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ABSTRACT   

 

The atom-diatom interaction is studied by classical mechanics using Jacobi coordinates 

(R, r, θ).  Reactivity criteria that go beyond the simple requirement of transition state theory 

(i.e., PR* > 0) are derived in terms of specific initial conditions. Trajectories that exactly fulfill 

these conditions cross the conventional dividing surface used in transition state theory (i.e., 

the plane in configuration space passing through a saddle point of the potential energy surface 

and perpendicular to the reaction coordinate) only once.  Furthermore, they are observed to be 

strikingly similar and to form a tightly-packed bundle of perfectly collimated trajectories in 

the two-dimensional (R, r) configuration space, although their angular motion is highly 

specific for each one.  Particular attention is paid to symmetrical transition states (i.e., either 

collinear or T-shaped with C2v symmetry) for which decoupling between angular and radial 

coordinates is observed, as a result of selection rules that reduce to zero Coriolis couplings 

between modes that belong to different irreducible representations.  Liapunov exponents are 

equal to zero and Hamilton's characteristic function is planar in that part of configuration 

space that is visited by reactive trajectories.  Detailed consideration is given to the concept of 

average reactive trajectory, which starts right from the saddle point and which is shown to be 

free of curvature-induced Coriolis coupling.  The reaction path Hamiltonian model, together 

with a symmetry-based separation of the angular degree of freedom, provide an appropriate 

framework that leads to the formulation of an effective two-dimensional Hamiltonian.  The 

success of the adiabatic approximation in this model is due to the symmetry of the transition 

state, not to a separation of time scales.  Adjacent trajectories, i.e., those that do not exactly 

fulfill the reactivity conditions have similar characteristics, but the quality of the 

approximation is lower.  At higher energies, these characteristics persist, but to a lesser 

degree.  Recrossings of the dividing surface then become much more frequent and the phase 

space volume of initial conditions that generate recrossing-free trajectories decreases.  

Altogether, one ends up with an additional illustration of the concept of reactive cylinder (or 

conduit) in phase space that reactive trajectories must follow.  Reactivity is associated with 

dynamical regularity and dimensionality reduction, whatever the shape of the potential energy 

surface, no matter how strong its anharmonicity, and whatever the curvature of its reaction 

path.  Both simplifying features persist during the entire reactive process, up to complete 

separation of fragments.  The ergodicity assumption commonly assumed in statistical theories 

is inappropriate for reactive trajectories.  
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I. INTRODUCTION 
 

In transition state theory (TST), a crucial issue relates to the separability of the reaction 

coordinate.1  As early as 1939, Hirschfelder and Wigner2 drew attention to the great 

simplification that can be achieved by making use of the principle of adiabatic invariance to 

separate the slow motion in the reaction coordinate from the bath of other motions.  Marcus3,4 

and Truhlar5 then expanded on this idea.   

A decisive point was reached when Miller pointed out that conserved action variables 

exist in the neighborhood of the saddle point of a potential energy surface, even in the 

nonseparable case6-8.  Together with his co-workers, he developed the idea that in the saddle 

point region the imaginary action variable cannot be coupled to the real actions of the other 

degrees of freedom.   

 More recently, additional arguments in favor of the existence of approximate 

invariants of motion in the neighborhood of a first-order saddle point have been put forward.   

Theoretical studies on isomerization reactions of atomic clusters by Berry and co-

workers showed a decrease of local Liapunov exponents in the regions of saddles compared 

with those in the potential well9-12.   Classical trajectory calculations revealed the existence of 

regularities in the motion near the saddle in the form of a "collimation" of trajectories.  These 

authors invested considerable effort in the search for recrossing-free dividing surfaces in 

phase space by using a perturbation theory to transform the system of coordinates so as to 

make the new Hamiltonian as close to integrable as possible.12  

Mathematically rigorous foundations were laid by Wiggins and co-workers13-15 for the 

understanding of local regularities in the dynamics of a classical motion in the neighborhood 

of a saddle point.  These authors used a system of so-called normal form coordinates, mixing 

coordinates and momenta, to decouple the Hamiltonian.  The analysis is completely general 

and locally conserved action variables were shown to exist even when the Hamiltonian is 

highly dimensional and involves a non-separable anharmonic potential energy function.    

The present contribution is the fourth in a series devoted to the study of classical motion 

in the neighborhood of a saddle point.  In papers I and II,16, 17 evidence was given for the 

existence of symmetries, in the form of motion coordination among a bundle of trajectories 

crossing the saddle point region.  In paper III,18 instead of trying to determine a recrossing-

free dividing surface in phase space, we looked for a way to select trajectories that do not 

recross the conventional surface in configuration space.  This means that the plane containing 
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the saddle point and perpendicular to the unstable vibrational mode is no longer seen as a 

dividing surface separating reactants and products: instead, it serves to define initial 

conditions that generate truly reactive trajectories.  This enabled us to put forward a method 

for choosing initial conditions capable of generating reactive trajectories.  

We wish to go further in the present contribution.  In Sec. II, we focus on the particular 

case of symmetrical TSs (i.e., either collinear or C2v  T-shaped) and seek to identify those 

properties that characterize reactive trajectories irrespective of the expression of the potential 

energy surface: decoupling and dimensionality reduction are among them.  In Sec. III, we 

consider a specific Hamiltonian and recapitulate briefly the main results derived in paper III, 

putting the reactivity criteria valid for symmetrical TSs in concrete form.  An application to 

the formyl radical decomposition is presented in Sec. IV, for which reactive loci in phase 

space are determined.  In Sec. V, reactive trajectories are shown to be surprisingly similar; 

they are characterized by a decoupling of the angular degree of freedom and by a grouping 

property in the two-dimensional (R, r) subspace.  The decoupling properties established in 

this way suggest that it should be possible to derive an effective 2D Hamiltonian, which is 

done in Sec. VI.  A proper framework to analyze these results is shown in Sec. VII to be 

based on the reaction path Hamiltonian model.  The striking grouping of reactive trajectories 

is discussed in Sec. VIII.  The robustness of our results is checked by considering the 

influence of an increase of the internal energy in Sec. IX.  The case of T-shaped TSs is briefly 

considered in Sec. X.  Sec. XI concludes.   

 

II. GENERAL FEATURES OF REACTIVE TRAJECTORIES  

 

A. Analytical equations of motion 

 

 As shown in detail by Hirschfelder,19 it is possible to derive a system of coordinates, 

valid for any polyatomic molecule, where the reaction coordinate is separable over its entire 

range, by defining it as the distance between the centers of mass of the two separating 

fragments.  However, the remaining coordinates that represent the vibrational motion inside 

each fragment are then extremely complicated and unphysical.  Fortunately, the problem does 

not arise in the particular case of a triatomic system studied in a body-fixed rotationless 

frame.  The kinetic energy can be written quite simply in Jacobi coordinates and remains valid 

at all internuclear distances.  The following Hamiltonian13, 16-18 thus conveniently describes 

the atom-diatom interaction 
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H =
PR
2

2M
+
Pr
2

2µ
+
1
2

1
M R2

+
1
µ r2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟Pθ

2 +V R, r,θ( )     (2.1) 

where R is the distance between the atom and the center of mass of the diatomic, r the 

internuclear distance of the latter, θ the angle between the two position vectors, PR, Pr, Pθ  

the conjugate momenta, µ the reduced mass of the diatomic, and M that of the atom - diatom 

system.  The potential energy function is so far completely arbitrary, except that it is 

characterized by a saddle point at coordinates (R*, r*, θ*).  

In paper III18 we put forward a method for choosing initial conditions that generate 

reactive trajectories, and that is valid for a very general shape of potential energy surfaces, 

characterized only by the presence of a first-order saddle point.  (Such complications as non-

minimum energy path reactions,20 valley-ridge inflection points,21, 22 roaming,23, 24 etc., are 

excluded.)  The method is based on a general procedure to derive analytic equations of motion 

by repeated applications of the Poisson bracket equation.25  The equation of motion of any 

dynamical variable X, coordinate or momentum, can be obtained as a series expansion  

X(t) = X0 + t X,H[ ]0 +
t2

2!
X,H[ ],H⎡⎣ ⎤⎦0 +...      (2.2) 

where the subscript zero refers to the initial conditions at time t = 0.   

Of particular interest is the case X = R, where R is the translational coordinate.  Its 

equation of motion can be formulated as follows:  

R(t) = R* +
PR*
M

t + c2
t2

2!

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟+ c3

t3

3!

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟+...      (2.3) 

where R* denotes the position of the saddle point, reached at t = 0.   

In conventional TST, the condition PR* > 0 is the only prerequisite for a classical 

trajectory to be deemed reactive.  However, as explained in detail in Paper III,18 additional 

restrictions should be introduced.  A trajectory will be reactive if its initial conditions are 

chosen so that  

1) even-power coefficients (quadratic, quartic, ...) are absent from the Taylor 

expansion of the actual equation of motion (i.e., from Eq. (2.3)) because these terms inflect 

the trajectory and induce recrossings at positive times (if c2 < 0) or at negative times (if c2 > 

0).    

2) odd-power coefficients (linear, cubic, quintic, ...) are all positive (and as large as 

possible).  
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B. A general Hamiltonian describing symmetrical TSs 
 

Let us now go back to the general expression of the Hamiltonian written in Jacobi 

coordinates (Eq. (2.1)).  Given the experience acquired in Paper III, we know that the algebra 

becomes much simpler when the TS is collinear.   Simplifications also arise if it has C2v 

symmetry in its equilibrium conformation, i.e., if it is T-shaped, with an equilibrium bending 

angle equal to π/2 and if the diatomic moiety is homonuclear.   

We return to Eqs. (2.2) and (2.3) with the aim of finding general properties of reactive 

trajectories when the expression of the potential function V is left unspecified, except that 

V(R*, r, θ) is required to be an even function of θ (for a collinear TS) or of (θ – π/2) (if the TS 

has C2v symmetry at its stationary point).   

In the particular case of a collinear TS, the set of initial conditions is denoted as 

R*,PR*, r* +δr, pr,δθ, pθ{ } .  For a C2v T-shaped TS, the set would be 

R*,PR*, r* +δr, pr,
π
2
+δθ, pθ

⎧
⎨
⎩

⎫
⎬
⎭

.  (To alleviate the notation, the initial conditions δr, δθ, pr, 

and pθ are written in lower case letters without any asterisk.)   The coefficient in Eq. (2.3) that 

controls reactivity is  

c2 = R,H[ ],H⎡⎣ ⎤⎦0 =
pθ
2

M 2 R*
3 −

1
M
∂V
∂R 0

 ,     (2.4) 

where the asterisk denotes the coordinates (R*, r*, 0) or (R*, r*, π/2) of the saddle point.   The 

solution of the equation c2 = 0 gives the appropriate value to be given to the initial elongation 

δr in order to have a reactive trajectory.  One gets  

δr = ∂2V
∂R∂r *

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−1
pθ
2

M R*
3 −

1
2

∂3V
∂R∂θ2 *

δθ2
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

.     (2.5) 

This particular choice of initial conditions plays an essential role in all of the 

developments that follow.  We submit that it is one of the key concepts in the rationalization 

of reactivity.    

The next requirement is that the cubic coefficient c3 should be positive and as large as 

possible.  The corresponding nested expression in Eq. (2.2) has been evaluated for a general 

potential V at the particular value of δr formulated in Eq. (2.5) and then expanded in a Taylor 

series in δθ and pθ.  One gets  
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c3 = −
PR*
M 2

∂2V
∂R2 *

−
pr
M µ

∂2V
∂R∂r

*
− 2 1

M 2 R*
3
∂2V
∂θ2 *

+
1

M I*
∂3V

∂R∂θ2 *

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
δθ pθ +...  (2.6) 

The first term of this expression is necessarily positive, whereas the appropriate sign to 

be given to the vibrational momentum pr to promote reactivity should be coordinated with 

that of a cross-term in the expansion of the potential energy surface, i.e.,  

pr
∂2V
∂R∂r

*
< 0 .           (2.7) 

The third term plays a minor role, as will become clear later on.   

Similar calculations were done for the next higher coefficients.  For the quintic 

coefficient, one finds 

c5 =
PR*
M 2

1
M

∂2V

∂R2 *

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

2

+
1
µ

∂2V
∂R∂r *

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

2⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
+
pr
M µ

∂2V
∂R∂r

*

1
M

∂2V

∂R2 *
+
1
µ
∂2V

∂r2 *

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
+...   (2.8) 

to which numerous terms involving the product δθ pθ  should be added.  Note that the 

coefficient of PR* is a sum of squares and therefore always positive whereas the sign of the 

initial vibrational momentum should again be chosen appropriately to make sure that it 

promotes reactivity.   

 Even-order coefficients have a reduced influence because of the heaviness of the 

nuclear masses: k-th order terms in Eq. (2.3) are proportional to M−(k+1)/2  if k is odd and to 

M− k+2( )/2  if k is even.18    

 Unfortunately, the complexity of the coefficients cj that appear in Eq. (2.3) increases 

very rapidly with their order.  This limits the applicability of the analytical approach to a 

certain range on either side of the dividing surface.  However, as it turns out, this range is 

broad enough to derive useful information on the dynamics.  

 

C. Dynamical reaction path and average reactive trajectory   

 

Several groups have long observed that reactive trajectories get together in the form of 

reactive "tubes" or "cylinders" or "conduits" in phase space.13-15, 26-28  Calculations done by 

Fair et al.27 and by Waalkens et al.13 offer spectacular illustrations of these structures.  The 

center line of these cylinders has been termed the dynamical reaction path.13-15
     This 
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grouping implies that graphs representing the motion along the reaction coordinate (i.e., plots 

of R(t)) can be expected to look roughly the same for reactive, non-recrossing trajectories.   It 

makes therefore sense in the present study to average Eq. (2.3) over sets of four initial 

conditions (± δθ, ± pθ) because, for symmetrical TSs, these four states have the same energy.  

This procedure eliminates many terms and leads to a simple expression of the average 

equation of motion of reactive trajectories that depends on PR* and pr alone and in which all 

reference to δθ and pθ disappears.  If the initial conditions satisfy Eq. (2.5) one obtains    

R(t) = R* +
PR*
M

t + c3
t3

3!

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟+ c5

t5

5!

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟+...      (2.9) 

where <c3> and <c5>  are equal to the sum of the first two terms reported in Eqs. (2.6) and 

(2.8), respectively.    

The same procedure can used to derive the expression of the average equation of motion 

of the vibrational coordinate for reactive trajectories.  One gets 

r(t) = r* +
pr
µ
t + a3

t3

3!

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟+ a5

t5

5!

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟+...      (2.10) 

where 

a3 = −
pr
µ2

∂2V
∂r2 *

−
PR*
M µ

∂2V
∂R∂r

*
      (2.11) 

a5 =
pr
µ2

1
µ
∂2V
∂r2 *

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

2

+
1
M

∂2V
∂R∂r

*

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

2⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
+
PR*
M µ

∂2V
∂R∂r

*

1
µ
∂2V
∂r2 *

+
1
M

∂2V
∂R2 *

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

.        (2.12) 

Here again, the average equation of motion of the vibrational coordinate for reactive 

trajectories is found to depend on pr and PR* alone, which therefore should be considered as 

essential parameters in the equations of motion of a reactive trajectory.   

Finally, due to the assumed symmetry of the TS, one finds θ(t) = 0 .   

In summary, irrespective of the shape of the potential energy surface (except for the fact 

that the TS is assumed to be symmetrical), the bundle of reactive trajectories obeying the 

zero-initial acceleration condition c2 = 0 is seen to be grouped around an average trajectory 

that is determined by the two initial conditions PR* and pr only.  Any energy deposited as 

translational momentum PR* necessarily stimulates reactivity, as intuitively expected.   Energy 

delivered as vibrational momentum can be beneficial if the inequality (2.7) is fulfilled, but 
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curbs reactivity otherwise.   Energy deposited in the angular motion is less effective and is 

responsible for the dispersion of individual trajectories.   

 

D. A reduced-dimensionality effective Hamiltonian for symmetrical TSs   

 

The fact that the angular variables θ and pθ do not appear in the average equation of 

motion of the translational and vibrational degrees of freedom suggests that it should be 

possible to reduce the dimensionality of the problem.  The possibility should exist to calculate 
the laws of motion of the average reactive trajectory of a symmetrical TS for the R and r 

degrees of freedom by applying Hamilton's equations of motion to an effective two-

dimensional Hamiltonian   

H2D =
PR
2

2M
+
Pr
2

2µ
+V2D R, r( )       (2.13) 

where the potential V2D is as yet unknown, except that it must be characterized by a 

symmetrical saddle point at coordinates (R*, r*).   

Consider the particular trajectory that starts right at the saddle point, i.e., that has 

R*,PR*, r*, pr{ }  
as initial conditions, and calculate its equations of motion via Eq. (2.2) 

without specifying the expression of the potential V2D.  It turns out that they reduce to Eqs. 

(2.9) and (2.10), with coefficients that are exactly equal to the average values <c3>, <c5> , 

<a3>, and <a5>  derived in the previous paragraph for the 3D Hamiltonian.  This is also the 

case for the coefficients <c7> and <a7>, which are not reported here because of the 

unwieldiness of their expression.    

Since the eight average coefficients, from  <c1> to <c7> and from <a1> to <a7>, which 

appear in the average equations of motion of reactive trajectories for a 3D Hamiltonian 

depend on three quantities only (namely, ∂2V ∂R2
*
,  ∂2V ∂R∂r

*
,  and ∂2V ∂r2

*
), it 

follows that the constraints to be imposed on the construction of V2D do not go beyond the 

requirement that these three second derivatives should be equal to those that characterize the 

actual three-dimensional potential.   

When these three conditions are fulfilled, the equations of motion of the average 

reactive trajectory can be derived from the reduced-dimensionality effective Hamiltonian 

expressed in Eq. (2.13).  It is important to note that the dimensionality reduction is valid for 

reactive trajectories only, i.e., when the initial conditions satisfy Eq. (2.5). 
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E. Synopsis 

 

The scope of the treatment is limited to the dissociation of a triatomic molecule.  In full 

conformity with the textbook paradigm, non-minimum energy paths,20 bifurcations,21, 22 and 

roaming23, 24 are excluded.  The TS is assumed to belong to C∞v or C2v point groups.  No other 

assumption is made on the shape of the potential energy surface.  The equations of motion are 

calculated as a series expansion.  Analytical expressions of the coefficients are given, but up 

to the seventh order only.  As a result of the unavoidable truncation of the series, these 

analytical equations of motion are valid over a restricted time range only.  However, there is 

in principle no limitation if the series is calculated numerically.   

Particular attention is paid to the subset that exactly fulfills Eq. (2.5), which will 

henceforth be referred to as the subset of central reactive trajectories.  (The latter term was 

used in Paper III18 in a more restricted sense, which we now wish to abandon.)  They form a 

bundle that is expected to be grouped around its average.  The equation of the average motion 

depends on two variables only, namely pr and PR*, without any reference to the angular mode, 

no matter how strong the anharmonicity of the potential energy surface, and whatever the 

curvature of its reaction path.  Alternatively, it can be calculated quite simply from an 

equivalent two-dimensional Hamiltonian, either analytically over a restricted time range, or 

numerically up to complete separation of fragments.  

This decoupling and the associated dimensionality reduction form the starting point and 

the leitmotiv of the present paper.   However, several questions remain open.  How tight is the 

bundle of reactive trajectories?  How broad is the time range of validity?  Can one be more 

specific about the decoupling mechanism?  To answer these questions and to put the previous 

general results in concrete form, more information is needed about the shape of the 

Hamiltonian.  A specific choice is studied in the next sections.   

 

III. A SPECIFIC HAMILTONIAN FOR COLLINEAR TRANSITION STATES 
 

In order to derive explicit reactivity criteria, the previous analysis was applied to a 

specific Hamiltonian designed to represent a typical potential energy surface presenting a 

saddle point of a type frequently encountered in molecular reaction dynamics.  A collinear 

geometry is assumed.  Since an in-depth presentation would be lengthy, we refer the reader to 

Papers II and III where full details are given17, 18 and recapitulate only the essential features of 

the chosen model.   
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A. The model 
 

The potential is written as a sum of two- and three-body contributions,  

V(R, r,θ) = Vsaddle(R) + Vdiat(r, R) + Vang(θ, R) + V3b(R, r, θ) .  (3.1)  

The first term of this expansion, representing a cross-section along the reaction 

coordinate, is written as an inverted 6–12 Lennard-Jones potential where the zero of energy 

has been shifted to the saddle point.  

Vsaddle(R) = −
M R*

2Ω2

72
1− R*

R
⎛

⎝
⎜

⎞

⎠
⎟
6⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2

     (3.2) 

where Ω denotes the modulus of an imaginary frequency which, as will be seen shortly (in 

Eq. (3.10)), is not an observable but a zeroth-order quantity.  

The next two-body term describes the vibrational motion of the diatomic fragment.  

Since the present study aims at investigating decoupling among degrees of freedom, it seemed 

to us essential to take anharmonicity into account.  To do this in a simple way, a Simons-Parr-

Finlan potential is used.29  Furthermore, curvature of the reaction path is introduced by 

allowing the frequency and equilibrium distance of the diatomic fragment to depend on the 

reaction coordinate R.  Altogether,  

Vdiat r,R( ) = 1
2
µω(R)2 r − req R( )( )2

req R( )
r

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2

,     (3.3) 

with 

req(R) = r∞ + r* − r∞( ) R*
R

⎛

⎝
⎜

⎞

⎠
⎟
6

,       (3.4) 

ω(R) =ω∞ + ω* −ω∞( ) R*
R

⎛

⎝
⎜

⎞

⎠
⎟
6

,       (3.5) 

where r∞ and ω∞ denote the equilibrium distance and angular frequency of the diatomic 

fragment after complete separation, respectively.  The inverse sixth power dependence is in 

line with the assumption of an inverse Lennard-Jones potential for the reaction coordinate.   

 The potential that determines the angular motion, which is a hindered rotation with a 

strongly R-dependent barrier, is written as 

Vang θ,R( ) =V0
R*
R

⎛

⎝
⎜

⎞

⎠
⎟
6
sin2θ .       (3.6) 
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To derive the expression of the three-body interaction term, we adapt Murrell's 

procedure30 to a saddle point topography described in Jacobi coordinates.  As described in 

detail in Paper II,17 we write 

V3b (R, r,θ ) = P3b (R,r,θ )
R*
R

⎛

⎝
⎜

⎞

⎠
⎟
6
1− R*

R
⎛

⎝
⎜

⎞

⎠
⎟
6⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ 1−tanh

γ
2
r − req(R)( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟,   (3.7) 

with, in the case of a collinear TS, 

P3b(R, r,θ ) = βRR R− R*( )2 +βrr r − r*( )2 +βθθ θ2 +βRr (R − R*) (r − r*) .  (3.8) 

The second-order expansion of the whole potential energy surface about the saddle 

point is  

V R, r,θ( ) = − 1
2
ksaddle R− R*( )2 + 1

2
µω*

2 r − r*( )2 +V0θ2  

  +6µω*
2 r*−r∞

R*

⎛

⎝
⎜

⎞

⎠
⎟ R− R*( ) r − r*( )      (3.9) 

where  

ksaddle =MΩ2 −36µω*
2 r* − r∞

R*

⎛

⎝
⎜

⎞

⎠
⎟
2

      (3.10) 

is a necessarily positive quantity.  Comparison with Eq. (3.2) shows that the frequency Ω is 

not an observable but a zeroth-order quantity.  The actual imaginary frequency at the saddle 

point is strongly perturbed by the curvature of the reaction path.  

 

B. The zero initial acceleration condition 

 

In addition to the conventional TST requirement, PR* > 0, additional reactivity criteria 

must be introduced.    

The trajectory is reactive when the initial elongation δr satisfies Eq. (2.5), which 

becomes 

δr = µω*
2 r* − r∞( )( )

−1 pθ
2

6M R*
2 +V0δθ

2
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
.          (3.11) 

We note in passing that if the inter-fragment forces are assumed to decrease 

asymptotically as R–n (i.e., if the exponent 6 that appears in Eqs. (3.4), (3.5), and (3.6) is 

replaced by another integer denoted n), then Eq. (3.11) remains valid with the same 

modification.   
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Deriving the expression of pθ
2 in terms of PR*

2 and of pr
2 from the equation H = E and 

inserting it into Eq. (3.11) leads to an alternative expression of the appropriate value to be 

given to δr to generate a reactive trajectory:   

δr = µω*
2 r* − r∞( )( )

−1
V0δθ

2 +
I*

3µ R*
2 E −

PR*
2

2M
−
pr
2

2µ
−V0δθ

2
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
.   (3.12) 

 

C. The cubic coefficient 

 

The leading term of the cubic coefficient c3, whose expression for a general potential V 

is given by Eq. (2.6), now becomes, disregarding terms containing δθ and pθ 

c3 =
1
M

ksaddle
PR*
M

+ 6ω*
2 r∞ − r*

R*

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟pr

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟+...      (3.13) 

Since ksaddle is necessarily positive, a high value of the translational momentum PR* is 

seen, as expected, to invariably stimulate reactivity.  Furthermore, it is also found to increase 

the magnitude of higher odd-order coefficients.  

The initial value of the vibrational momentum, pr, also plays a role in reactivity.  As 

shown in Eqs. (2.6) and (3.13), energy flow into the vibrational momentum is beneficial 

provided that the sign of pr is properly chosen, i.e., in the present case, 

r∞ − r*( ) pr >0 .         (3.14) 

The initial vibrational momentum pr invariably appears in the expression of c3, c5, and 

c7 in the form of a product r∞ − r*( ) pr .  Therefore, a nonzero value of the vibrational 

momentum promotes reactivity only if the sign of pr is properly coordinated with the 

equilibrium distances of the diatomic fragment in the TS and at its asymptotic value.  

Inadequate coordination curbs it.  

To summarize, if the value of PR* is high enough (say close to or higher than energy 

equipartition), then Eq. (3.11) provides in most cases a reliable way to select reactive 

trajectories.  Together with the basic condition PR* > 0, they provide the keys for 

understanding reactivity.  Numerical exploratory calculations show that recrossing is then not 

an acute problem.  The system is catapulted into the dissociation valley.   

However, this is no longer the case when the value of the translational momentum is too 

low to provide the necessary driving force.  Reactivity criteria valid for low values of PR* are 
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then much more subtle and are one of the main issues discussed in the present paper. 

Essentially, reactivity is then determined by the sign of pr because the product r∞ − r*( ) pr  

must be positive, as shown in Eq. (3.14). 

Two points must be clarified.  First, what happens when Eq. (3.11) is not exactly 

fulfilled?  What is the degree of tolerance? Second, a concrete appraisal of the role played by 

the sign and magnitude of pr is called for.    

 
 
IV. REACTIVITY LOCI IN PHASE SPACE FOR COLLINEAR TSs 
 

 

To give a numerical answer to these questions, it was therefore decided to carry out a 

numerical study of reactivity at low values of PR*.    

The chosen reaction is HCO → H + CO, whose ab initio potential energy surface has 

been determined by Song et al.31  The vibrational frequencies of the TS have been calculated 

by Cho et al.32  However, two modifications were introduced to better suit the purposes of the 

present paper.  First, the TS has been made collinear.  Second, since the vibrational 

momentum pr invariably appears in analytic expressions in the form of a product r∞ − r*( ) pr , 

it was decided to arbitrarily increase its prefactor in order to make its role more visible.  Thus, 

r* was assigned a value of 1.25 Å instead of the ab initio value of 1.153 Å.  Since r* is larger 

than r∞ (which is equal to 1.128 Å), reactivity is expected to be stimulated by negative values 

of the initial vibrational momentum pr.   

In all of the graphics to be presented shortly, the total internal energy E has been fixed at 

a value of 1kcal/mol above the saddle point.  

The values of the coupling parameters βij that appear in Eq. (3.8) are determined from a 

comparison between perturbed and unperturbed surfaces.   To test issues related to 

separability, we want parameters that generate conspicuous distortions.  The adopted surfaces 

are strongly but not overly distorted by the three-body interaction term.     

After several exploratory calculations, it was decided to study in detail the case where 

the initial translational kinetic energy PR*
2 2M  is equal to one-tenth of that corresponding to 

energy equipartition, which leads to a value of the translational momentum PR* equal to 0.335 

a.u. (to be compared with values of 1.059 a.u. reached at equipartition, or of 2.369 a.u. when 

all of the internal energy flows into the translational motion).  At this low value, reactivity is 
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essentially determined by the magnitude of the initial vibrational momentum, pr.  As expected 

from Eq. (3.14), all trajectories corresponding to a value of pr whose modulus equals that 

corresponding to energy equipartition are found to be nicely nonrecrossing if pr is negative, 

whereas none of them is reactive if pr is strongly positive.  This is easily understood:  If the 

initial position of the representative point is larger than that of the final state, then the 

appropriate impulse should be given so as to bring them nearer.   

A numerical illustration of the subspace of initial conditions that generate reactive 

trajectories can be obtained by considering active phase space graphics, constructed as 

follows.  There are six degrees of freedom in our problem.  However, the initial value of R is 

fixed at R*, as it should, and the two initial momenta PR* and pr are essential parameters of the 

problem that determine the shape of the average equations of motion < R(t) > and < r(t) > and 

which therefore are fixed at specific values.  With these prescriptions, the number of initial 

conditions to be specified is reduced to three.   

This makes it possible to depict dynamics very descriptively via 3D-graphics, in a three-

dimensional subspace (δθ, pθ, δr) enclosed in a parallelepiped box.  The apices are fixed at 

the maximum possible value for these three degrees of freedom, i.e.,  

± 2 I( )1/2 E−PR*
2 2M( )

1/2
for  pθ, ±ArcSin V0

−1/2 E−PR*
2 2M( )

1/2⎡

⎣
⎢

⎤

⎦
⎥  for δθ, and 

± 2 µ( )1/2 ω*
−1 E−PR*

2 2M( )
1/2

  for δr.  

To determine the influence of the initial vibrational energy, it was then decided to carry 

out a close examination of the neutral, unbiased case in a first set of calculations, i.e., to start 

with the case pr  = 0.  The study of this case is a reference because if pr is given a positive 

value, then fewer trajectories are found to be reactive, whereas if pr is chosen to be 

substantially negative, then all trajectories are observed to react. The loci of initial conditions 

that effectively generate reactive trajectories are given in Fig. 1 as a sequence of cuts at 

specific values of δr.   

Particular attention is paid to the subset of central reactive trajectories, i.e., the subset 

whose initial conditions exactly fulfill Eq. (3.11).  Since pr  = 0, they are all expected to be 

reactive, as discussed in Sec.III.  Their locus forms a full ellipse, represented in red in Fig.1.   

The question that now arises is whether trajectories whose initial value of δr deviates 

somewhat from the prescription given by Eq. (3.11) will also be reactive.  The answer is 
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positive.  Unfortunately, the degree of tolerance for these adjacent trajectories (which are 

represented as dashed green lines in Fig. 1) cannot be predicted a priori.   Furthermore, it is 

also observed that initial conditions that substantially depart from Eq. (3.11) may also be 

reactive, but at the cost of a triple recrossing of the conventional dividing surface defined by 

the equation R = R*.  The loci of this third category are represented as dotted purple segments 

in Fig. 1 and they delimitate the extreme initial conditions leading to reactivity.  All other 

points of the subspace generate nonreactive trajectories, either because starting from the 

reactant part of the configuration space they recross at a later (positive) time, or because they 

describe an atom-diatom collision that fails to recombine.  

Now, to illustrate the influence of the initial value of the translational momentum pr on 

reactivity, similar calculations were carried out at different nonzero values of pr. Figure 2 

shows the results for the value of pr = +1, to be compared with its maximum value when PR* 

is equal to one tenth of the value corresponding to energy equipartition, which is 6.25 a.u.  

The reactive part of phase space is clearly substantially reduced.  When pr = +2, no reactive 

trajectory subsists and when pr = –2, all of them are found to be reactive.   

Comparison between Fig. 1 and Fig. 2 shows that the locus of reactive trajectories in 

phase space is highly specific.  Altogether, only a fraction of all possible initial conditions 

generate truly reactive trajectories. This result had already been established by Waalkens, 

Burbanks, and Wiggins,13, 33 who were able to calculate the "reactive volume", i.e., the 

volume of points in an energy surface corresponding to reactive trajectories.  They concluded 

that reactive trajectories do not at all explore the energy surface ergodically and issued a 

warning against the use of the ergodicity assumption in statistical theories of reactivity.   

 

 
V. SEPARATION OF VARIABLES IN CENTRAL REACTIVE TRAJECTORIES 
 

We now wish to analyze in detail the behavior of the central reactive trajectories, i.e., of 

those whose initial value of δr satisfies Eq. (3.11), thereby reducing the magnitude of the 

quadratic coefficient c2 to zero.   

Consider again the first case studied in the previous section, namely that where PR* is 

chosen to be equal to one-tenth of the value corresponding to energy equipartition, leading to 

a value of the translational momentum PR* equal to 0.335 a.u., with pr = 0, and consider the 

trajectories that fulfill Eq. (3.11).  A representative set of ten of these central reactive 
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trajectories was selected at regular intervals around the red central ellipse represented in Fig. 1 

and Hamilton's equations of motion were numerically integrated.   The results are shown in 

Fig. 3 and confirm the expectations derived in Sec. II from the study of a general 

Hamiltonian.  The ten representative trajectories are remarkably similar for the translational 

and vibrational spatial coordinates, but form a criss-cross of lines for the angular motion.   

However, evidence for decoupling becomes spectacular when the time variable is 

eliminated to form a parametric plot representing the function r(R).  As shown in Fig. 4, the 

ten curves represented in red color are now undistinguishable on the scale of the graph.  The 

explanation is clear: the slight differences between the ten trajectories observed in Fig. 3 are 

due to the fact that they travel at different speeds.  However, they follow extremely close 

paths in the two-dimensional (R, r) configuration space, and the grouping persists during the 

entire reactive process, up to complete separation of fragments.  By contrast, the angular 

motion is highly specific for each one.  This establishes decoupling between angular and 

spatial coordinates.   

Similar graphs were calculated for other values of  PR* and pr.  They confirm the 

grouping of trajectories and hence the possibility to invoke separability of the Hamiltonian.  

However, although still present, the grouping is found to be less perfect when pr ≠ 0.  

What about adjacent trajectories?  Those that are still reactive deviate only slightly from 

the perfect grouping of the central reactive ones, as shown in Fig. 4, where two of them are 

represented in broken lines.   

Altogether, we end up with an additional illustration of the concept of reactive cylinder 

(or conduit) in phase space that reactive trajectories must follow.  Such conduits have been 

calculated by DeLeon,26 Fair et al.,27 and also, in normal form coordinates, by Wiggins,13 

Komatsuzaki,28 and their co-workers.    

 

 

VI. AN EFFECTIVE TWO-DIMENSIONAL HAMILTONIAN FOR SYMMETRICAL 
TSs  
 

A. Definition   

 

 The decoupling properties established in the previous section confirm the analysis 

carried out in Sec. II and suggest that it should be possible to calculate the laws for the 

average motion along the R and r degrees of freedom by applying Hamilton's equations of 
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motion to a 2D Hamiltonian, thereby reducing the dimensionality of the problem.  The choice 

of the latter is not immediately obvious, the main problem being the appropriate expression of 

the three-body term.  If the choice is appropriate, it should generate equations of motion that 

coincide with those derived in Secs. III to V for the average of the central reactive trajectories.    

In a heuristic approach, suggested by the fact that, as shown in Fig. 4, the actual reactive 

trajectories never depart very far from the reaction path and meander about it, let us define a 

two-dimensional Hamiltonian   

 H2D R,PR, r, pr( ) =
PR
2

2M
+Vsaddle R( )+ Pr

2

2µ
+Vdiat r,R( )+V3b R, req R( ),θ*( ) .  (6.1) 

 We follow the same steps as in Secs. IIC and IID and compare the coefficients from  

<c1> to <c7> and from <a1> to <a7>, with those obtained by expanding the equations of 

motion in a series of nested Poisson brackets (Eqs. (2.2) and (2.3)), for the 3D and 2D 

Hamiltonians.  As shown in the next paragraphs, it turns out that the leading terms of each 

coefficient are exactly the same in both cases.   

   

B. The translational motion   
 

First, go back to the 3D Hamiltonian defined in Eqs. (3.1) to (3.8) and used in our 

numerical calculations.  The first term is trivial: c1 = PR*/M.  Choosing a value of δr that 

fulfills Eq. (3.11) leads to c2 = 0.  

As already said, the observed decoupling implies that the equations of motion for the R 

and r degrees of freedom are independent of θ.   This means that it is perfectly appropriate to 

concentrate on a particular solution characterized by particular initial values of δθ or of pθ 

that simplify the calculations as much as possible.  It is immediately apparent that this will be 

the case if we choose either of them to be equal to zero.  An equivalent procedure consists of 

calculating an average trajectory.  Then, performing the average over a set of initial 

conditions including positive and negative values of δθ and pθ eliminates many terms.  Both 

procedures lead to the same result.  For odd-order coefficients, one finds, after getting rid of 

small terms, 

c3 =
1
M

ksaddle
PR*
M

+ 6ω*
2 r∞ − r*

R*

⎛

⎝
⎜

⎞

⎠
⎟ pr

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ,    (6.2) 
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c5 =
ω*
4

M
PR*

Ω
ω*

⎛

⎝
⎜

⎞

⎠
⎟
4
+1296 µ

M
⎛

⎝
⎜

⎞

⎠
⎟
2 r∞ − r*

R*

⎛

⎝
⎜

⎞

⎠
⎟
4
+36 µ

M
r∞ − r*
R*

⎛

⎝
⎜

⎞

⎠
⎟
2
1− 2 Ω

ω*

⎛

⎝
⎜

⎞

⎠
⎟
2⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜⎜

 

  +6 pr
r* − r∞
R*

⎛

⎝
⎜

⎞

⎠
⎟ 1+36

µ
M

r* − r∞
R*

⎛

⎝
⎜

⎞

⎠
⎟
2
−

Ω
ω*

⎛

⎝
⎜

⎞

⎠
⎟
2⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎞

⎠

⎟
⎟ .  (6.3) 

The expression of the coefficients < c7 > is too lengthy to be reported here.  

We then carried out the same expansion for H2D  (Eq. (6.1)).  For a set of prescribed 

values of PR* and pr, the initial condition that remains to be specified is δr.  It turns out that 

the choice δr = 0 generates odd-order coefficients, c3, c5, c7, that exactly agree with Eqs. (6.2) 

and (6.3), and also with that valid for < c7 > , as expected from the analysis reported in Sec. 

IIC.  Furthermore, this choice is observed to lead also to a negligible magnitude of the first 

few even-order coefficients c2 and c4.   

 

C. The vibrational motion  
 

Now, consider the vibrational motion.  Applying Eq. (2.2) to coordinate r leads to an 

expansion that can be written as  

r(t) = r* + a1 t + a2
t2

2!

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟+ a3

t3

3!

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟+...      (6.4)  

with a1 = Pr /µ.  Here again, the 3D Hamiltonian defined in Eqs. (3.1) to (3.8) and its two-

dimensional approximation H2D are observed to generate the same coefficients < a3 >, < a5 >, 

and < a7 > and to lead to a negligible value for < a2 > and < a4 >.  One gets for the leading 

terms 

a3 = −ω*
2 pr

µ
+6

PR*
M

r*−r∞
R*

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ ,     (6.5) 

a5 =ω*
4 1+36 µ

M
r* − r∞
R*

⎛

⎝
⎜

⎞

⎠
⎟
2⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

pr
µ

 

  

+ 6ω2 r* − r∞
R*

⎛

⎝
⎜

⎞

⎠
⎟ 36

µω*
2

M
r* − r∞
R*

⎛

⎝
⎜

⎞

⎠
⎟
2
+ ω*

2 −Ω2( )
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

PR*
M

.   (6.6) 
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D. Numerical calculations 

 

High-order coefficients (< c9 >, < a9 >, and higher) cannot be reliably calculated 

analytically by this procedure because it is no longer possible to identify a main term and to 

neglect the remainder.  The number of small terms becomes extremely large and it would be 

insecure to simply neglect them.  Furthermore, those that should have been negligible because 

of the presence of several heavy nuclear masses in their denominators are now weighted by a 

huge numerical prefactor.  However, the expansion can be carried out numerically (up to the 

eleventh order).   

The reliability of the 2D Hamiltonian formulated in Eq. (6.1) has been checked in the 

case PR* = 0.335 a.u., pr = 0, and δr chosen to generate reactive trajectories.  The ten central 

reactive trajectories studied in detail in Sec. III have been calculated by numerical integration 

of Hamilton's equations of motion, first by using the correct 3D Hamiltonian with δr 

satisfying Eq. (3.11) (exactly as in Fig. 4) and then compared with the results derived from 

the use of its 2D approximation (Eq. 6.1) with δr = 0.  A third calculation was carried out: 

The equations of motion were derived using analytical formulas up to the seventh-order terms 

(Eqs. (6.2) to (6.6)) followed by a numerical calculation of Poisson brackets for <c9> and 

<c11>.  The comparison is done in Fig. 5.  The green dashed line (resulting from the numerical 

integration of the equations of motion derived from the 2D Hamiltonian) and the red solid line 

(same calculations for the 3D Hamiltonian) are practically indiscernible during the entire 

reactive process, up to complete separation.  The partially analytical calculation performs 

reasonably well.      

 

 

VII. ADIABATICITY WITHIN THE REACTION PATH HAMILTONIAN MODEL 

 

Various approximations have been proposed to reduce the dimensionality of a 

dynamical model.  The physical idea underlying the vibrational adiabatic approximation is 

usually thought to be based on a separation of time scales.  This cannot be the case here.  

Inspection of Fig. 3 shows that it makes little sense to try to label the three degrees of freedom 

as fast or slow: The relative velocities change considerably during the reaction process and 

the reaction is long over before the fragment can rotate by much less than 45°.  In addition, 
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there are many indications that show that the vibrationally adiabatic approximation is valid 

even when the motional time scales are not appropriate.34, 35   

In the case of an atom-diatom interaction, a number of observations can be accounted 

for if a specific Hamiltonian is replaced by the reaction path Hamiltonian of Miller et al.36, 37 

coupled with an adiabatic treatment of the bending motion.34, 38  This model is quite 

compatible with the result, demonstrated in Sec. II C, that when the TS is symmetrical, the 

equations of motion of the average reactive trajectory can be derived from a reduced-

dimensionality effective Hamiltonian, whatever the specificities of the actual three-

dimensional potential energy surface.  

Vibrational nonadiabaticity is known to be directly related to the curvature of the 

reaction path, which induces Coriolis coupling resulting from the fact that the normal mode 

directions wind about the reaction path.36 – 39  As is well known, the Coriolis force deviates a 

trajectory either to the right or to the left, depending on the initial conditions.  Therefore, in a 

symmetrical system, the average trajectory escapes this trend and moves in a straight line.  

Miller37 has calculated the microcanonical flux through a dividing surface perpendicular to 

the reaction path and observes that the coupling functions no longer appear in the average 

flux.   

What is thus the basis of an adiabatic separation leading to dimensionality reduction?  It 

should be noted that the symmetry of the saddle point is maintained at all points along the 

reaction path leading from reactants through the saddle point to products.40-42  As pointed out 

by Miller42, selection rules reduce to zero Coriolis couplings between modes that belong to 

different irreducible representations.  This is precisely the case with collinear TSs, where the 

bending mode decouples from the other two.  Therefore, the average reactive trajectory is 

unaffected by Coriolis forces and the adiabatic separation holds, regardless of time scales.  In 

short, the success of the adiabatic approximation in the reaction path Hamiltonian model is 

due to the symmetry of the transition state, not to a separation of time scales. 

 
 
VIII. DISCUSSION 
 

A. The strongly coordinated motion 

 

The observed nearly perfect grouping of reactive trajectories, with negligible dispersion 

about the average trajectory is quite striking.  A detailed analytical explanation for it is not 

easily found.    
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We put forward a model where reactive trajectories are characterized by a very strong 

and specific coupling between the translational and vibrational degrees of freedom, with the 

bending mode treated adiabatically.  The term 'specific coupling' means that, as a result of the 

strong curvature of the reaction path, very precise motion coordination between the R and r 

degrees of freedom is required to usher the system into the reaction valley.   

A similar description emerges from the numerous classical trajectory calculations 

carried out by Hutchison et al.27, 43  These authors present a picture of very specific dynamics 

taking place in a subspace of reduced dimensionality constrained by adiabatic separation and 

come to the conclusion that reactivity requires "a careful phasing of a non-reactive mode with 

the reactive mode...".  Here again, the concept of reactive cylinder in phase space that reactive 

trajectories must follow is recovered.      

 
B. The Hamilton-Jacobi theory   

 

The astonishing collimation of the reactive paths in the two-dimensional (R, r) 

configuration space is not a mere curiosity.  The Hamilton-Jacobi formalism tells us that we 

come here to a fundamental point.  This theory holds that, if the Hamiltonian is time-

independent, at any point r of the configuration space, the momentum P of a trajectory is 

given by the gradient of the so-called characteristic function W (defined as W = pi
i
∑∫ dqi ).

25  

Thus, the equation W = constant represents a set of surfaces in configuration space and the 

equation  

 P(r) = grad(W(r))        (8.1) 

means that the flow of reactive trajectories is orthogonal to the surfaces of constant action.  It 

follows that if the paths of the subset of reactive trajectories are identical, then the function W 

is locally planar.   

The above picture of a family of surfaces of constant action pierced by a family of 

perpendicular lines that are the particle trajectories makes it possible to describe mechanical 

motions in terms similar to those used in optics, where waves propagate with a wave vector 

locally perpendicular to the wave front.44, 45  However, the analogy extends only to the paths 

of mechanical particles and does not include the manner in which the motion occurs in time.  

Therefore, time has to be eliminated from relevant trajectory calculations and replaced by R as 

the appropriate independent variable.   This is done in Fig. 6, which shows, for each of the ten 

central reactive trajectories represented in Figs. 3, 4, and 5, the three momenta PR, Pr, and Pθ, 
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plotted as a function of R.  The decoupling is obvious.  Clearly, the ten reactive trajectories 

have extremely close (although not strictly identical) translational momenta PR.  The same is 

true for the vibrational momenta Pr.  By contrast, each initial value of the angular momentum 

initiates a specific Pθ (R) trajectory.  In other words, all of the central reactive trajectories are 

characterized by nearly identical projections of the momentum vector P on the (R, r) plane 

during the entire evolution.   

The characteristic function W depends on the spatial variables (i.e., in the present case, 

the three coordinates R, r, and θ) and also on a set of constants related to the initial conditions.  

The interpretation to be given the grouping observed in  Fig. 6 is that when these initial 

conditions are chosen to generate reactive trajectories, the characteristic function is locally 

planar over that part of configuration space corresponding to the subspace that is covered by 

central reactive trajectories.  As one considers adjacent trajectories, the different curves PR(R) 

and Pr(R) exhibit dispersion (as can be seen in Fig. 4), which means that deviations from 

planarity become conspicuous.   

Since, despite the nonseparability of the characteristic function, attention can be focused 

on a 2D system confined to the (R, r) space, and since reactive trajectories starting at two 

points separated by an infinitesimal distance obviously remain practically undistinguishable, 

it can be said that the Liapunov exponent of reactive trajectories is zero.  The collimation of 

the trajectories observed by Berry and his co-workers in the isomerization of argon 

complexes9-12 provides possibly an additional example.  

Note finally that this analysis is based on numerical evidence.  One can only note the 

tightness of the grouping without being able to identify its deep-seated reasons.   

 

 

IX. HIGHER ENERGY   
 

We now consider the effect of an increase in the total energy E.  At high internal 

energies, the locus of central reactive trajectories no longer forms a complete ellipse, but 

splits into a pair of reactive segments, as shown in Fig. 7, which deals with the case E = 10 

kcal/mol.  The region in phase space that generates reactive trajectory decreases as energy 

increases, as shown by comparison between Figs. 1 and 7.  So does the transmission 

coefficient, in conformity with an argument already put forward by Hirschfelder and Wigner2.   

As shown in Fig. 8, the grouping of the central reactive trajectories persists, although a 

slight dispersion is now conspicuous.  The two-dimensional approximation is quite 
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satisfactory, up to complete separation.   Separability and dimensionality reduction thus 

remain valid at higher energies. 

 
 
X. BENT TRANSITION STATES 

 

To check whether decoupling is an inherent characteristic of reactive trajectories and 

not the result of the fact that considerations have been restricted to collinear TSs, the case of a 

T-shaped TS has been briefly studied.   

To achieve C2v symmetry, we consider the fictitious reaction HN2 → H + N2, with θ* = 

π/2, making otherwise as few adjustments as possible to the previous model.  The total 

internal energy E has again been fixed at a value of 1kcal/mol above the saddle point.  

As shown in Fig. 9, the locus of central reactive trajectories no longer forms a full 

circle, but takes a more complicated shape.  However, the features demonstrating dynamic 

regularity subsist.  As seen in Fig. 10, the grouping of the central reactive trajectories persists, 

although a slight dispersion is now visible.  The two-dimensional Hamiltonian H2D (dashed 

line) performs remarkably well during the entire lifetime of the reaction. 

 
 
XI. CONCLUDING REMARKS 

 

The most important finding of this work is the close connection between reactivity, 

separability, and dimensionality reduction, which has been well established for symmetrical 

TSs.  Simply put, separability and dynamic regularity are specific characteristics of reactive 

trajectories.   

The present procedure (which is limited to a triatomic system only) is based on the 

specificities of central reactive trajectories, which have been shown to display intrinsic 

characteristics such as grouping (which might also be termed collimation9-12 and which 

implies zero Liapunov coefficients), dimensionality reduction, ray property, local planarity of 

the Hamilton characteristic function, and which persist for the entire duration of the reaction, 

as the figures illustrate.    

However, the picture that emerges from the present work differs from that established 

by Wiggins, Berry, Komatsuzaki, and their co-workers.12-15, 28  In the approach of these 

authors, the coordinate transformation leads to a separation into n decoupled systems that 

fully satisfies chemists: an unstable degree of freedom and n–1 bath oscillators.  This result 

establishes a framework of fundamental importance.  However, it may lose its appeal when 
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transformed back into the original coordinate system.  Here, we end up with an unexpected 

result involving strong coordination between two degrees of freedom, whereas the third one is 

separable because it belongs to a different irreducible representation.   

In the search for reactivity criteria, what we really end up with is a set of propensities, 

unfortunately insufficient to exactly delimitate the active part of phase space.  The main 

additional criterion introduced in this study is the zero initial acceleration condition c2 = 0, 

which is necessary to counteract the curvature of the reaction path, and which finds its 

analytical expression in Eqs. (2.5), (3.11), and (3.12).  It means that a trajectory will be 

reactive only if it properly makes the initial turn in configuration space imposed by the 

curvature of the reaction path.  However, surprisingly effective as it is, this new reactivity 

criterion is not sufficient: the condition c3 > 0, leading to Eqs. (2.7) or (3.14), also plays a 

role, at least at low values of PR*.  Nor is it necessary: sufficiently close adjacent initial 

conditions also generate reactive trajectories.  Nevertheless, these equations identify what can 

be termed the hard core of reactive trajectories.  

Our analysis has been carried out under the assumption of a symmetrical TS.  

Unsymmetrical ones present a problem because of the difficulty of finding a set of four 

equivalent initial positions having the same energy.  Considering microcanonical averages 

with a finite energy width might solve the problem, but we leave this for possible future work.     

What is particularly surprising is that, although Eqs. (2.5) or (3.11) plus (2.7) or (3.14) 

are highly local initial conditions which in principle can only provide a good start, they are 

observed to generate a tightly-packed bundle that maintains its extraordinarily coherent 

motion in the two-dimensional (R, r) configuration space, during the entire reactive process, 

up to complete separation of fragments, as shown in Figs. 3, 4, and 6.  An in-depth 

explanation is clearly called for.   

Since it has been demonstrated in Sec. II that the dimensionality reduction is not 

directly linked to characteristics of the potential energy surface, its effective success, 

demonstrated in Figs. 5, 8, and 10, shows that the basic reasons can be found in symmetry 

considerations (which reduce to zero the Coriolis couplings for the average reactive 

trajectory), rather than in, e.g., the smallness of mode-mode couplings.  Neither should it be 

sought in a separation of time scales.  

Finally, an essential point that emerges is the specific behavior of reactive trajectories 

which, as already noted by Wiggins and co-workers,13, 25 do not behave ergodically.  Only a 

small fraction of possible initial conditions generate reactive trajectories and their localization 

in phase space is not at all random, as shown by Figs. 1, 2, 7, and 9.  This raises serious 
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questions about the validity of statistical methods since decoupling prevents rapid and 

extensive energy redistribution between modes.  However, it is difficult to be more specific at 

this juncture, because any discussion of the assumption of ergodicity on which TST is based 

must beforehand specify the way (thermal or specific) energy is delivered to the molecule.46-49  

This issue has not been addressed here.   
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FIG. 1.  Active phase space graphic for a low value of PR* (i.e., PR*

2 2M = E 50 ) (with E = 

1kcal/mol) and for pr = 0.  Atomic units are used throughout.  Red solid line: locus of initial 

conditions satisfying Eq. (3.11) and generating central reactive trajectories.  Dashed green 

lines: loci of initial conditions generating adjacent reactive trajectories.  Dotted purple lines: 

loci generating triply recrossing trajectories.  
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FIG. 2.  Active phase space graphic for a low value of PR* (i.e., PR*
2 2M = E 50 ) (with E = 

1kcal/mol) and for pr = +1, showing the adverse influence on reactivity due to a positive value 

of pr.  Atomic units are used throughout.  Red solid line: locus of initial conditions satisfying 

Eq. (3.11) and generating central reactive trajectories.  Dashed green lines: loci of initial 

conditions generating adjacent reactive trajectories.  Dotted purple lines: loci generating triply 

recrossing trajectories.  
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FIG.3. Graphs showing ten individual central reactive trajectories, calculated for a low value 

of PR* (i.e., PR*
2 2M = E 50 ) (with E = 1kcal/mol) and for pr = 0.  Atomic units are used 

throughout.   
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FIG. 4. Reactive trajectories projected on the contour diagram of the potential energy surface 

of a collinear TS when PR*
2 2M = E 50  (with E = 1 kcal/mol) and pr = 0.  Atomic units are 

used throughout.  The red solid line results from the superposition of the ten central reactive 

trajectories depicted in Fig. 3.  The two dashed lines represent two typical adjacent 

trajectories arbitrarily chosen on the green loci of Fig. 1.   
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FIG.5. Reactive trajectories projected on the contour diagram of the potential energy surface 

of a collinear TS when PR*
2 2M = E 50  (with E = 1 kcal/mol) and pr = 0.  Atomic units are 

used throughout.  The red solid line results from the superposition of the ten central reactive 

trajectories depicted in Fig. 3.  The green dashed line, which results from a similar calculation 

carried out with the 2D Hamiltonian (Eq. (6.1)), is seen to perform remarkably well up to 

complete separation of the fragments.  The blue dashed line results from an analytical (up to 

the seventh order), then numerical (up to the eleventh order) expansion in Poisson brackets of 

the equations of motion (Eqs. (2.9) and (2.10)).   
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FIG. 6. Graphs showing the evolution of the three momenta of a collinear TS as a function of 

the translational coordinate R, for ten individual central reactive trajectories, calculated at a 

low value of PR* (i.e., PR*
2 2M = E 50 ), with E = 1kcal/mol, and with pr = 0.  Atomic units 

are used throughout.   
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FIG. 7.  The high-energy case (E = 10 kcal/mol): Active phase space graphic for a collinear 

TS studied at a low value of PR* (i.e., PR*
2 2M = E 50 ) and for pr = 0. Atomic units are used 

throughout.  Red solid line: locus of initial conditions satisfying Eq. (3.11) and generating 

central reactive trajectories.  Dashed green lines: loci of initial conditions generating adjacent 

reactive trajectories.  
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FIG. 8. The high-energy case (E = 10 kcal/mol): Reactive trajectories projected on the contour 

diagram of the potential energy surface of a collinear TS when PR*
2 2M = E 50 and pr = 0.  

Atomic units are used throughout.  Nine central reactive trajectories are represented in 

different colors, to show a slight, but conspicuous, dispersion. The green dashed line, which 

results from a similar calculation carried out with the 2D Hamiltonian (Eq. (6.1)), provides a 

satisfactory approximation. 
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FIG. 9.  The T-shaped case: Active phase space graphic for a C2v TS studied at a low value of 

PR* (i.e., PR*
2 2M = E 50 ) (with E = 1 kcal/mol) and for pr = 0. Atomic units are used 

throughout.  Red solid line: locus of initial conditions satisfying Eq. (3.11) and generating 

central reactive trajectories.  Dashed green lines: loci of initial conditions generating adjacent 

reactive trajectories.  Dotted purple lines: loci generating triply recrossing trajectories.  

 

 

 

 

 

 

 

 

 



 38 

 
 
 
 
 
FIG. 10: Reactive trajectories projected on the contour diagram of the potential energy surface 

of a T-shaped TS when PR*
2 2M = E 50  (with E = 1 kcal/mol) and pr = 0. Atomic units are 

used throughout.  The solid lines result from the superposition of five central reactive 

trajectories.  The green dashed line, which results from a similar calculation carried out with 

the 2D Hamiltonian (Eq. (6.1)), performs remarkably well up to complete separation of the 

fragments.  
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