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PROGRAM SUMMARY

Title of program;:BSSW
Catalogue number: ABGL

Program obtainable from: CPC Program Library, Queen’s
University of Belfast, N. Ireland (see application form in this
issue)

Computer: IBM 370/155; Installation: University of Liege
Operating system: MVT-R20.7
Programming language used: FORTRAN IV (G)

High speed storage required. 1143 words.
No. of bits ina word: 32

Overlay structure: None

No. of magnetic tapes required: None

Other peripherals used: Card reader, line printer

No. of cards in combined program and test deck: 300
Card punching code: BCD

Keywords: Nuclear s-state, Woods—Saxon potential, Fox—
Goodwin method, spectroscopic number, S-matrix.

* Chercheur L.IS.N.

Nature of the physical problem

The program computes the energy and the wave function
of the s-state in a Saxon—Woods potential. It can also deter-
mine the well depth or radius which fits a given binding
energy.

Method of solution

The S-matrix for negative energies is obtained analytically
using a method given by Bencze [1]. The equation giving its
poles is transformed into a real equation whose solutions are
the bound state energies, The wave function is obtained by
integrating the Schrodinger equation using the Fox—Goodwin
method.

Restrictions on the complexity of the problem
Only s-states.

Typical running time
The running time is 0.2—0.3 sec for the bound state
energy alone, 0.8—0.9 sec if the wave function is required.

Reference
[1] G. Bencze, Comment. Physico-Mathemat. 31 (1966) 1.
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LONG WRITE-UP

1. Introduction

The Woods—Saxon potential is widely used in nuclear physics to describe the bound and scattering states of
various systems like neutron +nucleus, alpha particle + nucleus and now, ion +ion. The programs used up to now
to compute the bound state energy and wave function match the integrated solutions of the Schrodinger equation
starting from inside and from outside the well. This procedure requires a long time. In BSSW, the bound state
energy is computed very fast (a fraction of second) using an analytical method for s-waves [1]. The wave function
is obtained by integrating the Schrodinger equation using the Fox—Goodwin method. Besides its rapidity, the
program offers some other advantages: 7) it works very well for loosely bound states for which previous methods
are often divergent. 7i) it can easily be transformed into a subroutine which may be advantageously introduced in
DWBA codes, when particles are transferred in s-states. i%) the program can also determine the well depth or the
well radius which fits a given binding energy. In particular, it is very easy to find a depth corresponding to a critical
potential, which is very difficult with previous methods. Those critical potentials are related with maxima in neu-
tron strength functions {2].

2. Method of solution

It is easy to get an analytical solution for an s-wave using the method described by Bencze [1]. We only sketch
the procedure. We start from the equation
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where u is the reduced mass and E} the binding energy. Introducing b = exp(—R/a) and x = —b ¢, and making
the substitution

u(x) = x™ofx) ©)
with
A= ie A2 (Vg - Eg) =iA, ®)
we get
2
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The solution ¢ can be expressed as a linear combination of hypergeometrical functions. The condition u(r=0) = 0
completely determines the wave function except for a normalization constant. By looking at the asymptotic
behaviour, it is easy to get the S-matrix [1]. For negative energies the zeros of the S-matrix are given by:

T(1 + 2iA) T(1 + ka — iA) T'(ka — iA) _
T I'(Q - 2iA)T(1 +ka +iA) T(ka +iA)
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and
A= [B1+B)PA(1+5)24 F(1 —ka +iA, —ka HA, 142iAb[(1+B)/F(1+ka —iA, ka — IA, 1-2iA, B/(1+D)), (6)

where k =+/(2u/h%) Ey and F is the hypergeometric function. We are going to show that eg. (8), which apparently
looks like a complex equation, is in fact equivalent to a 'real equation of one variable. Since I'(Z*) = '*(2}, it is
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sufficient to show that 44 %= 1. Applying the relation [3]

fNTQy—a-p)
F(Oi, B, ¥, Z) = W F(a, B, atf—vy+1, 1-—-Z)

+(1-zyet LOT@B=D) pe o gy o pr1,1-2) (7
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for both hypergeometric functions in (6}, and taking the following relation into account:
Fo*, B*,v*,Z2%) = F*(a, B, 7, ), (8
we can show that
F(1 —ka+iA, —ka +iA, 1+ 2iA, B/(1+D)) = [1/(1 +5)] %2 F*(1 +ka —iAka—iA, 1 —2iA ,b/(1+D)). (s
Then, eq. (4) is equivalent to
P) =0, (1C
with
¢=—2An [b/(1+b)] — 20, +2¢, +46, + 2 arctang (Alra), {11
and

9y = arg F(1 —ka+iA, —katiA, 1+21A, b/(1+b))y, ¢, =argl(1+2iA), ¢, =argDl(ka—iA).

The function ¢{k) possesses interesting properties:

i) in practical cases, it is a monotonically decreasing function of «. Indeed, it is easy to see that, in general,
¢y is very small (because b is small), —2A In [5/(1 +b)] + arctan (A/ka) is always decreasing when k increases,
and ¢; and ¢, are also decreasing except for very small values of Al

ii} ¢ has a non-physical zero when Fy = V; by “non-physical” we mean that it does not correspond to a bour
state. This is illustrated by fig. 1.

In order to solve numerically eq. (10), we proceed as follows. Starting from a given value of £ {or ¥, or R),
we make a linear extrapolation of the function ¢, which has a root at £y = x. At this value, we again do a linear
extrapolation which gives a new value of x. The process is stopped when the difference between two successive
values of x is less than the desired accuracy (ERR in the input data). This procedure is very fast in this problem
because of the almost linear variation of the function ¢(k).
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Fig. 1. Typical variation of the function ¢ versus Ey. The parameters are: V=46 MeV, R =4.534 fm, e = 0.62 fm.
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READ N,KEY,KEY1, NPAS
READ EB,VO,RO, A FMU,ERR

FIRST FIRST FIRST
GUESS| |GUESS| |GUESS
OF EB| |OF VO |OF RO

(C:OA(QIE’USTTEPS | . |ZAZA,CHYPER

ZERO OF ¢(x)

CGAMO, PHASE

INTEGRATION OF
SCHRODINGER EQ,
CHECK OF THE
NUMBER OF NODES

NORMALIZATION OF
THE WAVE FUNCTION
PRINTING

END
Fig. 2. General diagram.
3. Program structure

The general flow diagram is illustrated by fig. 2. The main program first reads the input data which are defined
by the detailed comments in the source program. Then it makes a first estimate of the unknown parameter (£p,
Vo or R), if it is not given in the input data.

The subroutine STP(V, A,FMU, ERR,KEY) computes the zero of the function ¢ by the procedure explained
in the previous section. The computation of the function ¢ is done by the subroutine ZAZA(V0,R0, A, EB, FMU,
ERR).

Following the value of the control data KEY 1, the program stops or it integrates the Schrodinger equation in
order to check the number of nodes of the wave function. A printing of the normalized wave function can also be
obtained for a special value of KEY 1.

The subroutine CHYPER(CA, CB, CC, CZ, EPS) computes the hypergeometric function F{g, §, v, Z) for com-
plex e, 8,7, Z with an accuracy less than or equal to EPS. The value of EPS assumed here (in subroutine ZAZA)
is: EPS = 10-8, but can be changed.

The subroutine CGAMO({CZ, EPS) computes the complex gamma function I'(Z) with an accuracy less than or
equal to EPS.

Finally, the subroutine PHASE(Z) determines the phase of a complex number Z between —r and 7.
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4. Input and cutput data

The input data (N, KEY,KEY |, NPAS, EB, VO, R0, FMU, ERR) are described by the comments in the source
program.
The output data contain:
. the starting values of £, ¥, R and a.
. the intermediate values of F (or V; or R) which are obtained successively in the procedure of solving eq. (10).
. the final values of E, ¥V, R and a.
. eventually one of the following two diagnostic messages:
iy INCORRECT NUMBER OF NODES
if, for instance, the 3s state is obtained instead of the 2s state. This message is followed by the effective
number of nodes. The starting value of the unknown parameter must be changed.
ify UNBOUND LEVEL
if the function ¢ has no root for Fy positive.
5. the values of the normalized wave function (for appropriate value of KEY1). They correspond to # = n(Ar)
withn=1,2,...,NPAS, and Ar = (R, + 102)/NPAS.

B R e

5. Test runs

1. 2s state in 40Ca. Parameters: Vo =46 MeV,R =4.534 fm, e = 0.62 fm, u = 0.9756. The initial value for Ey
is 20.4495 MeV. The required accuracy is 0.001 MeV. Values of the control data: N=2,KEY = |, KEY1=1
NPAS = 200. '

2. Critical potential for the 4s state (around Tm). Parameters: V) = 49 MeV, Eg = 0,2 = 0.52 fm, u = 0.994.
The initial value of R is 7 fm. The required accuracy is 0.0001 fm. Values of the control data: N =4, KEY = 3,
KEY1 =2, NPAS = 200.

References

[1} G. Bencze, Commentat. Phys. Math. 31 (1966) 1.
[2] A.E.S. Green, T. Sawada, D.S. Saxon, The Nuclear Independent Particle Model (Academic Press, New York 1069), ch. 4.
{31 M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (N.B.S., Washington 1965), ch. 15.
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TEST RUN QUTPUT

FIRST TEST RUN

SEARCH OF THE BINDING ENERGY

STARTING VALUES EB= 20,449493 V0= 46,000000 RO= 4.533999 A= (.620000

Xl= 13,338008
X1= 13,423724
X1l= 13.447281
FINAL VALUES

DISTANCE R

0 536TE-

0.1073E
0.1610E
0.2147E
0.2683E
0.3220E
0.3757E
0.4294E
0.4830€
0.5367€
0. 5904F
0.6440E
0.6977E
0,7514E
0. 8050€
0.8587E
0. 9124E
0.9661E
0.1020E
0.1073E
0.1127E
0.1181E
0. 1234E
0.1288E
0.1342E
0.1395E
00 1449E
0.1503E
0. 1556E
0.1610F
0o 1664E
0.1717E
0.1771E
0.1825E
0. 1878E
0.1932E
0.1986E
0.2039E
0.2093E

0.2147E~

0., 2200E
0.2254E
0.2308E
0.2361E
0. 2415E
0.2469E
0.2522E
0.2576E
0.2630E
0.,2683E
0.2737E
0.2791E

01
00
00
0s
00
[el0}
s}
00
00
00
00
(s]3]
00

EB= 13.446569 VO= 46.000000 RD= 4.533999 A= 0,620000

NORMALIZED WAVE FUNCTION

0,3460E=01
0.6904E-01
0.1032€ 00
0.1369E 00
0.,1700E 00
0.2023E 00
0.2338E 00
0.2642E 00
0.2935E 00
0.32158 00
0.3482E 00
0.3732E 00
0.3967€ 00
0.41B4E 00
0.4383E 00
0.4563E 00
0.4723E 00
0.4863E 00
0.4981E 00
0.5078E 00
0.5152E 00
0.5204E 00
0.5234E 00
0,5241F 00
0.5225E 00
0.5186E 00
0.5125E 00
0.5042E 0O
0.4936E 00
0.4810E 00
0.4663E 00
0.4495E 00
0.4308E 00
0.4133E 00
0.3880E 00
0.3641E 00
0.3385E 00
0.3116E 00
0.2833E 00
0.2538E--00
0.2232E 00
0,1917€ 00
0.,1593E 00
0.1263E 00
0.9279E~01
0.5887E-01
0,2470E-01
~0,9565E-02
-0+4380E~01
~0.7785E~01
-0.1116E 00
~0,1449E 00
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4.2845€ 01 -0,1776E 00
0.2898F 01 -0.2095E 00
0.2952€ 01 -0.2407E 0O
0.3006E 01 -0.2709E 00
0.305%E 01 ~0.3001E 00
0.3113E 01 -0.3281E 00
0.3167E 01 -0.3548E 00
0.3220F 01 -0.3803E 00
0.3274E 01 ~04043E 0O
0.3328E 01 ~0.4268E 00
0.,3381F 01 ~0,4478E 00
0.3435E 01 ~0.46T72E 00
0.3489E 01 ~0.4850E 00
0.3542E 01 ~-0.5011€ 00
0.3596E 01 -0.5156€ 00
‘0.3650E 01 -0.5284E 0O
0.3703E 01 ~0.53G95E 00
0.3757€ 01 -0.5489E 00
0.3811E 01 -0.5567E 00
0.3864E O1 ~0.5629E 00
0.3918E 01 -0.5675E 00
0.3972E 01 ~0.,5705€ 00
0.4025E 01 ~-0.8721E 00
0.4079E 01 -0.,5723E 00
0.4133E 01 -0.5711E 0O
0.4186E 01 -0.5686E 00
0.4240E 01 -0.5649E 00
0.4294E 01 ~0.5600E 00
0.4347E 01 ~0.5542E 00
0.4401E 01 -0.5473E 00
0.4455E 01 -0.5396E 00
0.4508E 01 -0.5310E 00
0.4562E 01 ~0.5218E 00
0.4616E 01 ~0.5119E 00
0.4669E 01 -0.5015€ 00
C.4723E 01 -0+4905E 00
0., 4777E 01 -0,4792E 00
0.4830E 01 -0.4676E 00
0,4884E 01 ~0.4557E 00
0.4938E 01 ~0.4436E 00
0+4991E 01 -0.4313E 00
0.5045E 01 -0.4190E 00
0.5099E Ol ~-0.4066E 00
0.5152E 01 -063943E 00
0.5206E 01 -0.3820E 00
0.5260E 01 ~0.3698E 00
0.5313E 01 ~0.3577E 00
0.5367E 01 ~-0.3458E 00
0:5421E O1 -0.3341E 00
0.5474E 01 ~0.3225E 00
0,5528E 01 -0.3112E 00
0.5582E 01 ~0.3002E 00
J.5635E 01 -0.2893E 00
SECOND TEST RUN

SEARCH OF THE RADIUS
STARTING VALUES EB= 0.0

Xl= 6.885442
FINAL VALUES EB= 0.0

V0= 49.000000

V0= 49.000000

RO=

RO=

7.000000

6.885501

A

A

0. 520000

0.520000
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