for the Bl and V2 forces.

6.Comparison between the & = 0 experimental phase shifts
and those calculated from the theoretical optical model
potentials. The full line corresponds to the V2 . force

and the dots to the Bl force.
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