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Abstract: Two methods are described which lead to a definition of the optical-model potential when
single-particle resonances are present. They are based on a modification of the single-particle
potential. For one method, the properties of the modified potential are extensively discussed.

1. Introduction

Many shell-model theories ' ~?) lead to a microscopic expression for the optical-
model potential. But none applies when single-particle resonances (SPR) are present.
In that case, 1t is only possible to define a generalized optical-model potential in
channel ¢ [GOMP(c), refs. > 2)], which is a one-body potential, the scattering function
of which is equal to the diagonal matrix element of the scattering matrix in channel c.
When no narrow SPR exists in channel ¢, it is possible to construct a one-body
potential, called the optical-model potential in channel ¢ (OMP(c)), which leads to a
scattering function equal to the average diagonal element of the scattering matrix in
channel ¢: OMP(c) is then equal to GOMP(c) evaluated at the complex energy
E+il, where I is the averaging interval *). When the single-particle potential generates
narrow resonances, this is no longer valid because of the presence of rapidly varying
matrix elements in the expression for GOMP(c) [ref. 1)]. This is explained in sect. 2.

In this paper, we try to cure this situation. The method described in sect. 3 consists
in modifying the single-particle potential in order to remove the SPR. Then an ex-
pression for OMP(c) can be derived. In sect. 4, we apply another modification of the
single-particle potential recently proposed by Wang and Shakin °). Finally, sect. 5
contains our conclusions.

2. The problem

In this section, we establish our notation and recall the reasons which complicate
the derivation of OMP(c) when SPR are present.

2.1. DEFINITION OF GOMP(c)

In the shell-model approach to nuclear reactions '), the full Hamiltonian is separat-
ed into two parts:

H=Hy+V. (2.1)
T Chercheur IISN.
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114 J. CUGNON

The “shell-model” Hamiltonian H, possesses bound states @; and scattering XE
(with only one unbound nucleon), for which we have the following relations and
definitions:
Hy,®; = E; ;, Ho 1z = Exg,
(BB, =8y, (Bly> =0,  xilrg> = S I(E—E),
(BIVI®> = Vijs  <PiVIxe> = Vi(E),

EVingy = V(E', E, ¢, ¢). (2.2)
The Lippman-Schwinger equation reads:
1
e(+) o welkd c(+) )
'IIE = XE -+ ﬁ VYIE & (23)

The wave function W™ contains only outgoing waves in the channels ¢’ # c.
Writing it in the form

M ©
PET = 3 be()i+ Zf dE'ay(E’, ¢)r» (2.4)
i=1 ¢’ v
and taking into account eq. (2.3), one obtains the system:
M ®
(E—EDbg(i)— Y. Vi;by()— Y. | dE'Vi(ENagx(E', ¢') =0,
j=1 ¢’ Jger
(2.52)
M ) ©
(E—E"ay(E', c)— Y. Vs (ENbg(m)— Zf dE"ay(E", ¢'")WW(E", E',c",c") = 0.
m=1 &' oger’
(2.5b)

The quantities ¢, are the threshold energies.
The calculation of GOMP(c) amounts to eliminating the coefficients bg(i) and
a4(E’, ¢') for ¢’ # c in the system (2.5). One gets an integral equation of the form

(E—E')ai(E', ¢)— f dE" ¥ 4(E', E")ay(E", ¢) = 0. (2.6)

Eq. (2.6) is simply the shell-model representation of the Schrédinger equation obeyed
by the generalized optical-model wave function whose definition is )

pi) = [ “aEas(E’, Jur. 1D, @7)

where u;(r, k;) is the single-particle wave function of the unbound particle in yg.

The manner on which one obtains GOMP(c) starting from the quantity ¥ £(E', £”)

is described in ref. !). In the following we restrict ourselves to the latter quantity.
If there is no SPR in channel ¢, GOMP(c) is given by *):

M
V/E(E/’ E”) = V%(dir)(E,’ E”)+ Z WEC J(E’)[iD_ 1(E)]jm WEC, m(E”)ﬂ (283)

j.m=1
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with

VEUELEY) = GV +V 3 GHE)V +V 3, G SE)V Y GS(E)V ... [2>. (2.80)

c'#Fe c"#c

W S(E) = Vi(E)+<2|V T GE)V+V 3 GIEWV X GEEW ... Ix%Ds
) (2.8¢)
[D(EY]jm = (E—E)0;—< @V +V 3 GYE)W + - . . Dy, (2.8d)
c'#Fc
4 ’ |XE ><XE i

GS(E) = f dE R (2.9)

When a SPR is present, the series in egs. (2.8b, ¢, d) are divergent. Itis still possible i
to calculate GOMP(c) using a Weinberg’s method to handle the SPR.

2.2. DEFINITION OF OMP(c)

Because of the very definition of OMP(c), the proper optical-model wave function
behaves like

L1, k)—<Scepugi(r, ko). (2.10)

We assume that it can be written in the form

B = f dE'GY(E", uyy(r, K2). (2.11)

The coefficients dg(E’, ¢) satisfy the following integral equation

(E—E"ayE', c)—J dE"V (E', E")ayE", ¢c) = 0. (2.12)

OMP(c) is then given by '):
VPEE, E") = vy(E', E")+ 7V YE, E"), (2.13)

vo(E', E”) being the shell-model representation of the model potential. It is easy to
construct ¥°¢ if no narrow SPR is present in channel c. In this case, we have L%

7o =V e (214)

When a SPR is present in channel ¢, this is no longer valid ') because of the rapid
variation of the matrix elements {®;|V|¢g> and {x&|V|zs> and the phase J. in the
vicinity of the resonance. Let us note that if the SPR is present in channel ¢’ # ¢, the
relation (2.13) still holds.

The difficulty encountered in the construction of OMP(c) when a SPR is present
in channel ¢ is twofold: (i) there is a slow convergence of the Born series, (i) the
phase shift 6, and the matrix elements V{(E) and V(E', E, ¢, ¢) are strongly varying
in the vicinity of the SPR energy.
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3. Modification of the single-particle potential

3.1. DEFINITION OF THE NEW SINGLE-PARTICLE POTENTIAL
In the present section, we study a method for removing the SPR. This method
consists in a modification of the single-particle Hamiltonian. The Hamiltonian H,

is given by ) ;/h0(i), where
hy = t+v,, (3.1

S g —

¢
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Fig. 1. Full curve: d-phase shift for a square well whose depth = 58 MeV and range = 4.55497 fm.

Dotted curve: d-phase shift for the potential ¢, defined by eq. (3.3), where v, is the above square well.
To make the comparison easier, the dotted curve has been raised by 7.
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Fig. 2. The same as fig. 1 for higher energies.
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the quantities  and v, being the kinetic energy and the one-body model potential. We
assume that the latter displays a narrow resonance at the complex energy

go — Eo—’:l)"l.l—'o (3.2)

for a given partial wave of orbital and total angular momentum quantum numbers
landj.
Let us define thé potential 9, by the relation:

s vo|wH<{wlve

(wlvglw)

The function w is the Gamow function . It can easily be seen that operation (3.3)
removes a pole of the single-particle Green function, lying nearby the real axis in the
complex energy plane.

Let us now discuss the behaviour of the phase shift for the two potentials. In the
neighbourhood of Ej, the phase shift ,;(E) for potential v, is characterized by a
rapid increase of the phase shift by 7. What is the energy dependence of the phase
shift 8 corresponding to the potential (3.3)? The rapid increase has disappeared as
indicated in fig. 1 which exhibits the example of a d-wave narrow resonance in a
square well. This arises because of the removal of the pole from the Green function
1/(E* —t—v,), which can be explained by the following arguments. It can easily be
seen that the phase shift & is given by

Dy = Vg

(3.3)

5 =5+6,, (3.4a)
2
J, = arctan an'vOluLfl i (3.4b)
D +<{w|vg(PGg Jvolw)
D = {wlwelw), (3.4c)

where PG; is the principal part of the Green function corresponding to the unper-
turbed potential. In the vicinity of the SPR, the numerator in eq. (3.4b) can be parame-
trized as ')

1 I,D?*
2 (E—Eo)+4l5

(3-3)

nlKwiveluy|® ~
In the same region, the Green function is well approximated by

+ o w<wl
G = 3.6
g E—-¢&, (3.62)

+ If v, has a long-range part, such as a Coulomb part, only the short-range part must appear in
the subtracted term of eq. (3.3).

T Eq. (3.4b) is obtained by suppressing the bound-state component of the scattering state. It can

be seen that to take this component into account, it amounts to renormalize the quantity D, (3.4c).
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and its principal part by:
E—E,

PGy o ————— 3.6b
BN BB ar: (.68
Gathering together these results we get for J,:
8, = arctan {1 ~ FOD; : } . (3.4d)
2 D[(E—E,)*+4I'5] +D(E—E,)

Since I'y is very small compared to D (which is of the order of the well depth) this
formula reduces, for |[E—E,| < 1Ty, to

o (3.4¢)

d, &~ arctan —————
2E—Eq)

except for a very small range of values of E, namely |E—E,| § I'5/4D. For instance,
for E = Ey, eq. (3.4d) gives 8, = arctan 2D/I", which deviates very little from eq.
(3.4c). We can conclude by saying that the modification (3.3) suppresses the SPR in the
potential v,,.

In our numerical example, the phase shift § increases rapidly through im near
59 MeV (see fig. 2). This can be explained by the following argument. Let us apply
the modified Hamiltonian i = ¢+0, to the Gamow states [w). We get

hlwy = {&g—vo}w). (3.7)

If we cut the Gamow state in the configuration space for r > a (the range of the
square well), it becomes an eigenstate of i with the eigenvalue & 0o =60+ Vs, ¥V,
being the depth of the square well. In our example, Re & o 1s equal to 58.944 MeV.
This modified Gamow state does not have the properties of a scattering state, but
more or less those of a bound state. This is an example of what is called by Bolsterli *)
“bound state in the continuum”.

Of course, this argument is not rigorous (derivability) but allows to understand
simply the effect of the modification (3.3). This bound state in the continuum is not
a special property of our model, but it occurs for each Hamiltonian of the type
h = h—g|fy{f], for which |f) is an eigenstate of 4. If we call E, = SfIASIKSfI>
and £, = E,—g{f|f>, one can show that the denominator of the S-matrix relative
to /i, namely /¥ (E) = 1+g{f|G*(E)|f ' vanishes (real and imaginary parts togeth-
er) at E, (those conditions ensure, following Bolsterli ®), the existence of a bound
state in the continuum). Indeed we have, if uy is the scattering state relative to /,

Cuglhlf> = Eougy|f> (3.82)
and by operating with / on the left, we obtain:
Cug lhlf> = Eoug|f>—g<f1f >uz| >, (3-8b)

T See preceding footnote.
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and hence
ug|lfy =0. (3.8¢)

It can also be shown that the projection on | of the scattering state [Y/g» relative to
the Hamiltonian £ is given by

Wy = e flugy(+g<fIGTENS) ™" (3.9)

Since this projection cannot vanish for £ = E,, the real and imaginary parts of the
parenthesis must go to zero at this energy.

Let us finally notice that in general bound states are only slightly modified by eq.
(3.3). In our numerical example the bound state at —32.7 MeV is shifted to —31.5
MeV (operation (3.3) makes the potential less attractive).

3.2. CALCULATION OF THE OPTICAL-MODEL POTENTIAL

Let us denote by H, and I/ the quantities

e volWH<wlvg ’ (3.10a)
part <W|UO‘W>

by VolwXwlng G
part  {W|vo|W)

where ) ... means that the summation is extended over the coordinates of all the
particles. This new splitting of the Hamiltonian defines a new basis {®;, 75} obtained
on the same manner as the {®;, 35} [ref. })]T. We assume that the channel ¢ is the
only one which corresponds to a free nucleon with quantum numbers / and j. Now
the formulae (2.5) are replaced by

M o]
(E—E)b(i)— Y. Visba()— Y| dE'ax(E’, YV (E) =0, (3.112)
Jj=1 c’ et

M 5]
(E—ENayE', ¢')— > 52(111)17,5(15')— Z dE"ag(E", c”)V(E”, E,chc)=0;

m=1

(3.11b)
with
Mo N = ’
wEh =3 b0+ Zj dE'QR(E', ¢V » (11¢)
i=1 ¢’ o oger
B = (B )\H D>, T =<PIVIDp, (3.11d)
VIE) = @ V185),  PEE. ) = GRIVIRED- (3.11e)

 Since we diagonalize the Hamiltonian within this basis, eqgs. (3.10) define more exactly a new
problem rather than a new splitting of the Hamiltonian. Nevertheless we hope that the two basis are
sufficiently equivalent. This is justified for instance by the fact that the number of resonances is con-
served as we show later.
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We must now take the continuum-continuum interaction correctly into account. It is
clearly not allowed to treat it by perturbation since then egs. (3.11a, b) will lead to a
model with M resonances while the starting model generates M +1 resonances.
One may exhibit the (44 + 1)th resonance by extracting from 17( ", E', c", ') a part
which is separable and thus can be taken exactly into account. For this we write

PE' B ) = GEVIEY + QI T 0 gy (a1o)
Do|W

Since the last operator is a one-body operator, the second term in the right-hand side
of the last equation is equal to

g |vo|lWH<wlvo|l z: ) bt (3.13)
<wlvelw)
where the functions #,. - are the wave functions of the scattering particle in the states
7% . In eq. (3.13), the Kronecker symbols stand because the potential (v|wH<wlv,)/
{wlve|w) acts in the space of single-particle states of angular momentum /, J (which
correspond to channel ¢ only). Let us now define the following quantities:

V(E",E', ", ¢") = QalVIEs (=V(E",E,c", ) if ¢ or ¢ #c),

(3.14a)
Vire1(E") = <wlvoltie, Vir+1(E) = 0 for ¢ #c, (3.14b)
by(M+1) = J dE"ay(E", o) Stexlol W) (3.140)
Swlvelw)
We can write eq. (3.11b) in the form
M+1 © —
(E—E"ag(E', ¢')— Z bim)VAE)— Y| dE"ayE", "YW (E", E', ", ¢') = 0,
) (3.152)
and eq. (3.14c) in the form
CologhwdB5+1) = [ A G5(E", s (E). (3.16)

The latter equation, together with eq. (3.11a) can be written as follows, with the help
of eq. (3.14b):

AEIEiJBE(j)— Z dE'a4(E’, ¢)PE(E) = 0, (3.15b)
with ” core
(E—E)s;;— 0
1] . ( 0 <WIUO|W>) . (315C)

Egs. (3.15a, b) define the new model which is shown to display M +1 resonances.
They are similar in form to eq. (2.5) We can thus take over the procedure of ref. !)
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to calculate the GOMP(c). We get for this quantity an expression similar to the one
of eq. (2.82) provided the quantities @, y, ¥ are replaced by ®, 2, V(or V). Now,
however, no embarrassing energy variation is present in the matrix elements. Hence,
one gets for OMP(c) in shell-model representation, using egs. (2.8), (2.13) and (2.14):

7/‘%pt(c)(E/, Eu)
M
= 0o(E, E")+ V55 E E)+ Y Wi {ENED M E+iD)];m We W(E"),  (3.17a)

jsm=1
since the quantities ¥°¢ and W are smoothly energy-dependent. An interesting form
of OMP(c) can be obtained by assuming the non-diagonal matrix elements of D¢ to
have mutually cancelling effects. One readily gets:

M /¢ AN 7744 r
2 il We, (EYW,
VPUNE, E") = vo(E, E')+ 7V §UE, E")+ ) 5 (EWEnE")

3.17b
j=1 E+il—Ej ( )

This equation shows that the main effect of the SPR is to replace the old model
functions y& by the new ones £ in the two last terms of the rhs of eq. (3.17b), without
changing the potential term.

4. Orthogonalization method

Recently a method has been proposed by Wang and Shakin %) to handle the SPR.
In this section, we apply this method to construct OMP(c). Let us first resume the
ideas of Wang and Shakin. One defines a resonance wave packet ug as:

ug = Cuyy(r, k) for r <R,
=0 for r > R.. (4.1)

The quantity C is a normalization constant, u;;(r, ko) is the wave function at the
resonance of the nucleon in the potential v, and R, is some cut-off radius. The wave
functions u;(r, k) can be modified by

G, (E)lug>{usl
. (r = 1= > (r, k), 4.2
s 19 [ <uRlG:(E)|uR>} i e
with
GHE) = f :dE' “u("aE’i’ )ihjg(’ k) (4.2b)

This ensures ug is orthogonal to 4;(r, k). Moreover, ug is approximately orthogonal
to the original bound states w;(r, k,) provided R, is taken large enough . It is

t This means that the bound states are left approximately unchanged. This is exactly true if one
takes for ug the following definition

Rc
ug = C {u,j(r, ko)— >, wi(r, k,,)fo dr'wy (', kyuy(r', ko)}
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shown in ref. *) that the modification (4.2) is equivalent to redefining the single-
particle Hamiltonian. The modified phase shift § behaves as in our method (see fig. 1).
Because of the quasi-orthogonality of ug with the original bound states w, i(r, ky), the
modified bound states are approximately the same.

Instead of the model states {@;, y, %5} for the full problem, we have now a set
={0;,j =1,..., M, @y, 25, x5} where the state &y is obtained by coupling the
surface wave function ¢, with the “resonance wave packet” ug(r). Hence, we may
rewrite eq. (2.4) as:

M+1 (s}
1257 = 3 8oy + 3 arase, eiag, (4.3)
where = i
|¢’M+1> = l@R>- (4-3b)
The Hamiltonian is now divided in
H=H,+V, (4.4)
with
Ao = 5ol (45)
and ?) l
V= ing,-ﬁ Zi:(ho(i)_ﬁo(i)): (4.6)
o = (1 —ug><{up)ho(1l — ug d{uy). (4.7)

Really, this new splitting is effective only in the space spanned by @, and 7%; it
coincides with the old one on the rest of the Hilbert space. With the help of egs. (4.6)
and (4.5), one obtains equations similar to eq. (2.5). They write with obvious notation

M+1 ©

(E-B)bs()— ¥, ViyB30)~ 3| dETR(E)AE, )E =0,  (48a)
Jj=1 c’ Jger

M+1 ©
(E-ENag(E, ')~ Y, Vi(ENbg(m)— Y| dE"ayE", ¢")W(E", E', ", ¢) = 0,
m=1 c” o ogerr
(4.8b)
with, according to eq. (4.7),
Epiq =0 (4-9)

It is easy to see that ¥’— I acts only in the space spanned by @ and #5. One has
f/M+1,M+1 = {Bg|V|Dr) +{Pgl Z (ilo(i)'ﬁo(i))@x>
= (Pr|V|Pr) + {uglholug). (4.10)

Because of the very definition of uz, the second term is approximately equal to £,.
Thus we may keep eq. (4.8) with

Ei[ﬂ = EOa I71»1+1,1uf+1 = <@R|V]¢R>- (4-11)
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The model described by egs. (4.8) and (4.11) is the same as the one defined by eq.
(2.5). One gets thus for the OMP(c) with obvious notation:

M+1
VP E, E") = 06(E B+ %, Wi, (EVSD ™ (B+il)]jm W, u(E")
j.m=1
ac 1 T714¢ sc wd 11t ZCE,'“><X%"" 7| 4¢ o)
+AEAVIRE>+ X <2ElV| dE ET_E Wizg>+ ... (412)
c'Fc &t =

Here, we see that the compound nucleus states and the SPR are treated on the same
footing.

5. Conclusions

We have examined the question of finding an expression for OMP(c) when a
SPR is present in the entrance channel. We have seen that for handling the SPR
conveniently, one has to modify the basic states of the unperturbed Hamiltonian.
This contrasts with the cases where one is calculating the S-matrix or GOMP(c)
and where such a modification is not required ).

Our method and that of Wong and Shakin are very similar, since the main idea is
to subtract a pole from the single-particle Green function. However our method
seems easier in practice, as far as phase shifts are concerned, since our modified
potential has a separable form. A method describsd by Fuller ) for handling the
SPR is quite similar to the one described in sect. 3. However, it seems to us that the
latter is simpler in practice, because it does not require a new definition of the inner
product nor a normalized Gamow function.

We thank Prof. C. Mahaux for having suggested this problem to us and for helpful
discussions.
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