Introduction

Although all cetaceans possess a streamlined body, their phenotypes vary widely among species according to their different lifestyle. The aim of this research is to establish relationships between characteristics of the vertebral column of different cetaceans and their ecology.

Material and methods

The vertebral count (i.e. the total number of vertebrae) of 51 cetacean species was taken on skeletons available in eight different museums in the world. The maximal length, height and width of the vertebral centrum of each vertebra was also measured with digital callipers.

Results and discussion

All cetacean species living in shallow waters (rivers, estuaries and bays) are small (<4m) and have a low vertebral count. Species living in deeper waters (continental shelf and open ocean) possess either a larger body length or a higher vertebral count. There are no large cetacean species having a high vertebral count.

There is a linear relationship between body length and vertebral count for families with low vertebral count (i.e. all families except Delphinidae and Phocoenidae). Larger species have a slightly higher number of vertebrae than smaller species but it never exceeds 65 vertebrae.

The variability of vertebral count is higher for species with a body length inferior to four meters. Most of this variability is due to two different families of Odontocetes: Delphinidae and Phocoenidae. These families possess a higher vertebral count (50 to 90 vertebrae) compared to other families (40 to 65 vertebrae).

There is no relationship between the vertebral count and body length for Delphinidae and Phocoenidae. But species living further away from the shoreline possess a higher number of vertebra than more coastal species. This means that vertebrae are shorter for open ocean species having a high vertebral count. It results in a stiffer vertebral column in fast swimming open ocean species than in riverine and coastal species.

Conclusion

All species living in shallow waters are small and have a low vertebral count with proportionally longer vertebral bodies. It results in a very flexible body adapted for manoeuvres in complex environments.

Species living in open ocean have two distinct morphologies:

- An extremely large body with low vertebral count allowing to cover long distances.
- A small body with high vertebral count resulting in a stiffer body allowing accelerations in open sea.

Aknowledgements

The authors would like to thanks the different museums that allowed us to work on their specimens: the Aquarium-Museum of Liège, the Royal Belgian Institute for Natural Sciences, the French National Museum of Natural History, the State Museum of Natural History Stuttgart, the Swedish Museum of Natural History, the Queensland Museum, the Bayworld Port Elizabeth Museum and the Iziko South African Museum. This research was funded by the Belgian National Fund for Scientific Research (FNRS), by a Patrimoine Grant from the University of Liège, by the Odyssea association and by the European Union’s Seventh Framework Programme (FP7/2007-2013) under agreement n°226506 (SYNTHEYS).