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Abstract: A two-channel model is used to extract doorway parameters from resonating subthreshold
neutron-induced fission. The decaying width is found to be'large compared to the spreading

width. Information on the fission strength function is also obtained from this analysis-and is
compared with the results of an optical-model-type calculation.

1. Introduction

The groups of narrow resonances observed in subthreshold neutron-induced fission
[refs. 173)] are suggestive evidence for a double-humped fission barrier * 7). The
existence of two humps in the fission barrier of some nuclei is accounted for in Stru-
tinsky’s calculations on the shell corrections to-the liquid-drop mass formula 8). The
discovery of fission isomers with short half-lives ~"*) and of broad sub-barrier fis-
sion resonances **~**) had previously provided arguments for the existence of such
a double-peaked barrier.

In the case of slow-neutron fission displaying narrow resonances below threshold,
it has been proposed ©7) that compound states of two kinds are formed: the first is
concentrated in the internal well and the second is in the external well. The evolution
of the system from compound states of the first kind to compound states of the second
kind, and finally to fission is a good picture of the doorway phenomena, with the
states in the external well playing the tole of doorway states for the fission channel.
There exist many theories of the doorway resonances in nucleon channels, but none
is strictly valid for doorway resonances in fission channels. However, one may expect
that the doorway state equations. (intermediate structure, fine structure, ...} are
independent of the dynamical assumptions of the theory. Indeed, the formulae ob-
tained in the case of the shell-model approach '*) are identical in form to those ob-
tained from Feshbach’s theory '), although in the latter theory, degrees of freedom
other than independent particles motion are allowed. One attempt *7) has been made
to apply doorway formulae to resonating neutron-induced fission. This attempt
failed, since the author could not determine whether one has r''srtorrl <1t s
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where I'" and I'* are the escape width and the spreading width of the doorway state
respectively. In this paper, we propose a more detailed model than in ref. ! 7). It leads
to a reaction cross section which contains many parameters (e.g. the positions of in-
dividual resonances and the coupling matrix elements). Since many of these param-
eters are not important from the physical point of view, we reduce the complexity of
the problem by looking at the average reaction cross sections. Within our model, if
we make use of reasonable assumptions, this quantity depends only upon four param-
eters which include I'" and I'*. We apply this model to the case of 24°Pu. The decay-
ing width is found to be very large and the spreading width I'* small. We also make
a comparison with another model which provides fission strength functions.

In sect. Z, we describe the model and analyse the structure of the S-matrix. In sect.
3, the average reaction cross section is investigated. Sect. 4 is devoted to 4 refinement
of the model. We indicate in sect. 5 how to extract the doorway parameters from the
data and we apply our model to the case of 2*%Pu. In sect. 6, we discuss the fission
strength function for a double-humped barrier. Finally, sect. 7 contains our conclusions.

2. The model
2.1. THE NOTATION

The two-channel model described here has been constructed by Lejeune and Ma-
haux *®). We summarize those features which are relevant here. The Hamiltonian H
is divided into two parts:

H=H,+V, 2.1}

where H, is a model Hamiltonian and V is the residual interaction. The Hamiltonian
H, possesses bound states ¢; and scattering states y3. We have the following defini-
tions and expressions:

HOX)%:EX?;» Ho@;':Ei@i: ,
(B]8,> = 5;,, (B> =0,  {ilugy = dag S(E—E),
(BIVID) = Viy,  (PVIngy = VHE),  GSIVIE) =o0. (2.2)

The last equation in (2.2) is a reasonable assumption since it is unlikely that direct
processes are important in neutron-induced fission. The scattering matrix is given by:

Saqr = €Xp (léd‘{'l&d)[éddv_lzﬁ Z Vd(E){D I(E)Lm Vd(E) ‘(2'33}
with e
ED(E)}jm (E E Jm Jm Z Jms (23b)
o _ [ VEEWHE) _ RACH (E) e
R FETE)
= RS, —inV(E)VA(E). (2.3c)
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The quantities &; and J, are the threshold energy of channel d and the background
phase shift in channel d respectively.

2.2. SPECIALIZATION OF THE MODEL

We admit only two channels: d = ¢, ¢’ and a doorway state @, in channel ¢ coupled
to complicated states 9,/ = 1, ..., M which in turn are coupled to channel ¢’ only.
So we get the following matrix elements:

(DolVIrsy = Vs # 0, (PolVIzi> =0,  <2lVlxe» = 0,
(Vx> = V5 {@lVI®) = Vo (24)

The first and fourth matrix elements are assumed to be energy-independent. More-
over it is assumed that (V7§ )* < (V§)?, so that @, has the character of a strong door-

way state.
We have, because of eq. (2.4):

D(E) - (E“ROO—EO“I‘M(V;)Z Vio ) . } - (A le )
Vjo (E‘Ej)‘sjl"VJ‘I"R(J:‘Z'*‘mvjc Vlc Vjo (Ac)jz

(2.5)
The matrix 4° may be diagonalized by a complex orthogonal matrix ¢:
040 = (E—e)d, g = g—%iy;. (2.6)

The matrix U = (§ §) is complex orthogonal and one has

. [E—gg+4il" v,
@:UDUz( 02 ! ) 2.7
V; (E=e;); @7
with
g0 = Eq+Roo, I'' =21(V5)", Vi=20;Ve. (2.8)
J
The scattering matrix takes the form:
M B
Spe = exp (18,4100 [0a—i2n Y. vH (@ HE)uvi 1, (2.92)
j =0
with
§ M g
v :zZoUﬂ Vi {2.9b)
Performing the calculations, one finds #):
M 2
E—go—3il" =% Yi
S.(E) = exp (i26,) =1E—e (2.10a)

M2
E—'SO*{"JZ‘U—‘T,—Z !
=1 E—e¢
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Ve M Vvl
SeolE) = —i2mexp (i8,+id.) 171 E_fil . (2.10b)
A pf

All the S-matrix elements have the same poles & ; which are the solutions of

M 2
dE) = g3l =Y T _ g (.11)

151 8¢

2.3. POLES OF THE S-MATRIX AND SUM RULES

We say a few words here about the fine structure of the doorway resonance. As the
general model described above will be applied to neutron-induced fission, we shall
write n and f for the channel indices instead of ¢’ and ¢ (where n stands for neutron
and f for fission). We suppose here that all the fission channels can be treated as a
single one. We shall discuss this assumption later.

The matrix elements S,; may be written

Mot F.;E
Spe = —iexp (id,+id ot 212
£ p( f)z;) E—&, ( )
From eq. (2.10b) and (2.12) we find the sum rule:
M M
Yo+t =351, (2.13)
I=1 =0

Provided y/d is small compared to unity, this relation can be decomposed into two

other ones 7 18):
M

M M
IZOFZE = fT: ZZOFIH zlzl“/z- (2-14’)

Let us assume now, that the real *®) decaying width I'" isvery large compared to the
spreading width:

It =gt (2.15)

In the last equation the bar denotes an average over the index / and the quantity d is
the mean distance between the complicated states. The S-matrix has a pole located
approximately at the energy e,—4iI"'. The residue of this pole is very small com-
pared to the residues of the other poles [see eq. (2.10b)] in the non-diagonal S-matrix
element and practically zero in S,,. Moreover the widths I, for | s 0 are smaller than
d [ref. *°)]. By looking at eq. (2.12), we see that in the case I'' > I'* no background
is observable in the reaction cross section and the observed resonances are well iso-
lated (in contrast with the one-channel case). It can be checked that the background
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is also not observable, if the quantity 2r{® , which has been put somewhat
arbitrarily equal to zero in eq. (2.4), is allowed to be of the order of 7.

For I'" « I'*, the resonances are also well isolated. The difference is that the sum
of the observable fission partial widths is equal to I'* in the case I’ >> I'* and equal
to I'Mif I'" « I'*. Since the experimental reaction cross section exhibits well-isolated
resonances, one does not know which case one is facing and the sum rules (2.14} are
niot useful.

3. Average reaction cross sections

We start from the value of | S|

i2

LM c
N A
P oy .
[Spel® = 22T ! : (3.1)
| Mooy 2 :
|E—go+3il" D
E I=1 E_el E
Assuming that the quantities ¥,0{ have random signs, we can write
’ M 2 N2
/ D VEr)” A
T / S1|E—ef \ 29
<lSan 2rl N\ : M Vz 2 // . (J.H)
N E—go+3ilT =Y |/
| o +hi -
A l;z E—g¢ f /
Making the assumption
(] Ry R Y = (33)
and taking the first-order S.¢1*> in the variable v, we obtain
A PUSEN
r 2
2 / I=1{kE—¢&) -
ASul?> =173 (E—2) > (3.4)

\ M 2 \2 . /
\(Emeowz Vi ) +40'

=1 E—g /
Utilizing a picket-fence model for the complicated states, we get:

o r'rt
d 2

Sul®> =

X / ! \ (3.5)

i

\ [(E—-— }sm»%—go—} —1I'* cos TC(E_EG}]qL%F”sinZ "E=2) /
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The average cross section is now:

<G > ”KW})FTFL I J“E+2I dE’
o 2d  2arctan 2J g-2r (E'—E)*+1?
1 7
® B % 2 § ? {36)
[(E'~—80) sin ﬂm( ;80) —1I' cos n-———“( (;80)] +4I "2 sin? ﬂ~—-——~< ;80)

where K is a trivial kinematical factor. Egs. (3.5) and (3.6) can be considered as first-
order expressions in y/d rather than y. We shall see in an example that y/d is small,
~which provides confidence in the validity of the expressions.

channel C

AN
ANAVAN
T

channell’

Fig. 1. Strength of the different couplings. The state @, is the doorway state. The @; are the com-
plicated states. The strength of the coupling is represented by the width of the arrows.

4, Refinement of the model

We modify the model described in sect. 2 by assuming that the complicated states
are weakly coupled to channel c:

VAE) = L@, VIxe> # 0,
(VSE) < (%) (Vi) < V. (4.1)

We represent in fig. I the strength of the different couplings. Because of this modifica-
tion we now obtain, with the help of definition (2.9):

Sse(E) = exp (i26,) [1_3‘ (_2%; —i2n§ @)

_iam L avgyy,  i2n X u,?v,vzﬁ"] (42)
d(E)iS1 E—e,  d(E)ui2i(E—e)(E—e)d
The meaning of the different terms is clear: the first term corresponds to the processes

%° > @ = x°; the second term to the processes y° — &; — z°, which are now al-
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lowed. The other ones correspond to more the complicated sequences y° — &, — &;
- 3y and y° = @; » @, - ¢, — z°. The non-diagonal matrix element of S is given
by:

M c..c c M c’
vy Ve & v ¥
SeoE) = —i2nexp [i6,+10, e
< (E) pl 1 z;1 E—e, d(E)i=1 E—¢g

M ¢ ¢’
1 AL

RCE <E—ez>(E—ej>} 49

The first term corresponds to the processes y° — &; — %%, the second one to the
processes y° — @y — &; — %% and the last one to the processes y° — &, — @y —
@; — °. The first process is present everywhere, while the other two occur only in
the vicinity of the doorway state. Elsewhere, the average reaction cross section can be
put in the form:

(o> = K2r :Sr—cé%— 5 (4.4)
with
: I
o o2 £N\2
2T s nO sosas. 69
a

We add the term (4.4) to expression (3.6) in order to improve the fit of the average
cross section in the tails of the intermediate resonance. This amounts to keeping in eq.
(4.3) only the first two terms in the brackets and to neglecting the interference between

|
them. We justify this approximation by the usual statistical assumptions (vj¥; =

5 V; = 0) and by the fact that the contribution of the term (4.4) appears to be very
small in practice compared to the contribution of the term (3.6). In the examples
given below, the ratio between them at the resonance energy is of the order of 0.05.
Then, we get for the (n, f) cross section:

. S.S¢ | myr'rt I E+2I 4@
<6“f>:l<{2” e P f T
d 2 arctan 24 p-21 (E—E'}*+1
X El lEl 2 E} 5 (46)
{:(E"’“SO} sin 7—t~(~—[;8—0) —-—%F‘L Ccos 7_2:(—_;;_?_04)} En [%FTZ Sinz 75( :_80)}
a

where the notation is cbvious.

5. A numerical example

We apply our model to the case of *°Pu(n, f). The measurements have been made
by Migneco and Theobald *). Groups of strong resonances have been found at several
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<C’:7f>

i
17 18 18 20 21 Efkev) 22
Fig. 2. Dotted curve: average **°Pu(n, I’} cross section in the region of 1900 eV. Full curve: best fit
with the help of eq. (5.1). The dotted arrow indicates the value of the parameter g,. The full
arrows indicate the location of the individual resonances.
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Fig. 3. The same as fig. 2 for the region of 800 eV.
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energies of the incident neutron. We have selected two of them: those at about 800 eV
and 1900 eV. Since the observed narrow resonances are not mixed with a broad one,
we may deduce that we are facing one of the extreme cases: I > I’ I Twrt.
We fitted the average experimental reaction cross sections with the help of eq. (4.6)
that we rewrite as:

5.8
<O-nf> = GB+6resa op = 2rnK __rg_f . (51)

We first determined o from the background between the groups of resonances. The
parameter g, is set equal to the position of the experimental peak. We are then left
with three free parameters y, I’ ' and 'Y In fact, according to the discussion of sect. 3,
we should have fixed one of the two parameters I’ ' and I'*. But we preferred to leave
them free in order to check the predictions of subsect. 2.3.

We have taken for K:

K=2y, (5.2)
Ky

where k, is the wave number of the incident nucleon and g is a degeneracy factor.
We have put g equal to 2, which is a reasonable average value. We then obtain the
following results:

(i) group at 800 eV

g =790eV, I'' =3ev, ' =400meV, y=7TmeV;
(ii) group at 1900 eV
6o = 1935¢V, I'' =31eV, I’ =400meV, y=20meV.

The corresponding curves are given in figs. 2 and 3.

In this case ' > I'*, the sum of the observed fission partial widths is equal to
I [refs. 7 18)]. By applying this sum rule we should have found I’ Y= 170 meV
for the group at 800 eV and I v = 86 meV for the group at 1900 eV. The agreement
with the above values can be considered as good, owing to the approximations made
in the derivation of eq. (5.1). We emphasize that the quantity p/d is typically of the
order of 1073 which justifies the approximation made in eq. (3.4).

We can also extract two other interesting parameters: the fission strength function
for the states in the external well ST and the fission strength function for the states in
the internal well ST, Indeed. the quantity Stis given by:

st= L0 (5.32)
D>
where <I'T is the average of the decaying width over a few groups of resonances,
and (D), their average distance. Roughly, we get

s~ 25V 0.025. (5.3b)



570 J. CUGNON

The quantity S} can be obtained from the analysis of the average background be-
tween groups of resonances. If this background is due to (n, f) reaction through the
complicated states, we roughly have S ~ S, [see eq. (4.5)], and:

og ~ 2nKSE. (5.4)
Such a formula gives in our case
St~ 1077, (5.5)

6. Comparison with another model

In order to check the results of our model, we compute the fission stren gth functions
with the help of another model. Similarly to what is done for the nucleon strength
function, the fission strength function can be given by:

S = f :W(é){u(é)lzdé, 6.1)

where u(J) is the wave function corresponding to the deformation potential (§ =
deformation parameter), and W(8) is an imaginary part which is added to this poten-
tial to describe the absorption by the compound nucleus processes. For a double-
humped barrier (see fig. 4), one has two kinds of compound states. Hence, one can
define two fission strength functions corresponding to the two wells:

(i) an “internal” fission strength function

st = | “meuo)ras, (62)
0
(ii) an “external” fission strength function

St = f :}&Ve(é){u(é)izdé, (6.3)

The quantities ; and W, differ from zero only in the internal and the external wells
respectively. We have computed ST using eq. (6.3). The deformation potential is
taken from the work by Strutinsky ®) for **°Pu’ and is reproduced in fig. 4. The
imaginary potential W is equal to 1 MeV as in ref. ! %} in the limits indicated in fig. 4.
The results are plotted on the same figure.

Several interesting features arise from this calculation. First the quantity -ST shows
a remarkable structure. Maxima occur in the vicinity of the normal modes in the
second well. This was already emphasized by Gai ef al. 22}, using a quasiclassical
picture, although they predict a simpler shape around the maxima. In our example,
the second well is characterized by a vibrational quantum of #w = 0.35 MeV. The
normal modes are then located at 1.17, 1.52, 1.87 and 2.22 MeV. This agrees quite

T In our case, the compound nucleus is **1Pu. Because of the lack of information concerning this

nucleus, we take the deformation potential of 24°Pu, with the expectation that an extra nucleon does
not destroy the shape of the potential very much.



DOORWAY PARAMETERS 571

well with bumps at 1.2, 1.47 and 2.05 MeV, if one takes into account the fact that the
well does not have an exact parabolic form. This can be explained by saying that the
system excites a quasistationary state, which means that the transmission coefficient
is enhanced. These quasistationary states have a vibrational nature. In the region of
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Fig. 4. The full curve represents the external fission strength function 8, corresponding to the barrier

shown in the corner. The scale is on the right side. The scale on the left side is for TS=1—

exp {—40S, ) which is represented by the same curve. The dotted line represents the internal fission

strength function Sy for the energy region indicated on the top of the fisure. The arrows indicate the
energies of the normal modes in the external well: i

the vibrational state, the fission widths of the compound nucleus states in the second
well are broadened. This situation favours the occurrence of doorway state phenom-
ena. Let us indicate that a doorway group of resonances covers at most 1 keV,
which is a small part of fig. 4.

Such a situation also explains the broad subthreshold resonances in neutron-
induced fission. Indeed, in the region below the first hump and above the second one,
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the internal strength function S} is quite sizable and also displays resonating struc-
tures, which correspond to vibrational states in the first well (see fig. 4). This generates
large fission partial widths for the compound states formed in the first well. Since at
this energy they are very close to each other, only a gross structure appears in the
shape of the strength function S}. Thus it seems that broad subthreshold resonances
occur when the first bump is higher than the second one. This corresponds to the equa-
tions of sect. 5 when doorway states are removed. One is left with an average cross
section given by

(o> ~ 2K S_S“i (6.4)

where S; contains a penetration factor and is proportional to Sf. Even in the region
of the doorway phenomenon, the quantities St can be extracted from experiment,
The background between resonances (provided one is sure it is only due to fission) is
given by eq. (6.4). Since S, ~ 5, the background amplitude is given by S; (up to a
kinematical factor).

In order to compare the two models, one has to answer the question: what is the
compound nucleus excitation energy corresponding to a neutron incident energy of
1 or 2keV? Let us only indicate that the fission threshold (the top of the external hump)
corresponds to about 700 keV for the incident neuatron energy !). That gives for an
incident neutron energy of 1 keV, a compound nucleus energy of about 1.8 MeV in
the scale of fig. 4. Eq. (6.3) leads to a value of about 102 for St (see fig. 4) which
agrees with a value in eq. (5.3b). It is worthwhile to point out that eq. (6.3) predicts
a “doorway region” at about 1.8 MeV and also at 2.1 MeV. Calculations indicate
that the value of (5.5) for S is overestimated by two or three orders of magnitude,
but this is not surprising, since the background is probably not due to fission only.
Let us finally notice that eq. (6.2) predicts broad subthreshold resonances at 3.9, 4.1
and 4.3 MeV. This could be checked experimentally.

7. Discussion

We have justified the application of our model to neutron-induced fission by the
fact that the equations of the doorway phenomenon are expected to be independent
of the nature of the degrees of freedom involved in the reaction. This assumption is
supported by the fact that the average (n, f) cross sections are remarkably well fitted
by the formulae obtained in the framework of the shell-model approach to nuclear
reactions. This agreement is much better in our case than in the cases of >Fe(n, n)
[ref. 2°)] and *°°Pb(n, n) [ref. 21)].

We have assumed that all the open fission channels can be treated as a single one.
This is safe here *°) since only one saddle-point channel occurs in the case of 24Py
[ref. ')] but can be wrong in other cases. We have also neglected the photon channels.
This should have the effect of decreasing the (n, f) cross section. As a consequence,
the value of y [see eq. (5.1)] is probably underestimated.
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Since I'7 > I'', the (n, f) intermediate resonances have the character of strong
doorway resonances. Such a value of I'' may seem doubtful, since it would not allow
the existence of shape isomerism. In fact, there is no contradiction, since isomer states
lie much lower in the bottom of the second well. We see from fig. 4 that the fission
width of the states in the bottom of the well is very small. We finally conclude that our
model enables us to extract the doorway parameters from experiment.

We want to thank Prof. C. Mahaux for helpful discussions and Dr. Steenkamp
from Heidelberg for his comments. We are grateful to Drs. E. Migneco and J. P.
Theobald for having provided us with their data.
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