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The dynamical energy dependence of the optical-model potential is studied in the 
case of a broad single-particle resonance. It is found that the optical-model potential 
is slowly energy-varying. The optical phase shift and the transmission coefficient 
are shown to display a resonance. 

1. Introduction 

The main purpose of this paper is to study the energy-dependence of 
the optical-model potential in the presence of a broad single-particle 
resonance. We work in the frame of the shell-model approach to nuclear 
reactions 1. The optical-model potential obtained in this way is non- 
local and energy-dependent. This energy-dependence is called 2 the 
dynamic energy dependence of the optical-model potential. If one 
replaces the non-local potential by an equivalent local one, (this procedure 
is required in order to connect theoretical and phenomenological optical- 
model potentials) the energy-dependence is modified. Here we are only 
interested in the dynamic energy dependence. 

It is found that the dynamic energy dependence of the optical-model 
potential in the vicinity of a broad single-particle resonance is negligible, 
while the optical phase shift is strongly varying and exhibits a resonance. 
We explain this phenomena by deriving a simple relation which gives 
the connection between the imaginary part of the optical potential, the 
optical phase shift and the absorption in one channel. This relation 
emphasizes that the optical phase shift and the absorption depend upon 
the real as well as the imaginary parts of the complex potential. The 
imaginary part of the optical phase shift and the absorption display a 
resonance when the phase shift due to the real part of the optical-model 
potential displays a resonance or when the imaginary part has a Breit- 
Wigner form. The first case occurs in the presence of a broad single- 
particle resonance, the second one in the case of a doorway state. 

* Chercheur I.I.S.N. 
1 Mahaux, C., Weidenmfiller, H.A.: Shell-model approach to nuclear reactions. 

Amsterdam: North-Holland Publ. Co. 1969. 
2 Lipperheide, R., Schmidt, A. K. : Nucl. Phys. All2, 65 (1968). 
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In Section 2, we derive formulae for the generalized optical-model 
potential in channel c (GOMP(c)), which is defined to be a one-body 
potential the scattering function of which is equal to the diagonal matrix 
element in channel c of the collision matrix. In Section 3, we define the 
optical-model potential in channel c (OMP(c)) and derive its expression. 
Those formulae are valid if no narrow single-particle resonance is 
present. We study the behaviour of OMP(c) through a broad s.-p. 
resonance in Section 4. We also establish a relation between the optical 
model potential, the "strength funct ion" and the optical phase shift in 
a simple case. The introduction of the channel-channel coupling is 
examined. Section 5 contains the conclusions. 

2. The GOMP(e )  

Several methods have been proposed to construct the GOMP(c) I' 3-s 
f rom a microscopic point of view. We will generalize here the method 
of Mahaux and Weidenmfiller 1 to the case where a single-particle 
resonance exists. The Harniltonian of the system has the form 

H = H  o + V, (2.1) 

where Ho is an independent particle Hamiltonian and V a residual 
interaction. The Hamiltonian Ho possesses bound states ~i and scat- 
tering states X} which describe A - 1 nucleons in a bound state f2 c and the 
A-th nucleon in a scattering state uti(r, kc). The latter function satisfies 
the equation 

(R-D,j) u,j(r, kc)=0, (2.2) 

where Dtj is the radial part of the single-particle hamiltonian. We 
introduce the equations and definitions 

H o q~j = Ej q~j, Ho Z~ = E Z~, 

<~ IZE,> =ace a(~-E ' ) ,  <~ilc~j>=rij, <~i [Z~> = 0 ,  c c' 

(~ i  ] V I ~j> = V/j, <~i I V Iz~> = V[(E), (2.3) 

<z~" I Vl z~;,> = v(e',  E", c', c"). 

The Lippmann-Schwinger equations reads 1 

1 V 7J~ { +). (2.4) 
7t~(+) =X~(+) q E+_Ho 

3 Feshbaeh, I-I.: Ann. Phys. 5, 357 (1958); 19, 287 (1962). 
4 Lipperheide, R.: Nucl. Phys. 89, 97 (1966). 
5 Giai, 1'4. van, Sawicki, J., Vinh Mau, N.: Phys. Rev. 141, 913 (1966). 
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The function 7'I (+) has an incoming wave in the channel c only. Writing 
it in the form 

M m 

TE (+)= Z bE(i)gbi+~, I a~(E', c')Z)',dE', (2.5) 
i = 1 c" go, 

and taking account of Eq. (2.3), one obtains the system 

(E-Ei) b~(i)- ~ Vi~ b~( j ) -2  dE' a~(E', c') V[" (E')=O, (2.6a) 
j = 1 c '  ec ,  

(E-E')  a~(e', c') 

- Z VC'(E')b~e(m)-~ dE"aCE(E",e")V(E",E',e",c') =0. (2.6b) 
m = 1 C" ~ct* 

The quantities ec, are the threshold energies. If V(E", E', c", c')--0, the 
kernel of the L - S  equation is of finite rank, and the system (2.6) can be 
solved by algebraic methods. The S matrix is then given by 

{1--i2~, M } S~,=exp{i(a~+@)} 2 Vf(E)[D-*(E)]j= Vf(E) (2.7) 

where 6c is the potential phase shift, while the matrix D is given by 

[D (E)]j m = (ej [ E -  H -  V ~ Ga'(E) V I ~=> (2.8) 
c t 

with 
~" d E ' '  ~" 

~c, E + - E '  (2.9) 

In the case V(E", E', e", c')=0, the construction of GOMP(e) is very 
simple. Eliminating the coefficients b~(j) and a~(E', e') for e ' # e  in 
Eq. (2.6), one obtains 

oo 

(E-E')aC~(E',c) - ~dE"CfEC(E',E")a~(E",c)=O, (2.10) 
P,e 

with 
M 

~c(e',E")= y~ Vf(E')[~163 (2.11) 
j , m = l  

[~D(E)-b,, = (~  j [ E - H -  V Z G~'(E) V] ~m>. (2.12) 
C t ~ C  

Multiplying Eq. (2.10) by the function ulj(r , ko) and integrating over 
the energy, one gets, using Eq. (2.2): 

co 

( E -  D l j) p~ (r) = ~ d r' ~C(r, r') p~ (r'), (2.13) 
0 

1 0 "  
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where oo 

p~(r)= ~ dE' a~(E', e) u,j(r, k'c), (2.14) 
8c 

M 
Z (2.15) 

j , m = l  

oo 

Vf(r)= S Vf(E)Ulj(r, k~)dE. (2.16) 
s 

The quantity p~(r) is the projection on channel e of the scattering 
(unbound) part of the function 7J~ (+). 

If V ( E " , E ' , e " , c ' ) , O ,  the kernel of the Lippmann-Schwinger 
equation is not of finite rank. One can write the kernel in the form 

K = K 1 + K s , (2.17) 
with 1 

K~-  E + - H ~  V~. (2.18) 

Here, V~ is the part of V acting in the space of the functions X~. The 
resolvent of K may be calculated if the resolvent of Ks is known. It 
is shown in Ref. 1 that the resolvent of Ks may be calculated by Born 
approximation if no narrow single-particle resonance is present. In the 
opposite case, one can separate K s or Vs into two parts 

1 Ks=K]ep+Krest= E + -H-------~ (vssep + v~rest)' (2.19a) 

where k'~ep is chosen to be operator of finite rank and to contain the 
most of the effect of the single-particle resonance. The scheme proposed 
by Weinberg 6 and applied by the Heidelberg group 7 consists in taking 
the following form for v ~r 

vssep_ Vs]W(E)> (I~(E)I Vs (2.19b) 
(W(E) I IW(E)) 

The functions W(E) and W(E) are defined by: 

W(E) = d (O, ArA, 

('V ( E) = d { O*j (ra, k,) q~r (2.20) 

The function 9~ is the surface wave function in channel c. The operator 
d is the antisymmetrizing operator. The function Otj must be such that 

Ot i(r, Uo) = wt j(r, Uo) . (2.21) 

6 Weinberg, S.: Phys. Rev. 130, 776 (1963); 131, 440 (1964). 
7 Ebenh6h, W., G16ckle, W., Hfifner, J., Weidenmfiller, H. A.: Z. Physik 202, 302 

(1967). 
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The quantity kg is the complex wave number corresponding to the 
resonance, and the function wt3 is the Gamow function�9 Then the Born 
serie for Ks' est will converge rapidly, ff the resonance is broad, it is still 
expected that the Born serie for Ks' ~t will converge more rapidly than the 
one for K~. 

These considerations will help us to construct GOMP(c).  For 
simplicity, we suppose that we have a single-particle resonance in only 
the channel c. We do not make any assumption in the width of the 
resonance. With the definitions: 

V, C r ~ C' t <#(*Z)l ,Iz~,> v~+I(E), (2.22) 

y" ~dE" <X~';,IV~IW(E)> a~(E,,,c,,)=b~e(M+l), (2.23) 
~"s o,, <rV(E)I V, l W(E)> 

the Eqs. (2.6) and (2.23) become 

M + I  m 

E Bijb~(J)=~, [. dE' Vi~'(E')a~(E ', c'), 
j = 1 c '  e c ,  

(2.24a) 

M + I  

( E - E ) a E ( E , c ' ) -  Z ~" ' ~ , c , V~ (E)be(m)  
in = l 

oo 

--Y', I d e "  V,~eSt(E '', E', c", c')a~(E", c " ) = 0 ,  
C" s 

if 

Bi j= ((E- Ei)o~i J-  Vi j 0 
(W(E)I Vs [W(E) )" 

(2.25) 

(2.24 b) 

For c ' #  c, Eq. (2.25) gives 

1 {M+Ivc' E' b c " 
a~(E', c ' )=  E+ - E '  ~ l  j ( ) e(J) j=  

+ I dE" a~(E", c) vsrest(E", E', c, c') -1 1 

�9 dE aE(E ,c  )V~ (E , E , c  ,c' . 
r C 8  

E +  __El  
(2.26) 

Using the first order Born approximation and eliminating the coef- 
ficients aCgttE', e') for c ' # c  and b ce(j)" in Eq. (2.24a) and (2.26) we obtain 
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Eq. (2.10) with now 

E") = E") 
M+ 1 (2.27 a) 

+ ~ W~,j(E')[CD-I(E)]jmWEC, m(E"), 
j , m = l  

~Ec(dir)( Et' E't)=(zcg'[ Vs rest+ Vs rest Z a~'(E) V: cst 

+v/est Z G;, (E) V:O~t ~ G;,, (E) VfCStIz~,,) ' (2.27b) 
C'*C C"*C 

W$~ j (E ' )= (~ i l  V+ V Z G~" (E) V: ~ 
C ' * C  

+ V ~ G~'(E) V/[ ~ ~ G~"(E) V,~st[z~,), (2.27 c) 
C'*C C'~:C 

[~D(E)]jm=Bjm-(4~j[  V ~ G~o" (E) V 
C'*C 

(2.27d) 
+ v Z O;'(E) V Z O;"(E) V 

C'~C C ' ~ C  

If the resonance is present in a channel c o , c, the formula derived above 
remains valid, provided one uses the following definition for W(E): 

W (E) = d { O~ j(r  A , kco) %o) . (2.28) 

3. The O M P  (e) 

By definition, the OMP(c) is a one-body potential the scattering 
function of which is equal to the average diagonal element of the col- 
lision matrix in channel c. If we denote by ~7~(r) an eigenfunction of 
OMP(c), we have in analogy with Eq. (2.14) 

oo 

~)(r) = S dE'  a~(E', c)u,j(r ,  kc,). (3.1) 
gc 

We have thus to find a quantity $2EC(E', E") satisfying 
oo 

' ~~ ' Sq / '~(E ,E  ) a ~ ( E , c ) d E " = O .  (3.2) ( E - E ) a E ( E , c ) -  ~ . . . .  ~ ~ ' 
~c 

This quantity is not unique. If no narrow single-particle resonance is 
present in channel c, i.e. if 3c(E+iI)~-3~(E)  and V [ ( E + i I )  ~ - Vf (E) ,  
the construction of a possible value of ~c  is simple ~. One can verify 
that, for V~ =0, the quantity defined by 

M 

~ ( E ' , E " ) =  ~ Vf (E ' ) [CD-~(E+i I ) ] jmV~(E  '') (3.3) 
j j m = l  



Optical-Model Potential and Broad Single-Particle Resonances 139 

satisfies the Eq. (3.2). For Vs :t: 0, if the single-particle resonance isolated 
by the method of Section 2 is broad, or more precisely, if its width is 
larger than the interval I, one has 

e")= ', E") 

M+I w c t~,~FCD_I(E+iI)]j~W~+II.~(E,,) " (3.4) 
-~  2 r r E + i I ,  j \  J'~ ] Ls 

j , m = l  

In r-representation, the Eq. (3.2) reads 

co  

( E -  O t j) ~ ( r )  - ~ d r' ~C(r, r') ~ (r') = 0. (3.5) 
0 

Because of the very definition of the OMP(c), the latter is given by 

~opt(~) (r, r') = vo (r) + ~ ( r ,  r'), (3.6) 

where the potential vo(r) is the shell-model potential contained in Dz3. 
In Ref. ~, it is shown that 

<30 0 0  

~r r ' )= I dE'~ dE"u , j ( r ,  k',) ~~ ' (E ,  E") u,i(r, k'j). (3.7) 
~ e  ~ c  

4. Energy Dependence of OMP(c) in the Presence 
of a Broad Single-Particle Resonance 

As we mentioned in the introduction, we only study the dynamic 
energy dependence of OMP(c), i.e. the one obtained by keeping the 
"natural" non-locality introduced by the shell-model calculation of 
the optical-model potential. We show that OMP(c) is nearly energy in- 
dependent in the vicinity of a broad single-particle resonance, even when 
direct processes are taken into account. The consequence of those 
processes is to add real and imaginary terms in OMP(c) which are 
slowly varying with energy. However, the optical-model phase shift 
exhibits a resonance. We explain this appaxent contradiction by means 
of a simple relation between OMP(c) and the optical model phase 
shift, that we derive in the beginning of this section. This relation 
emphasizes the fact ~hat both real and imaginary parts of OMP(c) 
contribute to the imaginary part of the optical-model phase shift. 

We start with the calculation of OMP(c) in a very simple case: no 
single-particle resonance, Vs=0. Let us remind the form of the matrix 
CD(E+iI): 

[CD (E + i I ) ] j  m 
c r t c" i 

= ( E + i I - E s ) @ , - V s ,  ~ -  ~ dE' Vj ( E ) V ~ ( E )  (4.1) 
c,, .... E + i I - - E '  
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v;' V;.' (E') oo 
If we assume that the quantities Vj,, and ~ ~ dE' have 

~,~o, E + i I - E '  
random signs and that their contributions vanish, we can neglect the 
off-diagonal terms in the matrix r iI). 

The optical-model potential is then given by: 

Y;(r) V;(r') 
"fE~ r')=Vo(r), k- 

j = l  E + i I - E j  
(4.2) 

Since the dispersion of the quantities V] (r) V] (r') and Ej+ 1 - E  s is not 
large, the second term in the r.h.s, of Eq. (4.2) is approximately equal to 
- iN(r ,  r'), with 

S~(r, ' rc Vf(r) V~rr') i, 
r )=--d J" (4.3) 

d=Ei+ 1 - E y .  

The bar means an average over the indite j.  Thus we have 

Sr~~ r') = Vo ( r ) -  i zr ~ ( r ,  r ').  (4.4) 

In this case, there exists a simple relation between characteristic 
quantities of the optical model. Let us call ~opt the phase shift due to 
~e ~ (~) (r, r'). We have in first order in ~ (r, r') s : 

or 

oo co 

6 ~ 6 ~ -  ~ S d r S d r' u~ (r, k) [ -  i 5a~ (r, r')] u c (r', k) 
0 0 

(4.5) 

6~ inSc(E). (4.6a) 

The function Sr (E) is called the "strength function in channel c"  and is 
defined by: 

Sc (E) = rc [Vf (E)] 2 y (4.6 b) 
d 

The quantity 6opt is the optical model phase shift and can be obtained 
from the average total cross section in channel c. Since the OMP(c) 
leads to the average diagonal element Sc~ of the collision matrix in 
channel c, we must have 

exp (i 2 6~ pt) = (Sc c (E)>. (4.7) 

8 Messiah, A. : Quantum mechanics, p. 363. Dunod 1964. 
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Let us show it explicitly. From Eq. (2.7), we get 

(Scc(E))=exp(i25c) 

�9 {1 - i 2 u  2 Vf(E) [O-1 (E+  iI)]j,, V~(E)}. (4.8) 
j ,m 

By the same method as above, we have: 

( Sc~(E)) =exp(2 i 6c) {l  - 2 ~ 7c[ Vf ~ E)]2 j } (4.9 a) 

or, in the first order in the strength function, with the help of Eq. (4.6b): 

( S ~  (E)} ~- exp {2 i [6c + i~ S~ (E)] }i. (4.9 b) 

There exists also a simple relation between the "strength function" and 
the transmission coefficient T~ defined by: 

Tc = 1 - I  (S~r [e. (4.10) 

Here, one gets because of Eq. (4.9b) 

T ~  1 - exp ( - 4 ~  Sc(E)) 

or, because of Eq. (4.9a) 

T~ = 1 - 4 ~  Sc(E) + 4 ~  2 [S~ (E)] 2 . (4.11 b) 

The Eqs. (4.9b) and (4.11 a) agree with the results of Moldauer 9 provided 
the strength function in channel c is small. Then, the formulae (4.9b) 
and (4.11a) are a good approximation. When the assumption Sr 1 is 
removed, the Eqs. (4.9a) and (4.11b) remain valid. This is not the case 
for Eqs. (4 .9b)and (4.11a). The calculations of Moldauer show that 
they are still valid if one takes the following definition of Sr 

S~(E) = d (4.12) 

Let us recall those formulae have been derived in the absence of 
direct processes and potential resonances. After this simple case, we 
turn to more and more complicated ones. 

V~=0. Presence of a Broad Single-Particle Resonance 
If the single-particle resonance is present in channel c, the matrix ~D 

remains the same and the optical-model potential is still given by Eq. (4.4). 
However, the optical phase shift may be different because of the presence 

9 Moldauer, P. A.: Plays. Rev. 157, 907 (1967); 171, 1164 (1968). 

(4.11 a) 
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of G~ in D. One has: 

[D(E+il)]j,~--(E+iI--Ej)6jm--<q~jl VG~o(E+iI) Vlq)m>. (4.13) 

wg> < wg 
The Green function G~o(E) may be approximated by . The E-g~ 
function W~ is the many-body Gamow function, and the quantity g~ 
is the complex energy of the resonance: 

~=Eo-iro/2=~o~ h2(k;)2 2Me (4.t4) 

Hence, one has 

<~y[VG~o(E+iI)V[~,.>~ <~jIVIW~><W~IVI~.> (4.15) 
f.-g~ 

ff one assumes that, for all j and m, 

<~jl V I W g> ~ = < Wgl V l ~ >  ~ = W ~ *, (4.16) 

the matrix D(E+ iI) becomes: 
W 2 

[D(E+iI)]i,,=(E+iI-Ej)6jm E _ ~ J .  (4.17) 

The matrix J is symmetric. Its diagonal elements are + 1 and its non 
diagonal ones are statistically + 1 or - 1. Because of the randomness in 
the signs of the off-diagonal matrix elements, we may assume that they 
have mutually cancellating effects. So, the optical phase shift keeps the 
same form (4.6 a) in spite of the presence of the single-particle resonance. 
But the values of the strength function is peaked at Eo because the 
value of (Vj) 2 is also increasing in the vicinity of the s.-p. resonance. 

If the resonance is present in a channel e o # c, we have to keep the 
terms <~[VG~o~ in CD(E+iI) for the calculation of 
the optical-model potential. With the help of arguments similar to those 
given above, one obtains again the formula (4.4) for the OMP(c) and 
(4.6a) for the optical model phase shift. But, now Im ~(~) does not ~opt 

display any resonance. 

One Broad Single-Particle Resonance. V~ # 0 
When a broad single-particle resonance exists in channel c, the 

matrix ~D(E+il) is given by: 

;D(E+iI)~_((E+iIoEJ)6jm 0 (4.18) <ve(E)I V~lW(E)>/' 
* The matrix elements <q~j] V IW~> are not exactly real. They have an imaginary 

component, which is small provided one has: I m k ~  Rek~. 
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since all the terms containing the Green functions are negligible for 
c'+c and for #=E+iL Proceeding like in the preceeding cases, one 
finds: 

M w;(~) w:.(/) 
~~ ,-') = Vo (r) + ~"~'~)(r, r') + y, 

j=~ E+iI-Ej  
W~t+ 1 (r) W~+ 1 (r') (4.19) 

q 
<W(E)I ~ IW(E)> 

The quantities ~/rEc(dlr)(r, r') and W~(r) are the transforms by the functions 
utj(r,k) of the quantities Y'e~(di~ '') and W#j(E') defined in 
Section 2. The quantities W~(r) depend on E, because of the energy- 
dependence of the functions W{j (E'). Since they are slowly varying, we 
neglect here this dependence. Using a picket fence model for thecompound 
nucleus states and taking account of Eq. (2.22), we get: 

w:(o W(/)' "r176 r')=vo(r)+~/:EC(di')(r, r')--izc d 

W~+ 1 (r) W~+, (r') (4.20) 
-{- 

The term Vo (r) accounts for the potential scattering and particularly for 
the single-particle resonance. The second term corresponds to direct 
phenomena governed by the part V, ('~ of V, which does not contain 
the single-particle resonance. Since the second order in Vff ~m, the 
quantity ~(ai r )  have an imaginary component (see Eq. (2.27b)) which 
is due to the absorption by the other channels. The absorption by the 
compound nucleus states is represented by the quantity 

Wf(r) Wf (r') i (4.21) ~(r, r')=~ d 

Its transform 6P~(E) by the functions u~(r, k) is defined by: 

J 
~(E )=~ .  [%~(E)] ~ (4.22) 

and is a generalization of the strength function. The quantities W~(E) 
are substituted to the V~'s because processes like 

c ~' c (lst order) 
(4.23) c, c,, c (2nd order) X E "-'e ~ j "+ Z E "+ X E "--~ ){ E 

are now present. The fourth term of Eq. (4.20) represents the part due 
to the interference of the single-particle resonance with the direct pro- 
cesses. This is a slowly varying function of the energy. 
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If the single-particle resonance takes place in channel Co+C, the 
matrix ~D(E+il) can be put in the form 

0 ~D(E+iI)"((E+iI; Ej)6~" (~V(E)IV~IW(E))) (4.24) 

with the help of the same arguments than those described above, provided 
the matrix elements involving W(E) are of the same order of magnitude 
than the same matrix elements with the functions ~ .  Again, one gets 
Eq. (4.20) for the optical-model potential. 

An alternative way of deriving the form of the optical-model potential 
consists in treating V~ as a whole without extracting the part responsible 
of the effect of resonance. If the latter is broad enough, V~ can be treated 
by the Born serie. In first order in V,, one gets: 

q,~~ r')=vo(r)-i ~(r, r')+ ~E~(air)(r, r') . (4.25) 

The quantities ~ and "/?E ~ (a~r) are defined like the similar quantities with- 
out hat provided V, is substituted to V[ est. The two expressions (4.20) and 
(4.25) for the OMP (c) are equivalent, when calculated exactly, but differ at 
each order of the Born serie. It is expected that the serie converges more 
rapidly in the first case than in the second one, at least in the vicinity 
of the resonance. 

5. Conclusions 

We derived the formula for GOMP(c) obtained in the frame of the 
shell-model reaction theory, when the channel-channel coupling V~ is 
zero. The formula remains valid in the presence of a single-particle 
resonance. We derived a formula for GOMP(c) when V~:~0. The effect 
of a single-particle resonance in V~ is extracted by a method suggested 
by Weinberg. The remaining part of V~, i.e. V[ ~ is treated in first order 
Born approximation. In Section 3, we derived the formulae for OMP(c) 
in both cases V~=0 and V,+0 in the presence of a broad single-particle 
resonance whose width is larger than the average interval L In this case, 
OMP(c) is GOMP(c) evaluated at the complex energy E+ iI. In Section4, 
we studied the energy behaviour of OMP(c) through a broad single- 
particle resonance. We started with the simplest case: V~ =0, no single- 
particle resonance. No energy dependence is found in the optical-model 
potential. We also derived a relation between the imaginary part of 
OMP (c), the "strength function" Sc in channel c and the optical model 
phase shift 6(f pt). When a broad single-particle resonance is present, the 
optical-model potential is still energy-independent, while the imaginary 
part of the optical model phase shift (and also So) displays a resonance. 
This situation is due to the fact that the imaginary part of the optical 
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phase shift depends upon both the real and the imaginary parts of 
OMP(c) as exhibited by Eq. (4.6). Hence, the absorption displays a 
resonance while the OMP(c) is constant as far as the dynamic energy 
dependence is concerned. If the channel-channel coupling is introduced, 
two modifications arise: i) the "strength function" must be defined 
somewhat differently, ii) Two new terms appear in OMP(c). The first 
one describes the effect of the single-particle resonance in the direct 
processes. The second one corresponds to direct phenomena due to 
F/est . It has an imaginary component due to the fact that absorption by 
other channels is allowed. Both these terms are slowly energy dependent. 
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