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Abstract: The imaginary part of the optical-model potential for the scattering of nucleons by nuclet
is studied in the frame of the shell-model approach to nuclear reactions. Special attention is
paid to the one-hole target nuclei. The imaginary part of the optical-model potential in the
second order in the nucleon-nucleus interaction is divided into two parts. The first corresponds
to the average resonant scattering. The second corresponds to the inelastic scattering leading to
the non-collective states of the target nuclei. A local potential equivalent to the non-local
theoretical one is constructed in order to facilitate comparison with experiment. Numerical
calculations concern the scattering of 14.5 MeV protons by 3°K. It is found that the imaginary
part depends upon the angular momentum and that its radial variation is governed by strong
shell effects. The predicted absorption is approximately 60% of the experimental one. The
average resonant scattering contributes to the imaginary part of the optical-model potential
as much as the inelastic non-collective excitations of the target.

1. Introduction

A microscopic calculation of the imaginary part of the nucleon-nucleus optical-
model potential (OMP) is difficult. The reason is that, in the simplest approximation,
there are many intermediate states to take into account. In general, one does not
know the nature of most of these states. Therefore, the imaginary part of the OMP
has been calculated only in phenomenological models, like the Fermi gas model )
or the Thomas-Fermi approximation >~ *), except for several recent investigations
[refs. 5~ 7)]. However, these are incomplete to a large extent. Either they stop at the
construction of the non-local potential, or they do not include the contribution of the
averaging procedure. Indeed, we recall that the imaginary part of the OMP comes
not only from the excitation of the inelastic channels, but also from average elastic
resonant scattering. Let S, be the scattering matrix of the total system in a given
elastic channel ¢. The OMP in this channel is associated with a scattering function
equal to the average of S,, on some interval I: {S,.»;. This quantity is not unitary,
if inelastic channels are open or if S, is energy dependent. Thus, the average resonant
scattering contributes to the absorption, but it has been neglected in previous investi-
gations, with the exception of its partial treatment in ref. 7).

* Chercheur 1ISN. This work is partly based on the Ph.D. thesis of the author.
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Our purpose is to study the OMP, and especially its imaginary part, in the frame
of the shell-model theory of nuclear reactions ?). In particular, we compare the con-
tributions of the average resonant scattering (we shall say the compound nucleus
contribution) and of the inelastic scattering, respectively, to the absorption. We then
construct a local potential which is equivalent to the non-local potential that we have
calculated. We compare with experiment the cross sections derived from both poten-
tials, and the equivalent local potential itself. Finally, we investigate the non-locality
of the calculated theoretical potential. '

For the sake of convenience, we restrict the model space to particle-hole states.
Thus, we choose targets whose states are well described by the shell model. One-hole
nuclei may fulfil this requirement. Our numerical calculations concern the scattering
of protons by *°K, for which the OMP is known at 14.5 MeV incident energy *°).
We introduce explicitly all the Ip-1h configurations of the total system which are
necessary for the calculation. The more complicated configurations are implicitly
taken into account through the spreading width of the Ip-1h resonant states.

We briefly summarize some of our results. Firstly, the compound states contribu-
tion to the absorption is of the same size as the contribution of the inelastic excitation
of the non-collective target states. However, the total contribution (compound states
plus non-collective target excitations) is too small, by about 40 % Secondly, the
imaginary part of the OMP contains a large volume component. The most striking
result is the appearance of shell effects both in the radial variation of the imaginary
part of the OMP and in the variation of the non-locality parameter. Those shell effects
can be related to the fact that the excitation of particles from below to above the Fermi
sea is favourably initiated, during collisions with the incident nucleon, where the over-
lap of the matter density in the shells above and below the Fermi sea is important.

In sect. 2, we briefly recall the expression of the OMP in the frame of the shell model.
Sect. 3 is devoted to the definition of the model space and to some consequences of
this definition for the calculation. In sect. 4, we give the details of the calculation and
the results in the form of some quantities, specifying the non-local theoretical imagi-
nary part of the OMP. Sect. 5is divided into two parts. Firstly, we construct a local
potential equivalent to the non-local theoretical one. Secondly, we compare both
this equivalent potential and the cross sections derived from it to the experimental
data. In sect. 6, we investigate the non-locality of the theoretical OMP. Sect. 7 con-
tains a discussion on the predicted localization and intensity of the absorption. We
give the conclusions in sect. &.

2. Optical-model potential and the shell-model in the continuum

In this section, we define the notation, we recall the formula of the optical-model
potential for a given channel, and we derive the expression of the optical-model
potential for an incident plane wave.
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2.1. THE SHELL MODEL IN THE CONTINUUM

The total Hamiltonian is divided into two parts:
H = Hy+V, (2.1)

Hqy = ;ha(i} = 2. (1(i)+vo(i)), (2.22)

V= Z“v(i, - z vgli). (2.2b)
i<j i
In these relations, v(i, j) is the interaction between the two nucleons 7, j and v, is the
average model potential well. This real potential well has a finite depth. We denote its
bound and scattering states by wy; (r, k,) and uy; (7, k) respectively ',

The Hamiltonian H, possesses bound states ¢; and scattering states ¥z with only
one nucleon in a scattering state u;;(r, k. ). We have the following expressions and
definitions:

Ho¢, = E;d;, Hoyz =Eyz, E= 3c+h2ki/2Ms (2.3)

¢, being the threshold for the channel c.

2.2. THE OPTICAL-MODEL POTENTIAL FOR A GIVEN CHANNEL ¢

One can write the optical-model wave function in channel ¢ [ref. 1] as:

o) = f a5(e, Eu(r, k) dE. (2.4)
The Schrodinger equation °) is: ’
(E-Dy)pz(r)— {0 V5, 7)pE(r)dr’ =0, (2.5)

where Dy; is the radial component of g = f+vg. This equation is equivalent to the
following one: ’

(E—ENagc, E’)—f ¥ E', E")as(c, E")dE" = 0, (2.6)
with %) )
7 YE, E") =f dz‘f dr'u(r, k)P 5(r, v )udr, K2, 2.7
o Jo
Y ) = { dE’ j dE u(r, k)P SE, Eulr, k). (2.8)

The quantities 7 $(E’, E'') and ¥ £(r, r') are the shell model and r-representation
of ¥ £ respectively. When there are no single-particle resonances in the vicinity of the
energy of interest, the whole optical-model potential in channel ¢ (OMP(c)) is given
[refs. ®11)] by:

VP = Uo’{”"/?%(r: ") = vo+ Y Eeu(rs ), (2.9)

* For the conventions, see ref. 2) ch. L.
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7 being the averaging interval.
The general expression for the quantity ¥"¢ is

7/§(E’> E") = </(ICS!Veff]/1€I>
+ Z <x2'lVerf1¢s><¢sl[E+1'1~Ho‘Veff]_liq')sf><¢>yllf2r;i;{2">, (2.10)

with
Q.
Veer = V4 VE+—H0 Vese » (2.11a)
Qc =) | dEZExs. (2.11b)

c’FEed g’

In second order in ¥, the OMP(c) is given in r-representation by:

VPO, ) = 00+ 58, )4 7D, 1), (2.122)

VEC ) = T VIS EHT-E) gV Ife, (2.120)

,%/EIR(;.’ ?',) — </{'ﬂyil{;'>+ Z j ,<X:”/]/52,>E+ I <A§,IV}Z'C,>, (2}2C}
with

> = f dE"u(r, k)[xi>. (2.12d)

2.3. THE OPTICAL-MODEL POTENTIAL FOR AN INCIDENT PLANE WAVE

The OMP(c) defined by eq. (2.9) is the one acting in a given channel ¢. The latter
index covers the following set of quantum numbers: the orbital and total angular
momentum quantum numbers of the relative motion l, ], the spin of the target 7,
the total spin of the system J, the isospin of the target 7, and its z-component My,
the total isospin 7 and its z-component My. We have to compute the OMP acting on
an incident plane wave. We do not want to retain in this work an imaginary spin-orbit
term (since in the case we will study such a term has not been included in the phenom-
enological OMP), nor a spin-spin term, which is very small. Then, as we show in the
appendix, the OMP acting on an incident plane wave can be reduced to:

';//opt(r’ ¥y = Lb.}.f;l/plane(}.’ ", ; (2.13)
with ‘ ‘ ~ k
2L+1 Y o (r,
’f/PIa“e(r, i") — Z _}_ﬂ _M PL(COS @)‘ (214}
I 4R rr'

The multipoles ¥, (r, r') are given by the relation (see appendix):
Vil vy = 2 (LOLH{j3)? 2L+t 2 Gl +1)°
J ar J

X ; (T My 3| TM p)* 7 T eimdneTn oy (2.15)
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with m, the z-component of the isospin of the incident nucleon. The quantity ¥ ¢ is
given in eq. (2.9).
3. The model space

In order to make the calculation feasible, it is necessary to truncate the configura-
tion space. Since we study the example of a target constituted by a magic nucleus
minus one nucleon, we take a model space spanned by the shell-model configuration
with 1 particles and » holes, trying to make » as low as possible in order to simplify
the calculations.

As a first step, one can take for the elastic and inelastic channel states 1p-1h con-
figurations: the target states are then obtained by making a hole in the core of the
magic nucleus. Such a description is not sufficient for the compound nucleus (CN}
states ¢,. Indeed, if, in the expressions (2.12b), we only retain the 1p-1h states ¢,, the
corresponding OMP should generate resonances with a width equal to 2742
{1V |xey?. This quantity is in general smaller than the average separation between
the 1p-1h states. A structure should then remain in the cross sections. Such a struc-
ture is not observed experimentally. The reason is that 2p-2h states are coupled to the
Ip-1h states, broadening the latter ones. This effect is accounted for by changing eq.
(2.12b) into:

Vg = Y VI IE+ T —E) IV Ixe)

+ ; GEWVISE+IT=EY K Vx>, (3.1)

Here, the index s runs over the 1p-1h states. The second term comes from the contri-
bution of the 2p-2h states. In general, those states are not coupled to the incident
channel, because of the structure of y;. Only those 2p-2h states with one hole iden-
tical to the hole of % are directly coupled to y%. The quantity I, is equal to

L= I+3T%. (3.2)
The quantity I'; is the spreading width of the Ip-1h states ¢ due to the coupling of
the latter to the 2p-2h states. One can find a more rigorous justification of eq. (3.1)
in ref. %),

It can easily be shown %) that, as a consequence of the use of this model space, the
real part of the OMP is well described by the Hartree-Fock field. Since we are mainly
interested in the imaginary part of the OMP, we shall assume in the following that
the potential v, gives a good approximation of the Hartree-Fock field, as far as
scattering properties are concerned.

4. Calculation and results

We give below the details of the calculation of the imaginary part of the OMP for
the case *?K +p. We concentrate our attention on 14 MeV incident protons in the

center-of-mass system.



338 J. CUGNON

4.1. THE AVERAGE POTENTIAL v,

We have chosen a potential which reproduces the single-particle scheme for *°Ca
[refs. 13 1*)]. For the neutrons, v, is a Saxon-Woods potential plus a spin-orbit term
with the parameters of Takeuchi and Moldauer *°). For the protons, an additional
Coulomb term is introduced and the depth of the central potential is changed. The
parameters and the single-particle spectrum are given in table 1,

TABLE 1
Saxon-Woods well parameters and single-particle encrgies

Neutron ) Proton ®)
2ps — 1.1781 unbound
2p; — 4.0077 S = 1.0090
15 — 7.9714 — 5.4205
1dg -12.3779 —10.0872
283 —13.4495 —10.8055
lds —17.5685 —15.2441
Ipy —24.3078 —22.1148
1ps —26.7565 —24.5502
Isy —35.2841 —33.0469

%) Vo =46 MeV, Vi, = 9.5 MeV, ry = 1.16 fm, @ = 0.62 fm, r, = 0.60 fm, Ry = rodd-ry.
%) Vo = 52.3 MeV, Voo = 9.5 MeV, 7o = 1.16 fm, a = 0.62 fm, Ro == roA%-+ry, Rcom = Ro,
7y = 0.60 fm.

The ground state of *°Ca is obtained by filling the levels up to 1d; with both pro-
tons and neutrons. Owing to the small isovector component of vy, isospin is not a
good quantum number for *°Ca. However, we shall assume that we have a pure
T = 0 state. This approximation is justified, since the overlap of the wave function
for conjugate single-particle states is larger than 0.99 for the levels below and above
the Fermi level. As a consequence of this approximation, the 1p-1h and 2p-2h states
have good isospin too.

4.2. THE RESIDUAL INTERACTION
We have taken the simplest effective interaction which has been shown ') to give
satisfying results in the 1p-1h description of 4°Ca:
U(ia J) = - VO 5(ri'—"j)(ﬂi +pHS)= (4‘13)

where II, and II, project on triplet and singlet spin states respectively, The values of
the parameters are:
Vo = 986 MeV - fm>, p = 0.46. (4.1b)

However, calculations of the effective interaction based on the Brueckner theory show
that the effective interaction should be density dependent *7). Therefore, we also
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consider the two following interactions:

(F1) o(R, ¥) = —1160 MeV - fm®[1—0.845 fm*p*(R)16(r). (4.2)

(F2) o(R, ¥) = —538.3 MeV - fm®[1-+0.0385 fm*p*(R)+0.147 fn™ ' p " *(R)]5(r),
(4.3)

where B and  denote the c.m. coordinate and the relative coordinate of the two nu-
cleons, respectively. The interaction F1 has been obtained from the modified delta
interaction of Moszkowski *8) by suppressing the velocity-dependent term. The latter
simulates a hard core and ensures saturation, but is not important in the excitation
of particle-hole pairs. The interaction F2 is derived from the interaction used by
Lassey and Volkov ! ?), in the same manner. These two interactions present, however,
the drawback of being as strong in the singlet state as in the triplet state. The impor-
tance of the density-dependence will be hard to visualize in a comparison with the
results given by (4.1). For this reason, we have examined interactions F3 and F4
which have the same density dependence of the forces F1 and F2, the same triplet-
singlet ratio as the interaction (4.1) and an intensity such that they are equal to (4.1)
in the nuclear interior. We can give F1-F4 the form:

o(R, ¥) = — VoI, + pI)é(n, L, p(R))6(r). (4.4a)
with
En, & p(R)) = L+np*(R)+Lp ¥ (R). (4.4b)
The values of the parameters are:
Fl: V, = 1160 MeV - fm®, p =1, n = —0.845fm?, { =0, (4.4¢)
F2: Vy = 5383 MeV - fm®, p =1, = 0.0385fm® { = 0.147fm™",  (4.4d)
F3: V, = 1290 MeV - fm®, p = 046, 1 = —0.845fm?, { = 0, (4.4e)

F4: V, = T13 MeV - fm®, p = 0.46, n = 0.0385 fm?, { = 0.147 fm™t.  (4.4f)

In the following, we focus our attention on the calculation with interaction (4.1),
mentioning only the important differences introduced by the density dependence.

4.3, THE FORM FACTORS
With the help of egs. {3.1) and (2.12) and the remark at the end of sect. 3, we can
write:
%%pt(c)(E’, Eu) — Uo—}-'fV‘CN(Ef, E”)—I—(VDm(E,, E”), (458.}
with
VNE,E") = 3 A VIpHE +ilege—E) T bV x>

+ 2; G\ VIgDE+I-E) {VIxe>,  (4.5b)

VPRELE"Yy = —in ), eV e VI (4.5¢)
c'#Fe
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TABLE 2
Proton elastic channels for / < 4

J7 Particle WNumber J7 Particle Number
T=1 T=0 T=1 T=29

0+ dz 1 24 2~ Py 13 36

o Pz 2 25 X3 14 37

1+ Sy 3 26 fs 15 38
ds 4 27 fz i6 39
ds 5 28 3+ dg 17 40

1~ P 3 29 ds 18 41
Ps 7 30 gz 19 42
f% 8- 31 g; 20 43
dg 10 33 fz 22 45
ds 11 34 fz 23 46
.53 12 35

The hole is 1dy. & = 10.0872 MeV.
TaBLE 3
One-particle-one-hole compound states

No. J=7 Particle-hole Type Energy No. J7 Particle-hole Type Energy
1 of (2py)a (Ipglat 1 22.52 22 (fa(lpg)a™ 3 16.33
2 (2pa)a(lpg)a™? 1 22.75 23 ()a(Ipg)a™* 3 18.78
3 0~ (2pp)n@sy)a™t 2 12.66 24 3~ (pi)a(1dg)a™t 1 15.78
4 i+ Cpn(ipg) ™t 1 22.52 25 (2pg)a(Idg),~* i 13.76
5 (Zpgla(pa)n™!t 1 24.97 26 (ifz)a (Isg)a~! 3 27.31
6 2p2)a(Ipg)a™! 1 20.50 27 (ths (pg)p (Ipg)p* 1 23.55
7 (Zpa)a(lpg)n™? H 22.75 28 i~ (2p3)p (Ipg)p ™t 1 23.55
8 i~ (2pg)a (1dg)n™? 1 13.56 29 (2pg)p (Ipg)p™? 1 21.11
9 Q2py)a (Isg),y™? 1 34.50 30 (2P (ldg),~? 1 14.24

10 (2pa)a (Isg)a™t 1 31.28 31 (pglp(lsy),™* 1 32.04

11 @ppa (2s).7t 2 12.66 32 2+ 2pg)yUpy)p™t 1 21.11

12 (2py)a(ldg), ™t 1 11.59 3 (2p3)p Upg)p ™t 1 23.55

13 2+ (2pgin (Ipgla™t i 20.50 34 (1f7), (Ipg)p—* 3 19.13

14 (2pi)a (Ipg)a? i 24,97 3s 2~ (2ps)s (1dg),~* 1 14.24

15 (2pg)a(lpg)a™? 1 22.75 36 (2pa)p(Isy),~ i 32.04

i6 () {Ipga™? 3 18.78 37 3+ (2p2)s (Ipg)p ™t 1 23.55

17 2~ (@py)a(ldg),™* 1 15.78 38 (g (Ipy),™? 3 17.69

18 (2py)a(ddg),~t H 13.36 39 (f2),(Ipa)p™? 3 19.13

19 2pgin (Isg)a* 1 31.28 40 3~ (2pgle (1dg)p™? 1 14.24

20 (2pg)a(Idg)n™* 1 11.49 41 Ufz) (Isg)p™?! 3 27.62

21 3+ 2pydn (Ipga™* 1 22.75

The type of the state is 1, (2, 3)ifits form factor is approximated by g, (4, k) (see eq. (4.12)).
Nos. 1-41: 7 = 1. Nos. 42-82: T = 0.



TABLE 4

Inelastic channels corresponding to Ip-1h states

J7 Configuration Number Type P
=1 T=20
neutron proton neutron proton
o+ s4(255) 71 1 33 69 163 2 0.125
dg(ldg)* 2 36 70 104 i 0.300
0~ pillsy)™t 3 37 71 105 2 0.200
fe(idg)~* 4 38 72 106 3 0.125
1+ s4(2sy) ! 3 38 73 107 2 0.125
dg(2s3)~t 6 40 74 108 2 0.125
dg(dg)* 7 41 75 109 i 0.250
dg(ldg)! 8 42 76 110 1 0.300
1~ py2sg)™* 9 43 77 111 2 0.200
(st 10 44 78 112 2 0.200
ps(ldgp~? 11 45 79 113 1 0.100
fa(ldg)™* 1 46 80 114 3 0.100
fz(1dg)y~* 13 47 81 115 3 0.100
2% dg(2sy)~F 14 48 82 116 2 0.200
dg(2sy)~t 15 49 83 117 2 0.200
sg(ldg) ™" 16 50 84 118 3 0.250
dg(ldg)y~? 17 51 85 118 1 0.250
dg(ldgy~* 18 52 86 120 1 0.300
2~ pa(2sg)7* 19 33 87 121 2 0.200
f5(2s5)7 7 20 54 88 122 i 0.100
pg(lds) ! 21 55 89 123 i 0.100
ps(ldg)~* 22 56 90 124 1 0.100
fa(ldg)~t 23 57 91 125 3 0.100
f2(ldg)~* 24 58 92 126 3 0.100
3+ dg(@sy)™t 25 59 93 127 2 0.200
sy(ldg)~* 26 60 94 128 3 0.250
ds{ldg)~* 27 61 95 129 1 0.300
dg(ldg)~* 28 62 96 130 i 0.300
3- fa(2s4)~* 29 63 97 131 1 0.100
f2(2s,) " 30 64 98 132 1 0.100
py(ldgyt 31 65 99 133 1 0.100
pp(ldg)=* 32 66 100 134 1 0.100
fa(idg)~* 33 67 161 135 - 3 0:120
fz(ldg)~t 34 68 102 136 3 0.120
0+ ds(1dg)~* 137 144 i 0.300
0~ pe(ldg)* 138 145 1 0.100
i dg(ldg)~* 139 146 1 0.250
sy(ldp)yt 140 147 3 0.250
fs(tdg)™* 141 148 3 0.100
1~ pa(ldgy~t 142 149 1 0.100
py(ldy)! 143 150~ 3 0.100

The meaning of the coefficient P, is explained in the text.
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Contact interactions like those of subsect. 4.2 yield a simple expression for the form

factors. Indeed, we have then for the interaction (4.1), since & and ¢, are 1p-1h
20

states ="):

elVigsy = fIED, (4.62)
<XZ”¥V§X§> = fcc'lcc(E’: E): (4.6b)
with
IJ(EY =f qwps(r)whs(r)whc(r)uc(r, kD 2dr, 4.7
4]
L.(EE) = f i (P (P (s Kt )=l (4.8)
4] .

The functions w are the single-particle wave functions for bound orbitals and the
functions u, correspond to scattering orbitals. The quantities k, are related to £’ by
the relation (2.3). The coefficients /< and /°° only depend upon the quantum numbers
of the states yz and ¢, (or 5 and x%), and upon the parameters V, and p of the
interaction (4.1). Their explicit expressions can be found in ref. 2°). For the matrix
element {y5|V|@,>, a relation similar to (4.6a) holds, but the coefficients /¥ are much
more complicated. '

Let us now write eq. (4.5) in the r-representation, using relation {2.12d). Because
of the closure relation for the single-particle states in potential vy, we have:

{alVids = I~ 3 wi(n k) f dr'w, (', k)0, (4.9)
n 4
with
I(r) = wp (rywy (F)we ()2, (4.10)
and a similar relation for {y%|¥|x%>. The second term in the r.h.s. of relation 4.9)
does not act on the OM wave function as defined in eq. (2.4). We can thus drop this
term, and get:

g CNygo oy (fsc)Z of Nyef .t (flc)z CrNTCf
N ) = L O + Y i O, (11a)

7/DIR(;‘, i.’) : —im Z (fcc’)?.[ccr(?.)Icc'(;.’). (411b}
c'#Fe

In table 2, we quote the I1p-1h elastic channels up to [ = 4 (the classical limit cor-
responds to /,; & 3 at the energy considered). In tables 3 and 4, we quote the Ip-1h
compound nucleus states of *°Ca up to 35 MeV above the ground state (of spin
J = 3) and the inelastic channels open at the energy considered (i.e. 24 MeV above
the ground state). We compute all the quantities 7 <(r). They can be approximated to
a good accuracy by one of the three functions

{ggg} = ¢ [exp {—« (f—;f%)z} + {:;} z exp {_ (%)2}J . (412)

k(r)
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with ¢ = 0.02 fm ™%, Fos=2.2fm, a, = 0.6 fm, x = 1.8,y = 0.6, z = 0.5. The quan-
tities I,..(r) could also be approximated by the same functions times a constant factor
P, which depends upon the channel ¢’ and which reflects the penetration of a scat-
tering wave in this channel. The degree of accuracy is depicted by fig. 1, which shows
the shape of some form factors. These approximations can be done because of the

T T T T

21072 L

———s = 3,11.,44,52
(imi” 772

s

1

3

rifm}

Fig. 1. Comparison of form factors from some states ¢, and g with the functions g (») (left) and
I (r} (right), which are represented by full lines.

rather weak excitation energy considered. Then, the orbitals coming into eq. (4.10)
are those of a few single-particle states around the Fermi level. The different combi-
nations are not very numerous. We can now, gathering the results (4.11), (2.14) and
(2.15), write the OMP for a given partial wave L as:

VP = v+ V(1) = 0o+ V0, ¥+ (L 1), (4.13a)
with
V() = ) (O3 j3* (2L +1)71 Y, ; (¥ T +%)?
J B
g s
x (T Mr, im|TMz)* 3, f[Z ) U ]
T c=LjiT \ [sﬂE‘l‘ileff—ESt [h]E"‘Eli’{'if
% g(Ng(r) + [Z (fsz)“. () : ] h(h()
[s2] E"‘ESZ’}‘lIcff AN E—EZZ+ZI
c\2 o2
+ [z (/&) (/i) ] k(r)k(r')} : (4.13b)
[Ss]E—ES3+fleff {131 E-E13+ZI
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VLN 1) = T (LOM| AL+ Y X (el +3)°
J rr
X DT My tm|TM) 5 {—in[ Y (f"Py,Ya(g(r)
T c=LiJT {¢'11#¢

+ 2 (fP ) R(rR( )+ }; (f°P K] (4.13¢)

’

fc'2]#¢ fc'3]s ¢

The indices s, ], [1; 1, [c] ] denote that the sum is restricted to the states with the same
quantum numbers as those of channel ¢ such that the quantities I, Iy, and 1. can
be approximated by the function g(r). The same convention holds for 21, [ 1, [eb]
in relation to A(r), and [s3 ], [/3 ], [e5 ]in relation to k(r). Eq. (4.13b) and (4.13¢) can
also be written as

2% . p . ) . p
{Vﬁm} = (X W) (g () + (X YRR ) + (X IRIR(ARGY)  (4.14)
with obvious notation. Of course, the X-coefficients are equal to zero for ¥R,

TABLE §
Coefficients X and W (MeV - fm®) for the compound-states contribution (see eq. {4.14))

I=0 [=1 =2 =3
X, w, X, W, X, W, X, w,

ip-1h contribution:

o =g —1202 —2888 531 —434 930 —2613 353 —294

o =/ G O 12 — 3 0 0 0 g

o=k 1854 —1103 -—696 —606 543 — 314 —281 245
2p-2h contribution:

=g 115 — 94 —142 — 35 85 — 69 — 63 — 135

o =1 115 — 314 — 94 — 10 85 — 239 — 43 — 4

o =k 31 0 18 —168 22 — 2 8 — 75
total contribution:

o =g --1087 —2984 —389 —469 1015 —2682 250 —308

o= h 115 — 314 — 82 — 13 85 — 238 — 43 — 4

o=k 1885 —1103 —678 —774 565 — 316 —273 320

4.4. COMPOUND NUCLEUS CONTRIBUTION

In order to compute the quantities X, and W, corresponding to ¥"¢N, we must
choose the values of I and I,;;. The interval 7 must reflect the experimental situation,
and a value of 1 MeV seems reasonable. The quantity 7. depends upon the spreading
width of the Ip-1h states, whose computation is very complicated. There exist in the
literature **2?) some estimates, which indicate that Ig = 3 MeV is a reasonable
value. We have avoided the computation of the coefficients Ji by taking (f7)* =~

(fﬁ)zs. This is probably an overestimate. Indeed, one can expect that the angular
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overlap between two Ip-1h states (x; and ¢, ) is more important than that between a
Ip-1h state and a 2p-2h state (yz and ¢,).

T T f

Wy ns ==
MeVfm® L -

RIS

WA — O

702

15 20 25 cryey) 30

Fig. 2, Dependence of the coefficients W, and W, for the compound-states contribution (see eq.
{4.14}) upon excitation energy. The origin is the *°Ca ground state energy.

The coefficients X and W computed along these lines are quoted in table 5. One
sees that the contribution of the 2p-2h states (apart from I ) directly coupled to the
incident channels is very small compared to the contribution of the 1p-1h states. The
reason is their small density in the energy region of interest (24 MeV above the ground
state, 14 MeV above the proton emission threshold). The quantities X are in general
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smaller than the corresponding quantities W, but sometimes of the same magnitude
(for L = 1 and L = 3). Their sign fluctuates while the sign of W is always negative.
The quantities ¥ are always smaller for L = land L = 3thanforL = Oand I = 2.
This is due to the grouping of the states ¢, according to their parity. From 10 to 17

£ $

s :
1 2 3 4 5 5 7 8

I{MeV)

Fig. 3. Plot of the compound-states contribution [eq. (4.13b) integrated over radial variables]
versus the averaging interval. The excitation energy is 24 MeV above the *°Ca ground state.

MeV and from 27 to 34 MeV, most of the states have negative parity. From 17 to 25
MeV, the parity is generally positive. Accordingly, the absorption at 24 MeV mainly
takes place in the positive-parity channels, which corresponds to L = 0 and L = 2
incident protons (the spin and parity of *°K are ). This is confirmed by fig. 2 which
shows the variation of W, and W, with excitation energy. This is also illustrated by
fig. 3, which exhibits the variation of the radial integral of Im 7¥"S¥ with respect to
Iy at E = 24 MeV. Indeed, for the L = 1 and L = 3 partial waves, what mainly
contribute to Im #"$N are the far-lying states, i.e. those for which |[E—~EJ| > Iy
[see eq. (4.13b)]. Therefore, the imaginary part increases with I ¢p. On the other hand,
the contribution to Im #7¢" for the L = 0 and L = 2 partial waves, comes from the
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niearby states for which [E—E| £ I If I increases, their contribution decreases

as I;} for large values of Iy The channels L = 4 are weakly absorbed because of
the weak coupling to the states ¢,.

4.5. DIRECT INTERACTION CONTRIBUTION

Here, we discuss the contribution which comes from the excitation of the inelastic
channels. The values of the coeflicients # corresponding to the quantities ¥ 7™ are
given in table 6, as well as the coefficients W corresponding to the summation of 7N
and ¥ 7'®. Again, the L = 0 and L = 2 partial waves are more absorbed than the odd

TABLE 6
Coefficients W (MeV - fm®) for the inelastic-channels contribution and total contribution (see eq.
(4.14))
L=2¢ L=1 L=2 L =23 L =4
Inelastic:
W, —2473 — 214 —3470 —151 —422
W —1442 — 546 — 539 —353 —177
Wi -—1209 — 533 — 388 —268 —267
Total:
Wik —35757 — 684 —6152 —459 —422
Wik —1756 — 560 - 177 —356 177
Wik 2312 —1307 — 704 —588 —267

partial waves. One can see from tables 5 and 6 that the contribution of the compound
nucleus states and that of the inelastic channels are comparable. If one computes the
volume integral of the imaginary part of the OMP, one gets fy = —158 MeV * fm?,
decomposing into —68 MeV - fm® for the compound-states contribution and —90
MeV - fm> for the inelastic-channels contribution.

5. Equivalent Jocal potential: comparison with experiment

It is not easy to visualize non-local potentials, nor to compute the cross sections
derived from them for direct comparison with experimental data. We first try to build
an equivalent local potential (ELP), which gives the same phase shifts as the non-local
potential we have constructed. Afterwards, we compute cross sections from this ELP
and compare them with experiment.

5.1. EQUIVALENT LOCAL POTENTIAL

We assume, in the following, that the real part of the OMP is given by vy. The
OMP for a given partial wave L can then be written:

PP = vo+iW,g()a(r) + iWRE R ) + iWER (), (5.1)
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where the W are those of the second part of table 6. In this subsection, we attempt to
construct an ELP of (5.1) in two steps: (i) We find an ELP of vo(r)+i W, g(r)g(+’).
Fiedeldey **) has described a method for constructing an ELP of a non-local potential.
We generalize this method to the case where the potential has both a local part and
a non-local separable one. (ii) We compute the ELP of the potential (5.1) following
the scheme:

ELP {ELP [ELP (v, + iW, g(r)g(r') + iWirh(r)h(r' Y]+ iwE () k(). (5.2)

We show that it is a good approximation.
We start from the radial Schrédinger equation:

[éd;_z _ 1(1:;1) - gi” o(r)+k ] u(ry = w, g(i)fg(i Vu(rydr, (53)

where W, reduces to i(2m/h* )W}, while u(r) is the regular solution at the origin. Let
W(r) be the regular solution of the local equation. We write:

u(r) = F@ (), (5.4)
da>  I(I+1) 2m e ] , L )
[5;5 o T oy (W) Ue)+k ] Y(r) = 0. (5.5)

The quantity F(r)is the ““damping” factor. It is easy to verify that the following result,
obtained by Coz er al. **) for a separable potential, remains valid if one adds a local
part

e LW 3w g() d (W)
ve) 2 W(r) i W)  wi(r) dr( 9(r) ) (6)

where the “non-local Wronskian™ W(r) is given by:
W(r) = k™ u'(r)o(r)—u(r)v'(r)}. (5.7)
The function v is the irregular solution of eq. (5.3). The functions « and v behave

asymptotically like:

u sin
{U} e {co } (kr+8,—%n—y In (lkr)+ o). (5.8)

The quantity W (r)is related to the damping factor by the relation
FXry = W(r)[w(w)] ™" (5.9)

In order to obtain the expression for the non-local Wronskian, we start from the in-
tegral form of u and v [ref. 2°)]:

fuc [A() ” u(S)}
tl)(}')} {/f (i f (} >H<} ’)d’ J g(‘g}t (S)J (510)
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# and A" being the regular and irregular solutions for the potential v, alone, which
behave asymptotically as u and v, except for the phase shift. The Green function is

given by:
H(r, vy = ()N ()= F() AN (). (5.11)

The derivatives qf u and v are equal to
{zjgg} {jff g } Wof g(r )GHG ! ) dr f g(s) [ug %} s, (5.12)

since H(r, ) = 0. In eq. (5.10) and (5.12), one can replace the functions v and v in
the integrals by _# and.# respectively, provided they are multiplied by a factor =,
which can be calculated by multiplying eq. (5.10) by g(r) and integrating over r. This
factor is
2 =1— L-}/Q {f g{s)A7(s) dsj g(t) #(t)di— f dsg(s)f(s)f g(f)./V(t)d;}

(5.13)

We also find the following expression for the non-local Wronskian:

W(ry=1- E/% {f:og(s)./if”(s)dsf g(t) #(1)dr— ,} g(s;f(s)ds (z) ¥ (z)at}

59

(5.14)

The quantity W{r) — 1 when r — 0 or co. Egs. (5.14), (5.13) and (5.6) define the
ELP of the potential involved in eq. (5.5).

It remains to show that the approximation described by expression (5.2) and used
for the computation of the ELP of the potential (5.1) is a good approximation. We
first consider the potential

S ) = o+ GRG0+ IWERGHG). (5.15)
Let vg+ U,(r) be the ELP of vo+ilW}g(r)g(r'). We construct the auxiliary potential
Y aux = Vo + Ug(r)+ W, h(r)R(r), (5.16)

whose ELP can be written
P aa = vg+ Uy(r)+ Uy(r). (517)

This is not the ELP of ¥7, (r, #’). Indeed, the corresponding phase shifts are given to
first order in W} by:

§ = §,+arcsin {- 3;—”-1 Wi U%(%)h(zjd%? : (5.18)

where 5g and i, are the phase shift and the regular function associated with vo -+ Uy(r).
The phase shifts corresponding to the ELP of ¥, (r, #') (or to ¥ ", (r, r")) are given
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to first order in W by:

. =23
0 = §,+arcsin {—— %;—23 Wi [(llg(i')h(?) di‘J } . (5.19)
1 J

The quantities 3, and u,(r) are associated with the potential v+ i Wra(r)g(r'). Be-
cause of the definition of the ELP, §, = 5, and u,(r) = Fy(rWr,(r). If the non-local
part of the potential in eq. (5.1) can be considered as a small perturbation of vy, the
factor F, is close to unity, and § is equal to § within the same approximation. In all
the calculations below, |F,| Z 0.96. Thus #%*(r) gives the ELP of ¥~ 2{r, ¥} toa very
good approximation. A check of the validity of this procedure consists in inverting
the terms in g(r) and A(r) in relation (5.2), calculating the ELP and comparing with
the ELP obtained with the previous order. The relative difference which we have ob-
tained is of the order of 1073,

We have computed the ELP of potential (5.1) with the values of WgL, Wk, wk
contained in table 6. Let ¥, be the potential obtained in this way. We write:

Vo) = vo+7(r). (5.20)

Although the non-local part of (5.1) does not contain a spin-orbit term, the quantity
¥ depends upon both L and j, since v, contains a spin-orbit coupling. However, this
dependence on j is very small. In the scale of fig. 4, where we plot the quantities
Im ¥ ,(r), it is not possible to distinguish between the curves for L = L,j=4%and
L =1,j=1% ForL =2,L = 3, the difference is slightly larger but it never exceeds
0.2 MeV. The real part of ¥ is of the order of 0.1 MeV and does not significantly
perturb the real part of the OMP (5.1).

5.2. COMPARISON WITH EXPERIMENT

In this subsection, we compare the results of our calculation with experiment. Since
only the polarization of the scattered 14.5 MeV protons by 3°K_ has been measured
experimentally and since this observable is not very sensitive to the imaginary part,
we shall refer to the phenomenological OMP and the cross sections which can be
derived from this potential as experimental quantities.

3.2.1. Shape of the imaginary part of the OMP. In fig. 4, we plot the shape of the
imaginary part of the ELP and the shape of the imaginary part of the local OMP used
by Rosen et al. *°). One notices a sizable difference between theory and experiment.
In particular, the theory shows less absorption at the nuclear surface and outside the
nucleus, and more absorption around r = 2.2 fm. In fig. 5, we display the imaginary
part of the ELP for / = 0, obtained from the effective interactions F1-F4 (see eq.
(4.4)). The shape remains unchanged, although the amplitude can be enhanced for
some density-dependent interactions. We shall see, however, that this does not imply
big differences in the scattering properties. We also consider the volume integral S
of the imaginary part of the OMP. Our calculation leads to .7 v & —800 MeV - fm?
with a density-independent interaction. This quantity may reach Sy ~ —1600
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Fig. 4. Imaginary parts of equivalent local potentials, compared with the phenomenological OMP
{circles) for the scattering of 14.5 MeV protons by ®9K. The arrow indicates the nuclear radius.

e T T T
-Im Cl’eq
(MeV)
20 F A .
e F3
—— F2
o o exp
10 - E
O =]
i H
5 5]
r{fm)

Fig. 5. ELP of the OMP computed with effective interactions F2, F3, F4. The curve corresponding to
F1 cannot be distinguished from the curve for F2 in the scale of the figure.



352 J. CUGNON

MeV - fm* if density dependence is introduced in the interaction. The same quantity
for the phenomenological OMP of Rosen er al. 1% is equal to Sy = —4230 MeV -
fm?>. We give this comparison for the sake of completeness, since: (i) only the s-wave
part is involved in this quantity; (i) the cross sections are not very sensitive to this
quantity,

[en /G_

R

1.

]
120

180
Bldeg)

Fig. 6/ Comparison of the differential cross section calculated from potential (5.20) (small dashes)

with the one calculated from the potential of Rosen ef al. 19) (full curve) and with the average

experimental data for neighbouring nuclei (dots). The curve in large dashes corresponds to the real
part of the potential of Rosen ef al. and the calculated imaginary part.

5.2.2. Elastic differential cross section. In the absence of measurements, we have
taken as reference the differential cross section corresponding to the potential of
Rosen et al. '%), as well as the differential cross section obtained by averaging over
measurements for neighbouring nuclei at the same energy. We have used the data
concerning *°Ca and *°Ar [ref, #6)]. The comparison with the value obtained from
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W
tn
)

our ELP is illustrated by fig. 6. The discrepancy is largely due to the diffuseness param-
eter of ref. 1) (a = 0.62 fm). If one uses for the real well the parameters of Rosen
et al. (a = 0.65 fm), one finds a better agreement with the experimental data, but
with still too large a value at backward angles. This seems to indicate that the absorp-
tion is too small *7).

H
<57

- |
10 .
1 B
e F1 ]
e F2 i

01 1 1 1 1 1

60 120 180
8 {deg)

Fig. 7. Differential cross sections computed from the ELP of the OMP calculated with the
interactions Fl and F2. For the sake of clarity, curves for F3 and F4 have not been drawn. They
are very close to the others.

If density-dependent interactions (F1-F4) are used, one gets the results of fig. 7.
We see that, although the imaginary parts are quite different, the cross sections are
almost similar and very close to the one obtained in fig. 6.

5.2.3. Wave function. Absorption damps the wave function in the nuclear volume.
For a local potential, the wave function can also be damped because of reflection at
the nuclear surface. In order to isolate the first effect, we have compared in fig. § the
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! = 0 wave functions obtained from the OMP of Rosen et al. and from the theoreti-
cal OMP [eq. (5.20)] with the wave function for vo. The first two are rather similar
for r Z 3.5 fm, but differ for smaller values of r. This is related to the absorption pre-
dicted by the theory around 2.2 fm. . :
5.2.4. Absorption cross section. The absorption cross section is proportional to the
loss of the incident flux. Unfortunately, there exists no measurement of this quantity
for 3°K. However, the gross variation of the absorption cross section with the energy

7 E € T ¥ T 1

2 Z 5 :
° r{fm) 8

Fig. 8. Comparison of the / = 0 wave functions obtained from the potential (5.20) (full curve),
from the phenomenological potential of Rosen et al. %) (large dashes) and from the real part of
potential (5.20) (small dashes).

and the atomic number A4 is known *7). In the present case, we have approximately
the value o, &~ 800 mb. The absorption cross section found by using the phenomeno-
logical potential of Rosen ef al. is @4 &~ 1050 mb. The theoretical value lies around
600 mb. '

6. Non-locality

We want to compare the non-locality of the imaginary part of the OMP calculated
n sect. 4 with the non-locality of the Perey-Buck potential 28):

P W3+ 1)) exp [~ ("’b"")j ‘ (6.1)
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Let us recall the form of the imaginary part (see egs. (2.14) and (5.1)):

Im ,,//'plane(r’ ?") - Z 2L+1

) P(cos @){W;‘g(r)g(r’)

)+ WD) (62)

In order to compute the non-locality parameter, we write this potential as a function

of the quantities
R=13(r+¢), p=r—r. (6.3)

Because of the rotational invariance of (6.2), the potential depends only upon R, p
and the angle /4 between the vectors R and p.

T T T 7 ey
b {fm) / ~

o

i i i 1 %

0 1 2 3 4

(4,9 3

R{fm)

Fig. 9. Variation of the non-locality parameter & with R and 2. The horizontal arrow indicates the
Perey-Buck value.

For 0 < R < 0.8 fm, the dependence on p is rather complicated, but the potential
(6.2) is very small in that region. For R 3 0.8 fm, Im PR, p, A) behaves like
exp(—p*/b*) to a fairly good approximation. The parameter b depends, however,
on the value of A. Our results are summarized in fig. 9. On the average, the non-
locality is roughly equal to the value given by Perey and Buck (0.85fm)at R = 3 fm
and peaks at larger values around 2 and 4 fm. We come back to this point later on.
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7. Discussion

In this section we analyse our results and make some comments concerning two
aspects of these results.

7.1. LOCALIZATION OF THE ABSORPTION

Our calculations show that the imaginary part of the OMP is concentrated in two
regions lying around 2.2 fm and 4 fm, respectively. This feature results from the fact
that the functions g, 4, k, or, equivalently the form factors I and I, are important
in these regions., Now, the form factors are the products of two single-particle wave
functions (weighted by the function uy (r) = 1d, which is always present in the form
factors), one corresponding to a single-particle state in the N = 2 shell (2s, 1d) and
the other to a single-particle state in the N = 3 shell (If, 2p) and N = 4 shell (3s, 2d)
(in the continuum). The form factors are important when the overlap between the
single-particle wave functions is important, or, roughly speaking, when the overlap
between the matter density functions in the N = 2 shell, on the one hand, and in the
N = 3, 4 shells, on the other hand, is important. This happens at 2 and 4 fm. It thus
appears that the radial dependence of the theoretical imaginary part of the OMP is
largely govenered by shell effects. The maxima of the non-locality parameter, ob-
served in fig. 9, may be interpreted in the same way.

Some results obtajned by other authors can be understood along these lines. For
instance, Slanina ) computed the imaginary part of the OMP for “°Ca-L p. This
work differs from ours in the sense that he neglects the compound nucleus contri-
bution, and he uses a more sophisticated description of the target in the inelastic
channels. He finds an absorption concentrated around 4 fm, while the nuclear radius
is 430 fm. This bump corresponds to the transition between major shells N = 2
to N = 3, 4. However, he does not find any absorption peak around 2 fm. This may
be due to the interaction used (the Green force) or to the approximations made to
build the ELP. Slanina has also computed the OMP for the case l2C+p. There, the
situation is more clear. The imaginary part peaks at 2 fm [ref, ®)1, while the nuclear
radius is 2.9 fm. This zone results from the overlap between the matter density func-
tions for N = 1 and N = 2, 3 shells.

The calculation by Bruneau and Vinh Mau ) for the *0Ca+p system is similar to
that of Slanina (except for the construction of the ELP). They find a strong absorp-
tion between | and 2 fm, presumably connected with the overlap between matter
density in the N = 2 and N = 3, 4 shells.

7.2. IMPORTANCE OF THE ABSORPTION

From subsect. 5.2 it emerges that the absorption is too small. The absorption cross
section shows that there is a lack of absorption of about 40 %. This difference be-
tween experimental. and theoretical absorptions may arise from the theoretical de-
scription of the target states in the inelastic channels. It was our hope in choosing
PKasa target, that the states should be well described by shell-model configurations,
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or at least, that those states which are well described by the shell model are the most
important for the absorption. This calculation shows that this is only partly true.
Other more complicated inelastic channel states must be included. It is now evident
that some excited states in *°K are due to the coupling of a hole to some vibrational
quanta of the *°Ca core ). The influence of the addition of inelastic channels
corresponding to those target states on the absorption have been included very briefly
in ref. *?). Most of the discrepancy between theory and experiment can be removed
by the addition of those states. This will be discussed in a forthcoming paper °).

8. Conclusion

We have shown that the compound nucleus contribution to the absorption is ap-
preciable, at energies up to those considered here (14 MeV). This contribution depends
upon energy and angular momentum.

The phenomenological concentration of the imaginary part of the OMP at the
nuclear surface is only a convenient hypothesis for analysing the experimental cross
sections and is not supported by the theory. We have found, as other authors, that
the imaginary part extends throughout the nuclear volume, and that, for magic or
near magic nuclei, the distribution of the imaginary part undergoes strong shell effects.
Collective excitations probably enhance the absorption at the nuclear surface, since
they can be viewed as vibrations of the nuclear surface. The importance of collective
excitations, as far as absorption is concerned, has been studied by O’Dwyer et al. 7)
in a particle-vibration coupling model. Unfortunately, they do not discuss the radial
dependence of the imaginary part of the OMP. However, it is our feeling that these
collective excitations cannot destroy completely the distribution of the absorption
determined by the underlying shell structure.

We want to thank Prof. C. Mahaux for his encouragements and for many stimulat-
ing discussions. We are also grateful to Dr. J. P. Jeukenne for his aid in the numerical
work.

Appendix
OPTICAL POTENTIAL FOR AN INCIDENT PLANE WAVE

Let ¥ P49 be the OMP in an elastic channel specified by the quantum numbers
¢ = {[JIJT ,M; TMy}, which are respectively the orbital and total angular momenta
of the incident nucleon, the spin of the target, the total spin of the system, the isospin
of the target and the total isospin of the system. We first want to construct the OMP
acting on an incident plane wave.

We write it as:

VO = v+ V() P o (1 W s+ Y (i, ) L+ e, 01 T, (AD)
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where s is the spin of the incident nucleon and ¢ its isospin. It is easy to see that a
Schrédinger equation for potential (A.1) can be reduced to a certain number of in-
dependent radial equations like (2.5). One has with obvious notation

7/0 {LJIJTMT TMz} _ = (} " )+1[](].1_1) L(L+1) ]A//i.o.(r’ 7‘,)
I+ D= jU+D)-II+ D50 )+ T(T+1) =TT+ 1) =317 T, v).
(A.2)

In this paper, we are interested in the inverse problem, namely to start from the quan-
tities ¥ in order to calculate the quantities ¥"y, ¥77%. Thus, we invert the system
of equations obtained in writing eq. (A.2) for all possxble values of the quantum num-
bers. Let us show that in the simple case where spin-orbit and spin-spin terms are
neglected (except for a spin-orbit term which could be included in vg ), and where
only the diagonal term in isospin space is retained, a simple formula can be obtained.
Then, the OMP can be written as:

,//'opt — UQ_{_’;//‘Plane(r’ l',), (A.S)
with |
VP, ) = Vs, )+ pp(r V)T, (A4)
PP ) = Z 2—*‘L+1 ¥ 1 (r, 1')Py(cos 6), (4.5)
with
Vi, 7) = Ve, )+ T ¥, T, (A.6)

We now show that ¥, can be written as:

Yy = Z(Lo DRI+ ZZ(]%E#IIJ#I“}*?)
X ;(:l;mtTCMTC[TMT)Z”f/C={LJ'UTC”T°TMT}. (A7)
Let us first neglect the isospin. We have, with the help of (A.2),
Vo=t TEOHID B+ )~ L+ )57 1)
FQI)T S Y Gl + 330 D= JG+ D~ IE D50 ) (AS)
&

With obvious notation, we have:

ZZ(] gl +1)°3 T +1)— J+0)—-1(I+1)] = Zz<@LJ1:§I‘X§§;%

Hr

}CXGTHT - DX YEL 2, (A9)
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since j - I is diagonal in the basis of X75;. For the same reason, we can give (A.9) the
following form:

S Y (W XX DX X B

ur I, M
M
=7, <@%;15fru§] ¥ ETD = 2 =0 (A.10)
HT ur
Then, (A.8) reduces to:
V= ¥+ X (LR A3+ ) - LEL+ )37 ( 1) (A11)
i

By using the same arguments as above, we get:

V=Y. (A.12)
When isospin is taken into account, formula (A.7) reduces to

V=V L +m My, % (A.13)
which is equivalent to (A.6).
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