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Under weak and reasonable assumptions, mainly that data are exchangeable under the null hypothesis, permu-
tation tests can provide exact control of false positives and allow the use of various non-standard statistics. There
are, however, various common examples in which global exchangeability can be violated, including paired tests,
tests that involve repeated measurements, tests in which subjects are relatives (members of pedigrees) — any
dataset with known dependence among observations. In these cases, some permutations, if performed, would
create data that would not possess the original dependence structure, and thus, should not be used to construct
the reference (null) distribution. To allow permutation inference in such cases, we test the null hypothesis using
only a subset of all otherwise possible permutations, i.e., using only the rearrangements of the data that respect
exchangeability, thus retaining the original joint distribution unaltered. In a previous study, we defined ex-
changeability for blocks of data, as opposed to each datum individually, then allowing permutations to happen
within block, or the blocks as a whole to be permuted. Here we extend that notion to allow blocks to be nested,
in a hierarchical, multi-level definition. We do not explicitly model the degree of dependence between observa-
tions, only the lack of independence; the dependence is implicitly accounted for by the hierarchy and by the per-
mutation scheme. The strategy is compatible with heteroscedasticity and variance groups, and can be used with
permutations, sign flippings, or both combined. We evaluate the method for various dependence structures,
apply it to real data from the Human Connectome Project (HCP) as an example application, show that false pos-
itives can be avoided in such cases, and provide a software implementation of the proposed approach.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Introduction

In the context of hypothesis testing using the general linear model
(GLM) (Scheffé, 1959; Searle, 1971), permutation tests can provide
exact or approximately exact control of false positives, and allow the
use of various non-standard statistics, all under weak and reasonable
assumptions, mainly that the data are exchangeable under the null hy-
pothesis, that is, that the joint distribution of the error terms remains
unaltered after permutation. Permutation tests that compare, for in-
stance, groups of subjects, are of great value for neuroimaging
(Holmes et al., 1996; Nichols and Holmes, 2002), and in Winkler et al.
(2014), extensions were presented to more broadly allow tests in the
form of a GLM, and also to account for certain types of well structured
non-independence between observations, which ordinarily would pre-
clude the use of permutation methods. This was accomplished by
redefining the basic exchangeable unit from each individual datum to
blocks of data, i.e., rather than asserting exchangeability across all obser-
vations of a given experiment, blocks of exchangeable units are defined;
).

. This is an open access article under
these exchangeability blocks (EBs) can be rearranged as a whole (whole-
block exchangeability), or the observations within block can be shuffled
among themselves (within-block exchangeability), using either permu-
tations, sign flippings, or permutations combined with sign flippings.

In the same work, the G-statistic, a generalisation over various com-
monly used statistics, including the F-statistic, was proposed.G is robust
to known heteroscedasticity (i.e., the situation in which the variances
are known to be not equal across all observations, which can be then
classified into variance groups) and can be used with the GLM, ensuring
that pivotality1 is preserved, a crucial requisite for exact control over
familywise error rate (FWER) using the distribution of the most extreme
statistic (Westfall and Young, 1993), as needed in many neuroimaging
studies. Indeed, the use of EBs allows for variances to be heterogeneous,
provided that the groups of observations sharing the same variance
(i.e., variance groups, VGs) (Woolrich et al., 2004) are compatible with
the EBs; specifically, for within-block exchangeability the VGs must coin-
cide with the blocks, and for whole-block exchangeability they must
include one ormore observations from each block in a consistent order.
1 A pivotal statistic has a sampling distribution that does not depend on unknown
parameters.
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This arrangement, using a statistic that is robust to heteroscedasticity,
the use of variance groups, and the imposition of restrictions on ex-
changeability through the use of EBs, allows inference on various designs
that, otherwise, would be much more difficult to do non-parametrically.
These designs include paired tests, longitudinal designs, and other com-
mon tests that involve repeated measurements. However, certain study
designs, despite exhibiting well-structured dependence between obser-
vations, still cannot be accommodated in the above framework. This
occurs when the overall covariance structure is known, but its exact
magnitude is not. An example occurs when multiple measurements
per subject are performed in more than one session, with more than
one measurement per session: the measurements within session may
be exchangeable, but not across sessions. Another example is for studies
using siblings, such as designs using discordant sib-pairs (in which only
one sibling is affected by a given disorder), or using twins: permutations
that disrupt the constitution of any sibship cannot be performed, as this
would violate exchangeability.

Studies such as these are relatively common, notably those that in-
volve siblings. However, whereas in classical twin designs the central
objective is to quantify the fraction of the variation in a measurement
(trait) that can be explained by the familial relationship between sub-
jects after potential confounds have been taken into account, a quantity
known as heritability, here the concern is with a general linear model,
and the objective is to test the influence of explanatory variables
on the observed data. In other words, the interest lies on the rela-
tionship between the covariates and the main trait, while the non-
independence between observations, which is a feature of interest in a
heritability study, is here a form of nuisance that imposes restrictions
on exchangeability for permutation inference for the GLM.

Rather than inadvertently breaking these restrictions, here we pro-
pose to test the null hypothesis using a subset of all otherwise possible
permutations, only allowing the rearrangements that respect exchange-
ability, thus retaining original joint distribution unaltered.2 As in our
previous work, we treat observations or entire blocks of data as weakly
exchangeable, but here we further extend the definition of EBs to allow
more complex designs to be addressed. This is accomplished through
the use of multi-level exchangeability blocks, in which levels consist of
nested blocks; for each such block the state of within- or whole-block
exchangeability can be specified. The blocks are defined hierarchically,
based on information about the dependencewithin data, but not requir-
ing themodelling of the actual dependency. Even though the possibility
of using nested blockswas anticipated inWinkler et al. (2014) (“Whole-
block andwithin-block can bemixedwith each other in various levels of
increasing complexity”, page 386), nothing further was studied or pre-
sented at the time. Here we provide a comprehensive description of
the approach, investigate its performance, its power, and present an ap-
plied example using the data structure of the ongoing Human
Connectome Project (HCP). In the Appendix A, we present an implemen-
tation strategy.

Theory

Terminology

When contrasting the method described in this article with simple
data rearrangement, various terms could be adopted: single-level vs.
multi-level block shuffling, emphasising the levels of relationship be-
tween observations; unrestricted vs. restricted, emphasising the imposi-
tion of restrictions on how the data are allowed to be rearranged at each
shuffling; free vs. tree shuffling, emphasising the tree-like structure of
the relationships between observations that allow shuffling. All these
terms have equivalent meaning in the context of this article, and are
2 Exchangeability with respect to a subset of all possible permutations is termed weak
exchangeability (Good, 2005). For conciseness, we will use the solitary term “exchange-
ability”, while making clear the subsets of permutations for which this is valid.
used interchangeably throughout. The generic terms shuffling and
rearrangement are used when the distinction between permutations,
sign flippings or permutations with sign flippings is not relevant.

Notation

We consider a GLM that can be expressed as Y=Mψ+ ϵ, where Y is
theN × 1 vector of observed data,M is the full-rank N × r designmatrix
that includes explanatory variables (i.e., effects of interest and possibly
nuisance effects), ψ is the r × 1 vector of r regression coefficients, andϵ is the N × 1 vector of random errors. Estimates for the ψ can be com-

puted by ordinary least squares, i.e., ψ̂ ¼ MþY, where the superscript
(+) denotes a pseudo-inverse. One generally wants to test the null hy-
pothesis that a given combination (contrast) of the elements inψ equals
to zero, that is,H0 : C′ψ= 0, where C is a r × s full-rank matrix of s con-
trasts, 1 ≤ s ≤ r. The commonly used F statistic can be computed as usual
and used to test the null hypothesis.When s=1, the Student's t statistic

can be computed as t ¼ sign ψ̂� � ffiffiffiffi
F

p
. A p-value for the statistic is calcu-

lated bymeans of shuffling the data, themodel, the residuals, or variants
of these (Winkler et al., 2014, Table 2). In any of these cases, to allow re-
arrangements of the data, some assumptions need to bemade: either of
exchangeable errors (EE) or of independent and symmetric errors (ISE). The
first allows permutations, the second sign flippings; if both are available
for a givenmodel, permutations and sign flippings can be performed to-
gether. These rearrangements are represented by permutation and/or
sign flipping matrices P, and the set of all such matrices allowed for a
given design is denoted as P.

At its simplest, the EBs for within- or whole-block exchangeability
can be identified or represented by a set of indices {1,2…,B}, one for
each of the B blocks. A vector of size N × 1, can be used to indicate to
which EB each observation from Y belongs (Fig. 1, left); an extra flag is
passed to the shuffling algorithm (such as the randomise algorithm)
to indicate whether the rearrangements of the data should happen as
within- or as whole-block. While this notation probably covers the ma-
jority of the most common study designs, it allows only within- or
whole-block, but not both simultaneously; in other words, if in a study
the observations can be permuted within block, and the blocks as a
whole can also be permuted, such notation does not convey all possibil-
ities for reorganising the data while preserving their joint distribution
unaltered, and algorithms would perform fewer shufflings than those
that are effectively allowed.

This can be addressed by extending the notation from a single column
to a multi-column array, allowing nested EBs to be defined, such that
blocks can contain sub-blocks, in a hierarchical fashion, and where each
column represents a level; we use the leftward columns to indicate
higher, and rightward to indicate lower levels. More columns alone, how-
ever, are not sufficient, because at each level, shufflings of observations or
of sub-blocks can be allowed within-block, or the blocks at that level can
be shuffled as a whole. Hence to discriminate between one type or the
other, we use negative indices to indicate that the exchangeable units at
the level immediately below should not bepermuted, andpositive indices
indicate that shuffling of these units is allowed (Fig. 1, right). The ex-
changeable units can be sub-blocks, which can contain yet other sub-
blocks, or observations if the next level immediately below is the last.

These two notations, i.e., using single- or multi-column indices, do
not representmathematical entities, and are notmeant to beused for al-
gebraicmanipulation; rather, these notations are shorthandmethods to
represent structured relationships between observations. The covari-
ance structure prevents unrestricted shuffling from being considered,
but it often permits shufflings to happen in a certain orderly manner
that preserves the joint distribution of the data. These notations are to
be used by the algorithm that performs the test to construct the permu-
tation and/or signflippingmatrices,which then can be used to effective-
ly disarrange the model to construct the distribution of the statistic
under the null hypothesis.



Fig. 1.Different notations for the specification of exchangeability blocks; in this example, 3 blocks of 3 observations each. Left: In a single-column notation, each block has its index (here 1,
2, and 3, shown in different, random colours for clarity), and either within- or whole-block exchangeability are possible, but not both simultaneously. The specification of which kind of
shuffling is to bedone requires extra information, as aflag passed to the algorithm that permutes the data. Right: In amultiple-columnnotation, that information is encoded byvirtueof the
indices having a sign indicatingwhether the exchangeableunits of a block at a given level shouldbe shuffledas awhole (+) or keptfixed (−); these are shown respectively in blue and red.
The signs definewhether it is possible to perform rearrangementswithin-block, or of the blocks as awhole, or both. The rightmost example serves only to illustrate the notation, and is not
useful in practice as all the observationswould need to remain still. The letters (a) through (c) refer to the visual representations in Fig. 2. Bottom: Example permutations are shown,with
the observation indices coloured for clarity.
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Visual representation

The notation using multiple columns encapsulates all the informa-
tion necessary not only for the rearrangements to be constructed, but
Fig. 2. Visual representations for the multi-level notation in the examples (a)–(c) from Fig. 1, a
(top) node, akin to a tree inwhich themost peripheral elements (leaves) represent the observa
(+) or not (−), shown respectively here in blue and red colours.
also to depict the relationships between the observations in a tree-like
diagram, highlighting their hierarchy, as shown in Fig. 2. Branches can
only be shuffled with each other if their size and internal covariance
structure are perfectly identical; this information is contained in the
nd using the same colour scheme. The levels can be depicted as branching from a central
tions. The nodes fromwhich the branches depart can be labelled as allowing permutations
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signs and indices used to represent each block: positive indices (shown
in blue) allow them to be permuted; negative (in red) prevents permu-
tation and keeps the branches in their fixed positions. The permutation
of branches at lower levels (when these exist) is controlled by the nodes
at these lower levels, independently from those at higher levels orwith-
in the same level.

Using the tree diagram, it becomes clear that the terms “within-
block” and “whole-block”, that have been used so far to describe ex-
changeability and permutation strategies, become no longer necessary,
as either the branches can be shuffled, or they cannot. It is also helpful
in emphasising that more complicated designs can be considered using
multi-level blocks, in which even the distinction between within- and
whole-block is softened, as each level in the multi-column notation is
not restricted to contain purely positive or negative indices restricting
(or not) the shuffling of their constituent sub-blocks (branches). These
can be present alongside each other if immediately below a level in
which shuffling is not allowed, such that some branches may be
allowed to be shuffled, whereas others are not. It may also be the
case that some levels need to be included in the notation only so
that the number of levels remains the same across all branches of
the tree, from the top node to the most distal (leaves), without affect-
ing the construction of P, but ensuring that the notation can be stored,
without gaps, in a two-dimensional array; in the visual representation
these are shown as small, sign-less, black nodes. Fig. 3 (left and centre)
exemplifies these cases. Although the multi-column notation and the
corresponding tree can become very complex, the simple, unrestrict-
ed exchangeability can also be accommodated, as shown in Fig. 3
(right).
Fig. 3. The multi-level definition of blocks allows more complex relationships between observa
indicated by the positive indices in the 1st column);within each (3rd column), only two out of t
as the third on each (3, 6 and 9) cannot; levels for these last branches are completedwith block
level (4th column), and represent no actual branching. In the visual representation, these black b
3 sets of siblings, each composed of a pair of monozygotic twins and a third non-twin. Centre: An
As shown, thefirst two blocks in the 2nd column cannot be swapped despite similar coding, and
of three observations (7, 8 and 9) that can be shuffled freely. This example could represent 3
dizygotic twins and a non-twin (if certain environmental effects are considered), and the third
designs. Here all 9 observations can be permuted without restrictions on exchangeability.
Variance groups and the G-statistic

When the variances can be assumed to be the same throughout the
sample, the classical F and the Student's t statistics can be used; these
statistics have sampling distributions that do not depend on any un-
known population parameters, but solely on the degrees of freedom,
i.e., these are pivotal statistics. However, if homoscedasticity cannot be
assumed, although F and t can still be used with permutation tests in
general, they cannot be used to correct for multiple testing using the
distribution of the most extreme statistic. The reason is that under
heteroscedasticity, these statistics cease to bepivotal, and follow instead
distributions that depend on the heterogeneous variances for the differ-
ent groups of observations, causing them to be no longer adequate for
FWER correction. Instead, a statistic that is robust to heteroscedasticity
is necessary.

The G-statistic (Winkler et al., 2014) was proposed to address this
concern; this statistic is a generalisation of various other well
established statistics, including F and t, as well as the v-statistic used
for the classical Behrens–Fisher problem. The definition of the variance
groups used to calculate G is based on knowledge about the data, and
such groups need to be constructed together with the definition of the
blocks. However, VGs and EBs represent different concepts; although
they may coincide for simple designs, they do not need to. The EBs are
used to indicate sets of observations that must remain together in
every permutation due to having a non-diagonal covariance structure,
and are used by the permutation algorithm to rearrange the data
many times to build the empirical distribution. The VGs, however, are
used to indicate sets of observations that possess the same variance,
tions. Left: Three blocks of identical structure (2nd column) can be shuffled as a whole (as
heir three constituting observations can be swapped (1 and 2, 4 and 5, and 7 and8), where-
s for which the sign has nomeaning (in black), as they remain unaltered towards the next
locks are shown as small black dots on continuous branches. This example could represent
example showing that it is possible tomix types of blocks in the same level (2nd column).
neither of these can be permutedwith the third, which has a different structure consisting
sets of siblings, the first a pair of monozygotic twins and a non-twin, the second a pair of
a set of three non-twin siblings. Right: The same notation can also accommodate simple
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and are used to estimate the sample variance(s) when computing the
statistic. Despite the distinction, any pair of observations that have the
possibility of being swapped according to the EB structure must be in
the same VG; observations in different variance groups cannot be per-
muted as that would modify the joint distribution, thus violating
exchangeability.

For simplewithin-block permutation, themost restrictive configura-
tion for the variance groups, that is, the configuration in which fewer
observations need to be assumed to share the same variance, is such
that each block corresponds to its own VG. For simple whole-block per-
mutation, on the other hand, the first observation from each block, to-
gether, constitute a VG, the second observation from each block,
together, another VG, and so forth. The minimum set of variance groups
for more complicated designs can be derived from the configuration of
the exchangeability blocks; examples are shown in Fig. 4. The stringen-
cy of this definition lies in that, depending on the configuration of the
EBs, each VG can contain only the smallest possible number of observa-
tions that can be assumed to have the same variance given the covari-
ance structure imposed by the blocks. Such definition can, however,
be relaxed by merging these minimum groups whenever homoscedas-
ticity acrossmore than one VG can be considered, while retaining the EBs
unaltered. Whether merger, or any other definition, for the VGs should
be sought for a given design may depend on information about the
data or on the design itself. For a simple paired t-test, for instance, al-
though each pair could in principle constitute a VG on its own, homoge-
neous variances can fairly well be assumed, with the benefit of much
better variance estimates than would be obtained with groups of two
sole observations.

Regardless of which strategy is used to define the variance groups,
and irrespective of the indices used to represent each of them, the col-
umn vector containing these indices must be invariant with respect to
the permutations that are allowed for a given design. In other words,
let v be the column vector of lengthN containing the indices that repre-
sent each variance group, such as those in Fig. 4. For any permutation
matrix P∈P, Pv= v, that is, v is a common eigenvector for all permuta-
tion matrices in P. Any permutation that breaks this equality must not
be used to test the null hypothesis, as this would mix observations
that belong to different VGs, thus violating exchangeability. Likewise, a
definition of groups that does not meet this criterion must not be used.
Fig. 4. Variance groups defined from the exchangeability blocks (a)–(c) shown in Fig. 1,
and (d)–(f) in Fig. 3. These are the most restrictive configurations for the VGs that are pos-
sible given the structure imposed by the EBs. If, however, despite the covariance structure
between observations, their variances are known to be or can be assumed to be homoge-
neous, some or all of these groups can bemerged,with the additional benefit of improving
the variance estimates. Alternatively, the groups can be entirely replaced by a different
definition if additional information from the variance of the data is available. In (e), note
two groups with only one observation each; see the main text for details.
Number of permutations

With the multi-level block permutation strategy, the rules to calcu-
late the number of permutations are similar, yet more general than in
the case of a single level that could be represented with a single-
column notation (Winkler et al. 2014). The number still depends on
the number of repeated rows in the design matrix for methods as
Manly and ter Braak (Manly, 1986; ter Braak, 1992) or, for methods as
Draper–Stoneman and Freedman–Lane (Draper and Stoneman, 1966;
Freedman and Lane, 1983), on the number of repeated rows across
only the columns that are tested in the contrast after the model has
been partitioned into effects of interest and nuisance effects.

Once the tree has been constructed, for the EE assumption, and in the
absence of repetitions in the design as described above, the number of
permutations can be calculated separately for each node in which shuf-
fling is allowed asB!,with B denoting the number of branches that begin
at that node. If however, there are brancheswith identical structure and
containing the repetitions in the design matrix, the number of possible
permutations for that node is then B!/∏m = 1

M Bm!, whereM is the num-
ber of unique branches beginning at that node, and Bm the number of
times each of the M unique branches begins at that node. The number
of permutations for nodes that cannot be permuted is simply 1, that is,
no permutation. With the number of permutations at each node calcu-
lated, the overall number of possible permutations for thewhole design
(whole tree) is the product of the number of possible permutations for
all the nodes.

For ISE, the number of sign flippings at the highest node in which
shuffling is allowed is 2B, and 1 for all other nodes that lie below (distal)
in the hierarchy. For the nodes in which shuffling is not allowed, the
number of possible flips is 1, that is, no sign flippings are allowed, but
it can still be higher than 1 for the nodes that lie below in the hierarchy.
Unlike with permutations, the eventual presence of repeated elements
in the design matrix does not affect the number of possible sign flip-
pings. The number of possible sign flippings for the whole design is
the product of the number of sign flippings for all the nodes.

When both EE and ISE assumptions are valid for a given design,
permutations can happen with sign flipping, and the total number of
possible rearrangements is just the product of the number of permuta-
tions with the number of sign flippings. Regardless of the kind of shuf-
fling strategy adopted, the number of possible rearrangements can be
extremely large, even for sample sizes of relatively moderate size. Not
all of them need to be performed for the test to be valid and sufficiently
exact; a random subset of all possible rearrangements can be sufficient
for accurate hypotheses testing.

Power and outliers

The set of all rearrangements that can be performed while respect-
ing the structure of the data is termed the permutation space (Pesarin
and Salmaso, 2010). The restrictions imposed by the EBs cause this
space to be reduced, sometimes considerably, as none of the rearrange-
ments that would violate exchangeability are performed. If the restric-
tions are such that the permutation space is not a representative,
uniform sample from what the space would be without such restric-
tions, power may be reduced. In the Evaluation method section we
assess various configurations for the multi-level EBs and their impact
on the ability to detect true effects.

For the same reason, even though most permutation strategies tend
to be robust to outliers (Anderson and Legendre, 1999), the dependence
structure and the multi-level blocks may amplify the effect of their
presence, with results that may be difficult to predict, either in terms
of conservativeness or anticonservativeness. Such problems may be
minimised by providing some treatment of these extreme values;
some possible remedies include censoring, trimming, replacement for
ranks or quantiles, conversion of quantiles to a normal distribution,
and robust regression.



Fig. 5. The two dependence structures, A and B, used to assess error rates and power. Top: Multi-level block definition. Bottom: Visualisation as a tree diagram.

3 The actual skewness and kurtosis for these two distributions are either fixed or func-
tions of their parameters, and therefore were held constant throughout the simulations.
For Weibull, the skewness is (Γ(1 + 3/k)λ3 − 3μ σ 2 − μ3)/σ 3 ≈ 19.58, where k is the
shape and λ the scale parameter. For Laplace, the excess kurtosis is 3.
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Evaluation method

Error rates and power

Two dependence structures, named datasets A and B, were simulated
to evaluate the permutation strategy. Both use mixtures of levels that
can or that cannot be shuffled. For the dataset A, N = 36 observations
were simulated, grouped into nine exchangeability blocks of four obser-
vations each, and each of these further divided into two blocks of two.
Not all levels were allowed to be shuffled freely, and the structure is
shown in Fig. 5 (left). For dataset B, N = 27 observations were divided
into nine EBs of three observations each; and each of these further divid-
ed into two blocks, one with two, and one with one observation, as
shown in Fig. 5 (right). Although these may appear somewhat artificial
for practical use, we wanted examples that would restrict the number
of possible shufflings, to test the multi-level strategy in relatively diffi-
cult scenarios. The structure in dataset A precisely emulates a twin
studywith nine sets of siblings, each comprised of a pair ofmonozygotic
twins and a pair of non-twins (or of dizygotic twins). Dataset B uses a
similar scheme, but further restricts the possibilities for shuffling by
having just one non-twin in each set of siblings.

Using the same notation as in the Notation section, 500 response
variables (data vectors Y) were simulated for each dataset, using the
model Y = Mψ + ϵ; each variable might represent, for instance, a
voxel or vertex in a brain image. The residuals, ϵ, were simulated follow-
ing either a Gaussian distribution (with zeromean and unit variance), a
Weibull distribution (skewed,with scale parameter 1 and shape param-
eter 1/3, shifted and scaled so as to have expected zero mean and unit
variance), or a Laplace distribution (kurtotic, with zero mean and unit
variance).3 In order to introduce dependence between the residuals,
for simplicity and without loss of generality to any study in which
there is dependence among thedata, including repeatedmeasurements,
each observation was treated as if from a participant in a twin study de-
sign, as described above, and anN×N correlationmatrixΩ, was created
using the coefficient of kinship, 2ϕij, between subjects i and j (Jacquard,
1970), such thatΩ=2Φhϵ2 + I(1− hϵ2), whereΦ is thematrix with the
coefficients ϕij, and I is the identity matrix. The benefit of constructing
the simulations in this way is that the strength of the dependence struc-
ture can vary linearly in the interval 0 to 1 using a single parameter, here
denoted as hϵ2, which coincides, in quantitative genetics and under
certain assumptions, with the heritability of the measurement after ex-
planatory or nuisance variables have been considered. The coefficient of
kinship (2ϕij) is set to 1 for monozygotic twins, 0.5 full siblings that are
not monozygotic twins, 0.25 for half siblings, and 0 for unrelated
subjects. For these simulations, we used different values for the herita-
bility of the residuals as hϵ2 = {0, 0.4, 0.8}. To introduce the desired
correlation structure, Ω was subjected to a Cholesky decomposition
such that Ω = L′L, then redefining the residuals as L′ϵ.

The dependent data, Y, were generated by adding the simulated
effects, Mψ, to the residuals, ϵ, with ψ = [ψ1 0]′, ψ1 being either 0 or
t−1
cd f 1−α;N−rank Mð Þð Þ=

ffiffiffiffi
N

p
, where α = 0.05 is the significance level

of the permutation test to be performed at a later stage, ensuring a cal-
ibrated signal strength sufficient to yield an approximate power of 50%
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with Gaussian errors, irrespective of the sample size. The actual effect
was coded in the first regressor only, here denoted m, the second
regressor modelling an intercept. This regressor was constructed as a
set of random values following a Gaussian distribution with zero
mean and unit variance. As in real experiments, such effects of interest
may be (as with the residuals) not independent across observations,
three different values for the strength of this dependencewere simulat-
ed, using hm

2 = {0, 0.4, 0.8} These values are equivalent to the heritabil-
ity of m in the context of genetics, yet without loss of generality to
studies in which there is dependence between the data that constitute
any individual independent variable, including certain designs involv-
ing repeated measurements.4

Permutations, sign flippings, and permutations with sign flippings
were performed, either freely or respecting the dependence structure.
In each case, 500 shufflings were performed for each of the 500
variables, and the whole process was repeated 500 times, allowing his-
tograms of p-values to be constructed, as well as to estimate the vari-
ability around the heights of the histogram bars. Confidence intervals
(95%) were computed for the empirical error rates and power using
the Wilson method (Wilson, 1927). Significance levels were also com-
pared using Bland–Altman plots (Bland and Altman, 1986), modified
so as to include the confidence intervals around the means of the
methods. The histograms and Bland–Altman plots are shown in the
Supplementary Material.
Fig. 6. Tree diagrams C–G, used to assess power, in addition to A, B, H and I (shown in Figs. 5,
7 and 8). In C, observations can be shuffledwithout restrictions. In D, which represent a set
of five sibships, MZ refers to each subject of a pair of monozygotic twins, DZ to dizygotic
twins, and FS to full siblings (non-twin and not half siblings); the numbers in parentheses
indicate the number of each type of sibship in the tree (see also Fig. 7). In E, observations
can be shuffled onlywithin-block; in F the blocks as awhole can be shuffled, and in G, shuf-
flings are allowed within-block, and the blocks as a whole can also be shuffled.
Power

The evaluations above were used to assess error rates and power
according to the degree of non-independence between observations
and distribution of the errors. To further investigate how the restrictions
imposed by the exchangeability blocks could affect power, other depen-
dence structures were considered to shuffle the data, in addition to the
datasets A and B above; thesewere named C through I (Figs. 6–8). The con-
figuration C corresponds to freely shuffling 11 observations; D corre-
sponds to a small set of 5 sibships with a total of 18 subjects, mixing
whole-block and within-block at different levels; E is formed by 15
observations, organised in 5 blocks of 3 observations each,with shufflings
being allowed within-block only; F is similar, but with whole-block rear-
rangements only, and G also similar, but allowing both whole-block and
within-block simultaneously; configurations H and I use the family struc-
ture of theHuman Connectome Project at the time of the HCP-s500 release
(more details below): in H, dizygotic twins are treated as a category on its
own, thus accounting for the possibility of shared, non-genetic effects
within twin pair, whereas in I, dizygotic twins are treated as ordinary,
non-twin full siblings. The number of possible permutations and sign flip-
pings for each of these structures is shown in Table 1.

For each of these nine datasets, an artificial effect (signal) was intro-
duced, in the same way as described in the previous section, but here
exclusively using independent Gaussian errors and preserving this inde-
pendence throughout the simulations while still using multi-level ex-
changeability blocks for shuffling, as if dependencies among the data
existed. Power was then compared with what would be observed if
the same data were shuffled without the restrictions imposed by the
EBs. For each configuration, 100 repetitions were performed, each simu-
lating 1000 variables (as before, each could represent a voxel or vertex
in an image). Up to 512 shufflings were used, either permutations,
sign flippings, or permutations with sign flippings. Each repetition
used a different set of random observations and a different set of shuf-
flings when the maximum number of possible rearrangements was
larger than the number of shufflings performed. The significance level
was set as α ¼ 1

�
16 ¼ 0:0625. Both the number of permutations and

the significance level were chosen so as to allow compatible resolutions
4 Note that errors onmeasurements are not part of these simulations, such that param-
eter estimates remain consistent.
of the p-values among runs, allowing a more direct comparison
between each case.

Power changeswere assessed in relation towhatwould be observed
if the data were shuffled freely, and compared to a measure of the
amount of shuffling applied to the data, given the restrictions imposed
by the permutation tree. For this purpose, the Hamming distance
(Hamming, 1950) was used; this distance counts the number of obser-
vations that change their position at each permutation (EE) or that
change their sign at each sign flip (ISE), or both when permutations
are performed together with sign flippings. While the Hamming dis-
tance cannot be interpreted as a direct quantification of perturbation
on the data, it is appropriate to quantify the effect of the shufflings
proper, which do not depend on actual data values.

Real data

The ongoing Human Connectome Project (HCP) involves the assess-
ment of about four hundred sibships, inmany caseswith up to four sub-
jects, and with at least one pair of monozygotic (MZ) or dizygotic (DZ)
twins (Van Essen et al., 2012, 2013). The inclusion of additional siblings
to the classical twin design is known to improve the power to detect
sources of variation in the observable traits (Posthuma and Boomsma,
2000; Keller et al., 2010). The objective is to have a genetically informa-
tive sample as in a classical twin design, enriched with the inclusion of
relatives from the same nuclear family. The coefficient of kinship be-
tween MZ twins is the same for all such pairs, and so are their expected
covariance. Likewise, the covariance is the same for all pairs of DZ twins.
While kinship can bemodelled, suchmodelling is contingent upon var-
ious assumptions that may not always be valid, or that can be hardly



Fig. 7. Tree diagram depicting the structure present among the subjects of the Human Connectome Project HCP, at the time of the release HCP-s500, with 518 subjects. The numbers in
parentheses indicate how many of each type of sibship set are present.
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checked for all the imagingmodalities and exploratory analyses that the
HCP entails. Instead, such dependence structure can be represented as a
tree that indicates which pieces of data can be shuffled for inference,
rendering the permutation methods described this far directly applica-
ble to the HCP data, and without the need to explicitly model the exact
degree of dependence present in the data. Depending on whether
there is interest in considering or not common effects in dizygotic
twins, these can be treated as a category on their own, that cannot be
shuffled with ordinary, non-twin siblings, or be allowed to be shuffled
with them (Figs. 7 and 8).

Virtually all data being collected in the HCP are to be publicly
released,5 and at the time of this writing, the available data are the
5 Detailed information can be found at http://www.humanconnectome.org.
HCP-s500, which includes various imaging and non-imaging measure-
ments for approximately five hundred subjects. Here, measurements
of height, weight, and body mass index (BMI) (Barch et al., 2013) were
investigated for positive and negative associations with the cortical
area and thickness as measured at each point of the cortex. These traits
are well known to be highly heritable, with most studies reporting h2

estimates that are well above 0.70, so that measurements on subjects
from the same family cannot be considered independent. [For the heri-
tabilities of height, weight and BMI, see Farooqi and O'Rahilly, 2005,
Visscher et al., 2006, Walley et al., 2006, Silventoinen and Kaprio,
2009, Silventoinen et al., 2012, Min et al., 2013; for cortical thickness
and area, see Panizzon et al., 2009, Winkler et al., 2010, Joshi et al.,
2011, Eyler et al., 2011, 2012, Kremen et al., 2013, McKay et al., 2014,
among others.] To confirm the heritability of these traits specifically in
the HCP sample, the variance of these traitswas decomposed into genetic
and environmental components using the maximum-likelihood

http://www.humanconnectome.org


Fig. 8. Tree diagram representing the structure among the same 518 subjects of the HCP-s500 release, shown in Fig. 7, but treating dizygotic twins as ordinary siblings, therefore not
accounting for the possibility of shared common non-genetic effects within dizygotic twin pair.
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methodsdescribed inAlmasy andBlangero (1998), and as implemented
in the package Sequential Oligogenic Linkage Analysis Routines— SOLAR

(Department of Genetics, Texas Biomedical Research Institute, San
Antonio, TX, USA). The released HCP data do not include an index that
could directly categorise subjects according to a common environment
or household. Nonetheless, ignoring these possible effects has the po-
tential to overestimate heritabilities. To minimise this possibility, two
models were tested: one in which a common environment term (c2)
was not included, and another in which a rather conservative surrogate
for household effects was included; such proxy was defined by
assigning all subjects sharing the same mother to a common environ-
ment. The reasoning is twofold: to account for potential maternal
effects, which could affect half-siblings sharing the same mother, but
not those sharing the same father, and also considering that, most com-
monly, children of divorced couples tend to stay or dwell with their
mothers for most of the time. To ensure normality, the traits were



Table 1
Number of permutations (EE) and sign flippings (ISE) for the 9 dependence structures sim-
ulated to examine power. If there were ties in the data, the number of possible permuta-
tions would be smaller. When both EE and ISE can be used, such that the data can be
permuted and sign flipped, the number of possible rearrangements is simply the product
of the number of permutations with the number of sign flippings. The footnote shows in
detail how these values were calculated for the more complex configurations.

Unrestricted shuffling Restricted shuffling

Set EE ISE EE ISE

A 36! ≈ 3.7 ⋅ 1041 236 ≈ 6.9 ⋅ 1010 49 ⋅ 9! ≈ 9.5 ⋅ 1010 29 = 512
B 27! ≈ 1.1 ⋅ 1028 227 ≈ 1.3 ⋅ 108 29 ⋅ 9! ≈ 1.9 ⋅ 108 29 = 512
C 11! ≈ 4.0 ⋅ 107 211 = 2048 11! ≈ 4.0 ⋅ 107 211 = 2048
D 18! ≈ 6.4 ⋅ 1015 218 = 262144 28 ⋅ 3! = 1536 25 = 32
E 15! ≈ 1.3 ⋅ 1012 215 = 32768 (3!)5 = 7776 215 = 32768
F 15! ≈ 1.3 ⋅ 1012 215 = 32768 5! = 120 25 = 32
G 15! ≈ 1.3 ⋅ 1012 215 = 32768 (3!)5 ⋅ 5! = 933120 25 = 32
H 518! ≈ 6.5 ⋅ 101182 2518 ≈ 8.6 ⋅ 10155 a ≈ 2.9 ⋅ 10287 c ≈ 6.6 ⋅ 1063

I 518! ≈ 6.5 ⋅ 101182 2518 ≈ 8.6 ⋅ 10155 b ≈ 1.3 ⋅ 10335 d ≈ 6.6 ⋅ 1063

a= [33!] ⋅ [250 ⋅ 50!] ⋅ [23 ⋅ 3!] ⋅ [(3!)18 ⋅ 18!] ⋅ [23 ⋅ 3!] ⋅ [(4!)7 ⋅ 7!] ⋅ [210 ⋅ 10!] ⋅ [229 ⋅
29!] ⋅ [23 ⋅ 3!] ⋅ [(22)7 ⋅ 7!] ⋅ [26 ⋅ 6!] ⋅ [239 ⋅ 39!] ⋅ [2] ⋅ [(22)3 ⋅ 3!].
b= [33!] ⋅ [260 ⋅ 60!] ⋅ [23 ⋅ 3!] ⋅ [(3!)47 ⋅ 47!] ⋅ [26 ⋅ 6!] ⋅ [(4!)14 ⋅ 14!] ⋅ [26 ⋅ 6!] ⋅ [239 ⋅
39!] ⋅ [2] ⋅ [(22)3 ⋅ 3 !].
c = 233 ⋅ 250 ⋅ 23 ⋅ 218 ⋅ 23 ⋅ 27 ⋅ 210 ⋅ 229 ⋅ 23 ⋅ 27 ⋅ 26 ⋅ 239 ⋅ 2 ⋅ 23 = 2212.
d = 233 ⋅ 260 ⋅ 23 ⋅ 247 ⋅ 26 ⋅ 214 ⋅ 26 ⋅ 239 ⋅ 2 ⋅ 23 = 2212.
Compare the products a, b, c, and dwith Figs. 7 and8, that depict respectively the HCP struc-
tures H and I; the factors are shown starting from the singletons (labelled as NS in the
figures) and running counter-clockwise around the central node.
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subjected to a rank-based inverse-normal transformation before estima-
tion. The nuisance variables included in the model were age, age-
squared, race and ethnicity, the interactions of these with sex, as well
as sex itself. The test statistic, for either h2 and c2, is twice the difference
between the log-likelihood of a model in which the parameter being
tested is constrained to zero and the log-likelihood of a model in
which that parameter is allowed to vary; this statistic (deviance) is dis-
tributed as 50:50mixture of a point mass and aχ2 distributionwith one
degree of freedom (Self and Liang, 1987); here we call this statistic 2DLL.
For this analysis, 502 subjects with complete data for all these variables
were selected (mean age: 29.22, standard deviation: 3.47, range
22–36 years; 296 females; 49 MZ pairs, 356 non-MZ sibling pairs, 16
half-sibling pairs).

The imaging protocol used for the structural magnetic resonance
scans, aswell as the steps necessary to construct the surface representa-
tion of the cortical mantle, have been described extensively in Glasser
et al. (2013) (see also the references therein); FreeSurfer (Martinos
Center for Biomedical Imaging, Massachusetts General Hospital, Boston,
MA, USA) was used to generate the surfaces and to obtain cortical thick-
ness measurements (Dale et al., 1999; Fischl et al., 1999; Fischl and
Dale, 2000); image registration was performed using the Multimodal
Surface Matching (MSM) framework (Robinson et al., 2014). The surface
area was processed using the methods described in Winkler et al.
(2012): the area was measured at each face of the white surface, then
interpolated using a pycnophylactic method to a common grid (an
icosahedron recursively subdivided five times, therefore with 10,242
vertices and 20,480 faces), and finally converted from facewise to
vertexwise. Cortical thickness was also resampled to the same
Table 2
Descriptive statistics for the indices of body size and for global cortical surface area and
global average thickness on the sample of subjects from the HCP.

Trait Mean ± sd Range

Height (m) 1.708 ± 0.096 1.473–1.956
Weight (kg) 77.712 ± 17.342 44.906–128.820
BMI (kg/m2) 26.581 ± 5.252 16.788–45.171

Area (cm2) 1666.80 ± 169.79 1292.14–2112.00
Thickness (mm) 2.620 ± 0.087 2.239–2.824
resolution, using barycentric interpolation. Both thickness and area
were smoothed on the surface of a homeomorphic sphere with
100mmradius using aGaussian kernelwith fullwidth at halfmaximum
(FWHM) of 20 mm. For these analyses, 5000 permutations were used,
and DZ twins were considered as constituting a category on their own,
and therefore not allowed to be permuted with non-twin siblings in
the same family. Nuisance variables were the same used for the herita-
bility analyses described above, plus global cortical surface area and av-
erage thickness. Visualisation of imaging results used Blender (The
Blender Foundation, Amsterdam, The Netherlands). Sample statistics
for the analysed traits are shown in Table 2.

Results

Error rates and power

Despite the differences in the relationship between the observations
that constituted datasets A and B, the results were very similar. With er-
rors that were independent and symmetric, i.e., either normally distrib-
uted (Gaussian) or kurtotic (Laplacian), the false positive rates (error
type I) were controlled at the nominal level (α=0.05) using unrestrict-
ed permutations, sign flippings, or permutations with sign flippings,
whenever there were no true dependence between observations or el-
ements of the regressor of interest, that is, when either hϵ2 or hm2 was
equal to zero. With both hϵ2 and hm

2 higher than zero, however, the con-
ventional test in which the data are shuffled freely became, as expected,
invalid. Using instead the shuffling strategy that we propose, that re-
spects the covariance structure present or assumed to exist in the
data, the false positive rateswere controlled atα, evenwhen the depen-
dence was at high levels. These results are shown in Table 3 (Gaussian)
and in the Supplementary Table 1 (Laplacian).

With skewed (Weibullian) errors, sign flippings were generally con-
servative when hϵ2 or hm2 were equal to zero and the data were shuffled
freely. With hϵ2 and hm

2 higher than zero, the test not only reversed its
conservativeness, but became invalid if flippings ignored the data struc-
ture. If, however, the shufflings were performed respecting the restric-
tions imposed by the relationships among the datapoints, the test was
valid in all cases, with its conservativeness maintained. These results
are shown in the Supplementary Table 2.

These tables also show the power of each shuffling strategy when
there is true signal present. For the cases in which the false positive
rate is not controlled, the test is invalid, and as a consequence, consider-
ations of power are irrelevant; in these cases, the values that would rep-
resent power are shown crossed by a line. When the data are truly
independent, hence unrestricted shuffling could be performed, the pro-
posed restricted permutations caused a slight, yet consistent, loss of
power for the datasets A and B. This is revisited in the next section,
with the other synthetic datasets.6

Power

For the nine synthetic datasets, a slight, yet consistent loss of power
was observed when using the proposed restricted shuffling strategy,
6 Histograms of p-values using permutations, signflippings, and permutationswith sign
flippings, for cases of normal and skewed distributions, and using both unrestricted and
restricted shuffling, for dataset A, are shown in Supplementary Fig. 1 (the pattern is similar
for dataset B). These extend the results shown in Table 3 and in Supplementary Tables 1
and 2, with an overview of the frequencies of p-values throughout the whole [0 1] inter-
val. Except for the use of the ISE with skewed errors (assumptions violated), in general the
use of restricted shuffling ensured that the histograms were all flat, as desirable, with no
excesses of p-values at any range. Even for ISE with skewed errors, a test that otherwise
would be invalid, became valid on average and therefore useful in practice, although con-
servative. Power changes, though slight, are visible. Bland–Altmanplots shown in the Sup-
plementary Fig. 2 reveal that, even in the absence of dependence for data and for design,
andwithout any simulated effect, the p-values for each test are not identical for unrestrict-
ed versus restricted shuffling, with the differences falling well outside the confidence in-
terval for a much larger fraction of tests than the 5% that would be expected by chance.



Table 3
Proportion of error type I and power (%) for the simulated sets A and B, with Gaussian errors, at the level α = 0.05, using different degrees of dependence for the error terms (hϵ2) and for the regressor of interest (hm2 ), using permutations (EE), sign
flippings (ISE), or permutations with sign flippings (EE + ISE). Confidence intervals (95%) are shown between parentheses. The values that appear striked out are not valid, as they refer to power observed when the corresponding error rates are not
controlled (i.e., the lower bound of the confidence interval is above the nominal level α when there is no actual effect). For the Laplace and Weibull errors, please see the Supplementary Material.

Set hϵ2 Unrestricted shuffling Restricted shuffling

Without effect (error rate) With effect (power) Without effect (error rate) With effect (power)

hm
2 = 0 hm

2 = 0.4 hm
2 = 0.8 hm

2 = 0 hm
2 = 0.4 hm

2 = 0.8 hm
2 = 0 hm

2 = 0.4 hm
2 = 0.8 hm

2 = 0 hm
2 = 0.4 hm

2 = 0.8

Permutations only:
A 0.0 5.0 (3.4–7.3) 4.9 (3.3–7.2) 5.1 (3.5–7.3) 49.1 (44.7–53.5) 47.4 (43.1–51.8) 46.5 (42.2–50.9) 5.0 (3.4–7.3) 4.9 (3.3–7.2) 5.1 (3.5–7.4) 47.6 (43.3–52.0) 46.1 (41.7–50.5) 44.3 (40.0–48.7)

0.4 5.0 (3.4–7.3) 6.4 (4.5–8.9) 7.8 (5.7–10.5) 49.8 (45.4–54.2) 49.8 (45.4–54.1) 48.5 (44.2–52.9) 5.1 (3.5–7.3) 5.0 (3.4–7.3) 5.0 (3.4–7.3) 48.5 (44.1–52.9) 44.1 (39.8–48.5) 38.6 (34.4–42.9)
0.8 4.9 (3.4–7.2) 7.8 (5.8–10.5) 10.4 (8.0–13.3) 51.5 (47.1–55.8) 50.5 (46.2–54.9) 49.7 (45.3–54.1) 4.9 (3.3–7.1) 5.0 (3.4–7.3) 5.0 (3.4–7.3) 50.6 (46.2–54.9) 41.9 (37.6–46.2) 34.3 (30.2–38.5)

B 0.0 5.0 (3.4–7.2) 5.0 (3.4–7.2) 4.9 (3.4–7.2) 48.4 (44.1–52.8) 47.4 (43.0–51.7) 46.5 (42.1–50.8) 4.9 (3.3–7.2) 5.0 (3.4–7.3) 5.0 (3.4–7.3) 46.7 (42.4–51.1) 45.4 (41.1–49.8) 43.8 (39.5–48.2)
0.4 5.0 (3.4–7.3) 6.2 (4.4–8.7) 7.6 (5.6–10.2) 49.6 (45.2–53.9) 49.2 (44.8–53.6) 48.2 (43.9–52.6) 5.0 (3.4–7.2) 5.0 (3.4–7.3) 5.0 (3.4–7.3) 48.3 (43.9–52.7) 43.5 (39.2–47.8) 38.1 (34.0–42.5)
0.8 5.0 (3.4–7.3) 7.4 (5.4–10.0) 10.0 (7.7–12.9) 50.4 (46.0–54.8) 50.3 (45.9–54.6) 49.2 (44.8–53.6) 5.0 (3.4–7.3) 4.9 (3.3–7.2) 5.0 (3.4–7.3) 50.0 (45.6–54.4) 41.7 (37.5–46.1) 33.7 (29.7–37.9)

Sign flippings only:
A 0.0 5.1 (3.5–7.4) 5.0 (3.4–7.3) 4.9 (3.3–7.2) 45.6 (41.3–50.0) 45.6 (41.3–50.0) 45.1 (40.8–49.5) 5.0 (3.4–7.3) 5.1 (3.5–7.4) 5.2 (3.6–7.5) 41.5 (37.2–45.9) 41.7 (37.5–46.1) 40.9 (36.7–45.3)

0.4 5.0 (3.4–7.2) 6.2 (4.4–8.6) 7.7 (5.7–10.4) 47.3 (42.9–51.6) 47.1 (42.7–51.5) 46.0 (41.7–50.4) 4.9 (3.3–7.1) 5.0 (3.4–7.3) 5.2 (3.6–7.5) 43.0 (38.8–47.4) 39.2 (35.0–43.6) 34.8 (30.8–39.1)
0.8 5.1 (3.5–7.4) 7.6 (5.6–10.3) 10.7 (8.3–13.7) 48.5 (44.1–52.9) 48.3 (43.9–52.7) 48.6 (44.2–52.9) 4.9 (3.3–7.1) 5.0 (3.4–7.3) 5.2 (3.6–7.5) 45.2 (40.8–49.5) 37.6 (33.5–41.9) 31.6 (27.7–35.9)

B 0.0 5.0 (3.4–7.2) 4.9 (3.4–7.2) 5.0 (3.4–7.2) 45.1 (40.8–49.5) 44.3 (40.0–48.7) 43.8 (39.6–48.2) 4.9 (3.4–7.2) 5.1 (3.5–7.4) 5.3 (3.6–7.6) 41.5 (37.3–45.9) 40.9 (36.7–45.3) 39.9 (35.7–44.2)
0.4 5.0 (3.4–7.3) 6.3 (4.4–8.7) 7.4 (5.4–10.0) 46.3 (42.0–50.7) 45.3 (41.0–49.7) 46.2 (41.9–50.6) 4.9 (3.3–7.2) 5.1 (3.5–7.4) 5.1 (3.5–7.4) 42.4 (38.2–46.8) 38.3 (34.2–42.7) 35.2 (31.2–39.5)
0.8 5.1 (3.5–7.3) 7.6 (5.6–10.3) 10.1 (7.8–13.1) 47.5 (43.2–51.9) 47.2 (42.8–51.5) 47.1 (42.8–51.5) 4.8 (3.2–7.0) 5.0 (3.4–7.3) 5.0 (3.4–7.3) 44.2 (39.9–48.6) 37.3 (33.2–41.6) 30.8 (26.9–34.9)

Permutations + sign flippings:
A 0.0 5.1 (3.5–7.4) 5.0 (3.4–7.2) 5.0 (3.4–7.2) 48.6 (44.3–53.0) 48.6 (44.3–53.0) 46.8 (42.5–51.2) 5.1 (3.5–7.4) 5.1 (3.5–7.4) 5.3 (3.6–7.6) 48.4 (44.0–52.7) 48.8 (44.4–53.1) 46.9 (42.6–51.3)

0.4 5.0 (3.4–7.3) 6.4 (4.6–8.9) 7.7 (5.7–10.4) 49.7 (45.3–54.0) 48.6 (44.2–52.9) 48.0 (43.6–52.4) 5.0 (3.4–7.2) 5.1 (3.5–7.4) 5.4 (3.7–7.7) 49.7 (45.4–54.1) 44.5 (40.2–48.9) 40.2 (36.0–44.6)
0.8 5.0 (3.4–7.2) 7.7 (5.7–10.4) 10.5 (8.1–13.5) 51.3 (46.9–55.6) 50.3 (45.9–54.6) 50.2 (45.8–54.5) 4.9 (3.3–7.2) 5.1 (3.5–7.4) 5.4 (3.7–7.7) 52.1 (47.7–56.5) 43.2 (38.9–47.6) 36.3 (32.2–40.6)

B 0.0 5.1 (3.5–7.4) 5.1 (3.5–7.3) 5.0 (3.4–7.2) 48.8 (44.4–53.1) 48.2 (43.8–52.5) 47.1 (42.8–51.5) 5.1 (3.5–7.4) 5.2 (3.6–7.5) 5.3 (3.7–7.7) 48.3 (44.0–52.7) 48.1 (43.7–52.4) 47.0 (42.7–51.4)
0.4 5.1 (3.5–7.4) 6.2 (4.4–8.7) 7.5 (5.5–10.2) 49.2 (44.8–53.5) 49.5 (45.1–53.8) 48.2 (43.9–52.6) 5.0 (3.4–7.3) 5.2 (3.5–7.5) 5.3 (3.7–7.7) 49.0 (44.6–53.4) 45.8 (41.5–50.2) 40.6 (36.4–44.9)
0.8 5.0 (3.4–7.2) 7.6 (5.6–10.3) 10.2 (7.8–13.2) 50.3 (45.9–54.7) 50.3 (46.0–54.7) 50.0 (45.6–54.4) 5.0 (3.4–7.2) 5.2 (3.5–7.5) 5.2 (3.6–7.5) 51.2 (46.8–55.5) 43.6 (39.3–47.9) 36.6 (32.5–40.9)
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Table 4
Relationship between the average Hamming distance across shufflings and the observed
power (±standard deviation). In general, larger reductions in the Hamming distance
when using restricted permutations (EE) causedmore noticeable losses in power (see also
Fig. 9). The loss did not correlatewith theHamming distancewhen using signflippings on-
ly (ISE) or permutations with sign flippings (EE + ISE). In these cases, the power changes
were generally minimal.

Set Unrestricted shuffling Restricted shuffling

Hamming distance Power (%) Hamming distance Power (%)

Permutations only:
A 34.929 ± 0.051 49.17 ± 7.18 33.956 ± 0.123 47.97 ± 7.22
B 25.945 ± 0.052 48.45 ± 7.77 24.956 ± 0.104 46.68 ± 7.57
C 9.980 ± 0.041 46.52 ± 10.92 9.981 ± 0.044 46.57 ± 10.73
D 16.965 ± 0.044 48.01 ± 10.93 11.003 ± 0.122 32.48 ± 8.48
E 13.973 ± 0.048 47.57 ± 10.23 9.991 ± 0.106 34.58 ± 8.80
F 13.867 ± 0.084 45.16 ± 10.11 12.000 ± 0.000 38.14 ± 8.69
G 13.972 ± 0.047 47.46 ± 10.18 13.975 ± 0.066 46.93 ± 10.21
H 515.996 ± 0.042 49.59 ± 2.37 496.000 ± 0.307 48.41 ± 2.16
I 515.994 ± 0.043 49.56 ± 2.25 496.063 ± 0.326 48.45 ± 2.23

Sign flippings only:
A 17.959 ± 0.131 48.13 ± 6.81 18.000 ± 0.000 44.74 ± 6.28
B 13.476 ± 0.109 47.23 ± 7.66 13.500 ± 0.000 44.06 ± 7.17
C 5.495 ± 0.062 44.16 ± 10.27 5.489 ± 0.069 44.20 ± 10.07
D 8.715 ± 0.375 42.83 ± 10.97 9.000 ± 0.000 38.59 ± 8.75
E 7.492 ± 0.076 45.04 ± 9.05 7.479 ± 0.074 45.00 ± 9.29
F 7.215 ± 0.332 41.81 ± 10.35 7.500 ± 0.000 38.45 ± 7.99
G 7.292 ± 0.366 42.06 ± 10.22 7.500 ± 0.000 38.45 ± 7.99
H 258.528 ± 0.478 49.48 ± 2.23 258.440 ± 0.900 49.36 ± 2.34
I 258.542 ± 0.505 49.59 ± 2.33 258.525 ± 0.761 49.41 ± 2.33

Permutations with sign flippings:
A 35.432 ± 0.042 50.07 ± 7.19 34.913 ± 0.095 50.00 ± 7.19
B 26.449 ± 0.040 49.72 ± 7.74 25.914 ± 0.092 49.24 ± 7.56
C 10.483 ± 0.041 50.30 ± 10.97 10.471 ± 0.033 50.32 ± 10.91
D 17.465 ± 0.041 49.94 ± 11.11 14.450 ± 0.137 46.29 ± 10.55
E 14.471 ± 0.039 49.87 ± 10.19 12.452 ± 0.088 48.81 ± 10.11
F 14.472 ± 0.039 49.93 ± 10.18 13.470 ± 0.085 47.79 ± 9.85
G 14.474 ± 0.035 49.95 ± 10.15 14.456 ± 0.055 49.05 ± 10.16
H 516.480 ± 0.036 49.68 ± 2.26 505.953 ± 0.569 49.65 ± 2.31
I 516.481 ± 0.038 49.61 ± 2.32 506.072 ± 0.570 49.69 ± 2.25
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compared to the results using unrestricted shuffling when the last was,
in fact, possible. These results are shown in Table 4. The loss appears to
be larger for the datasets with more involved dependence structures
(e.g., dataset D), or when restrictions on permutations are imposed at
higher levels (e.g., dataset E), or on sign flippings at lower levels
Fig. 9. Changes in power related well to the average Hamming distance across permuta-
tions for the nine simulated datasets A–I (see also Table 4). When all dots are considered,
R2 = 0.7557 for a linear fit (dashed line); when only the centres of mass for each dataset
(marked with “×” and indicated with arrows) are considered, R2 = 0.9902.
(e.g., datasets F and G). Even so, this is not quite as conspicuous with
samples that are just modestly larger (e.g., A and B), or much larger
(e.g., datasets H and I, that use the data structure from the HCP).

With exchangeable errors, in which only permutations are per-
formed, power reductions were more noticeable for some datasets
and relatedwell to how the data could be disarranged at each permuta-
tion, as quantified by the average Hamming distance across the permu-
tations that were performed. This is shown in Table 4, and also visually
in Fig. 9. With independent and symmetric errors, in which only sign
flippings are performed, the power losses were considerably smaller,
and unrelated to the Hamming distance. In the samemanner, permuta-
tions combined with sign flippings showed power changes that were
minimal, and unrelated to the Hamming distance. Moreover, in these
cases the resulting power was, for all datasets, higher than for just
permutations or just sign flippings.

Table 4 and Fig. 9 show a considerable dispersion of the observed
power around the average. In the simulations, this dispersion can be re-
duced by one order of magnitude approximately just by using the same
data and design for all repetitions, varying only the set of shufflings that
are performed. Although this reduced dispersionwould reflectmore ac-
curately the actual variation that different shufflings would cause on a
given real experiment, the average power would be dependent on the
exact, but random values used for the simulations, and would not be
appropriate for the investigation performed here. The magnitude of
variations on power as shown does not translate to actual experiments
and should not be interpreted as such.

Real data

Summary statistics for height, weight, BMI, global cortical surface
area, and global average thickness for the analysed HCP sample are
shown in Table 5. The same Table also shows that, consistently with
the literature, all these quantities are highly and significantly heritable,
even when a conservative surrogate for common environment is
included in themodel. In fact, the estimated common environment frac-
tion of the variance (c2) was zero for all traits except for height. When
the shared environment term is removed from themodel, the estimated
heritability for height increases to 0.8771 (standard error: 0.0244,
2DLL = 146.9, p-value: 4.1 · 10−34).

Permuting the data freely to test the hypotheses of correlation
between thickness or area and indices of body size, therefore not re-
specting the structure of the sibships, allowed the identification of a
few seemingly significant associations, even after FWER correction across
the whole brain, and considering that both positive and negative tests
were being performed. These regions, shown in Fig. 10, are (1) the left
anterior cingulate for a positive correlation between height and cortical
surface area, (2) the right orbitofrontal medial cortex for a positive cor-
relation between thickness and BMI, (3), the right temporal pole, at the
confluence of the inferior temporal gyrus, for a negative correlation be-
tween thickness and body weight, and (4) the right inferior temporal
gyrus for a negative correlation between thickness and height. All
these regions are very small, two of them comprising just one vertex
at the resolution of the surfaces. However, using the proposed multi-
level permutation strategy, in which shufflings only happen within sib-
lings of the same type, and inwhich families with identical structure are
allowed to be permuted as a whole, therefore respecting the kinship
structure, all these findings became no longer significant. Supplementa-
ry Table 3 shows the minimum (most significant) p-value throughout
the brain for both unrestricted and restricted permutation.

Discussion

Error rates and power

The proposed multi-level shuffling strategy controlled the false pos-
itive rate at the nominal level in all configurations evaluated. With the



Fig. 10.Maps showing the locations of the peaks of significance, for positive (+) and negative (−) correlations of height, weight, and BMI with cortical surface area and thickness. For con-
ciseness, and given their lack of overlap, the original maps for thickness were thresholded at 0.05 and added together, allowing the regions to be displayed in the same figure. Even after
using FWER-correction across the brain and contrasts, the unrestricted shuffling identified seemingly significant regions; these regions were not found significant using the restricted
permutations that respect the family structure in the HCP sample. Provided that these traits are highly non-independent between subjects (i.e., heritable) this suggests that these results,
produced with simple, unrestricted permutation, are in fact false positives (the peaks of significance for both restricted and unrestricted are listed in Supplementary Table 3).

Table 5
Heritabilities (h2) for the indices of body size and for global cortical surface area and global average thickness on the sample of HCP subjects when a surrogate for common environment
effects (c2) is included in themodel. The standard errors (SE), the test statistic (2DLL), and the p-values are also shown. Only for height the common environment effectwas estimated to be
different than zero. All traits being highly heritable implies that permutation for analysis of their relationship must take the dependence structure into account.

Trait Additive genetic Common environment

h2 SE 2DLL p-Value c2 SE 2DLL p-Value

Height 0.7346 0.1035 35.4 1.3 ⋅ 10−9 0.1409 0.0990 1.9 8.7 ⋅ 10−2

Weight 0.7248 0.0580 61.1 2.8 ⋅ 10−15 0.0000 – – –
BMI 0.7390 0.0572 62.1 1.6 ⋅ 10−15 0.0000 – – –
Area 0.8697 0.0274 125.3 2.2 ⋅ 10−29 0.0000 – – –
Thickness 0.8961 0.0232 125.5 1.9 ⋅ 10−29 0.0000 – – –
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only exception of sign flippings in the presence of skewed errors, which
clearly violates assumptions, the empirical distribution of p-values was
uniform, as desired, whenever shufflings respected the dependence
structure present in the data; ignoring the dependence resulted in in-
flated error rates, rendering the test invalid. Having dependence in
both data and model may seem unusual, but in fact, this is a quite com-
mon scenario, as exemplified with the data from the HCP.

The guaranteed validity and exactness of p-values came, however, at
the price of a small, yet noticeable and consistent reduction in power,
that related to the complexity of the dependence structure and the en-
suing restrictions on exchangeability. This can be understood by noting
that the restricted permutation strategy does not disarrange the data as
much as the unrestricted shuffling, with the consequence that the sta-
tistics computed after permuting the data may not be as distant from
the statistic computed from the unpermuted data. With sign flippings,
the power losses were smaller, and unrelated to the Hamming distance,
presumably because even changes seemingly small, such as a single sign
swap, can cause large perturbations on the shuffled data that are suffi-
cient to minimise reductions on sensitivity. Permutations combined
with sign flippings showed minimal power changes that were also un-
related to the average Hamming distance, and with losses that were
smaller than for just permutations or just sign flippings, suggesting
that when both EE and ISE are valid for a given model, permutations
with sign flippings can allow maximum efficiency.7

Although the diminished sensitivity could suggest that the multi-
level permutation strategy would be “conservative”, this is not the
7 It should be noted, however, that explicitly selecting permutations that maximise the
amount of disarrangement applied to the data, i.e., performing only those with highest
Hamming distance, causes the error rates not to be controlled; conversely, a selection of
only those that causes less shuffling cause the test to become conservative (results not
shown).
case, as can be attested by the exact control over error rates. This appar-
ent incongruity can be understood through the Bland–Altman plots
shown in the Supplementary Material, that show that the differences
in uncorrected p-values between both strategies is largely outside the
margins of the confidence interval in both directions, suggesting that,
under the null, variations in p-values can go in any direction when the
strategies are compared. Nonetheless, in the presence of signal, or
when the p-values are corrected for multiple testing using the distribu-
tion of the largest statistic across variables (such as voxels), the p-values
for the restricted strategy tend to be stochastically larger than those for
the free shuffling.

The restrictions imposed on the possible rearrangements that can be
performed, with the consequent reduction in the number of possible
permutations, as well as the lessened sensitivity, could be seen as unde-
sirable, but in fact, such restrictions establish a set of rules under which
permutation inference can be performed in settings where otherwise it
would not possible without appealing to often untenable assumptions,
or that would not be possible at all. Simple permutation, if performed,
would create data that could be impossible to be observed in practice,
and thus, that should not be used to construct the reference distribution
to test the hypotheses of interest.Moreover, the stronger the dependen-
cy is between observations, the fewer genuinely independent pieces of
information are available to test a given hypothesis; in this scenario,
smaller power does not appear unexpected.

Body size and cortical morphology

Height, weight, and BMI are known to be highly heritable in general,
and were so for the HCP sample. Likewise, the heritability for global cor-
tical surface area and average thickness are known to be heritable, and
were found as such in the sample analysed. All these traits remained
highly heritable even when a potential confound — a surrogate for
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household and maternal effects — was included. Even if estimated her-
itability were reduced, common effects would still cause the observa-
tions not to be independent. The fact that for all these traits there is a
strong dependence between the observations implies that a permuta-
tion test that ignores the relationship between observations would not
be valid, by violating exchangeability.

Indeed, the test that shuffled the data freely identified a few positive
and negative localised significant associations between indices of
body size and cortical area and thickness, even after FWER correction
considering all tests in both hemispheres and the fact that positive
and negative hypotheses were being tested. None of these areas were
found to be significant if the test used only permutations that respected
the structure present in the data, in the multi-level fashion, suggesting
that these findings are likely false positives. None of the regions impli-
cated were reported in previous studies that investigated relationships
between indices of body size and cortical morphology (Pannacciulli
et al., 2006; Raji et al., 2010; Ho et al., 2010, 2011; Smucny et al.,
2012; Curran et al., 2013; Marqués-Iturria et al., 2013; Melka et al.,
2013; Bond et al., 2014) that we could identify. It should be conceded,
however, that not all these studies used the same methods, with some
having analysed grey matter volumes in voxel-based representations
of the brain, and some, despite using surface-basedmethods, performed
analyses in macroscopic regions, as opposed to at each point in the
cortical mesh. Still, as the simulations demonstrated, the violation of
the exchangeability assumption makes the free permutation prone to
inflated amounts of error type I if the observations are not independent,
and the absence of similarfindings from the literature supports the like-
lihood that these seemingly significant findings are not genuine, being
instead false positives.8

Another aspect is that, although FWER-correctionwas applied consid-
ering the multiplicity of vertices in the mesh representation of the cor-
tex and the two contrasts (positive and negative), no correction was
applied considering that overall six tests were performed (three inde-
pendent variables versus two dependent variables); FWER-controlling
procedures that would take into account the non-independence
between these tests are currently not available. UsingBonferroni correc-
tion, the results using the free permutation, which are likely false-
positives as discussed above, disappear. Since most studies — and in
fact, most of those referenced in the previous paragraph— investigated
only the relationship between one independent versus one dependent
variable, for which no such correction is necessary, the results shown
emulate well the risk of false positives in similar, real studies.

Applications and other considerations

In addition to the above examples, andmost clearly, with a direct ex-
ample application for the HCP data, the multi-level permutation strategy
can be considered for repeatedmeasurements designs in whichwithin-
and between-subject factors are tested in the same model or contrast,
such as for a continuous regressor. A direct comparison of the power ob-
served for datasets E, F and G, using permutations only, shows that even
with the same number of subjects, the combination of within-block
with whole-block permutation can be more powerful than each of
these used in isolation. Moreover, the strategy can also be considered
when not all measurements for a given subject are available, as long
as compound symmetry within subject remains valid, without the
need to exclude entirely the data for subjects as would be the case for
whole-block permutation.

As experiments are planned considering strategies for subsequent
analyses, the use of permutation tests can be included among the
tools available, especially given its simplicity and, as demonstrated
here and in a large body of literature, flexibility to accommodate designs
8 We have run a side analysis (not shown) inwhich we treated DZ pairs as ordinary sib-
lings, i.e., using the tree shown in Fig. 8 instead of the one in Fig. 7, and observed results
that are very similar to those reported, that is, nothing significant.
and data that can be quite complex. Adequate planning includes ensur-
ing that assumptions for permutation tests are met from the beginning,
such as that the random errors of the instrument are stable along time,
and do not vary with the values they measure, that the observations if
not independent, possess a dependence structure that can be accommo-
dated in a framework as the one shown here, and that observations,
if not homogeneous, can be broadly qualified into a few number of
variance groups.

Indeed, regarding VGs, the compatibility of these with the blocks
ensures the feasibility of permutation tests, but it also allows that the
necessary assumptions are reduced to a minimum: instead of requiring
that all observations are homoscedastic (strong), the maximum possi-
ble amount of heterogeneity of variances that could still permit the
shuffling as indicated by the blocks (weaker assumption) can be
allowed. In this case, homogeneity would still be there, although not
across all and every observation, just the minimal amount necessary
so that the experiment can still be analysed. These considerations may
not be relevant if the recruiting process, experimental conditions or
data collection can guarantee that the same variance is homogeneous,
but may be necessary when the data collection or samples are not
under direct control of the researcher (e.g., reanalysis of past experi-
ments, or census data).

Conclusion

The proposed multi-level block permutation effectively controls the
false positive rate, even in the presence of strong dependence between
observations, and can be used as a general inference tool when the
dependence structure can be organised in blocks, hierarchically if neces-
sary. There is an unavoidable loss of power due to reduced scope of
shuffling, although in large datasets, with relatively complex depen-
dence structure, such as the HCP, this loss is expected to be quite small,
especially if permutations can be combined with sign flippings.
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Appendix A. Implementation

Permutation of the tree branches

A naïve way to select only the permutations that respect the data
structure would be to create (randomly or lexicographically) permuta-
tionmatrices as if the data could be shuffled freely, and then test wheth-
er these matrices would respect the configuration of the EBs at the
various levels. If yes, the permutation matrix is used, otherwise it is
discarded. The problem with this approach is not only that the process
of testing can be slow, but also the restrictions imposed by the blocks
can reduce the number of possible permutations by various orders of
magnitude, implying that for some designs, for each valid permutation
that is found, enormous numbers of permutations would need to be
discarded, in a very inefficient process.
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However, the diagram using a tree to represent the blocks and sub-
blocks, and their hierarchical relationship, does not constitute merely a
visual resource. The same tree structure can be used to efficiently imple-
ment a permutation algorithm that shuffles the branches, even in pro-
gramming languages that do not offer natively a tree type, such as C
or Octave/MATLAB, as trees can be constructed with pointers, or with ge-
neric types, such as cells. When constructing the tree representation,
each nodemust store three pieces of information, which are all updated
as the permutations and/or sign flips are performed:

1. A three-column array, to be used under the EE assumption, andmod-
ified at each permutation, with as many rows as branches beginning
at the node. The first column contains a sequence of integers that
represents each of the branches. Branches that have identical struc-
ture and contain identical leaves (i.e., repeated rows in the relevant
part of the design matrix necessary to test the null hypothesis) re-
ceive the same index and so this column can contain repeated values.
This sequence is used by the Algorithm “L” (Knuth, 2005), the algo-
rithm that performs lexicographic permutationswithout repetitions;
as the algorithm runs, the rows are permuted as a whole. The second
column contains the indices that represent the current permutation
in relation to the original sequence, that is, the indices that rearrange
the original sequence of branches into the current state after
permuting. Reverse-indexing this sequence can reset the permuted
branches back to the original, unpermuted state. The third column
contains the indices that rearrange the previous state into the current
state and, just before running the Algorithm “L” for the next permu-
tation, this column is regenerated as a sequence {1, 2, …, B}, with B
here denoting the number of branches (sub-blocks) in the current
level; these are the indices that effectively permute the branches. If
branches that begin at the node cannot be permuted (negative indi-
ces in the multi-level block notation), the whole array is replaced by
some distinct marker that can be tested quickly, such as a not-a-
number (NaN) or simply a zero (0).

2. A counter, to be used under the ISE assumption. The counter can be in
a numeral systemof radix 2 (e.g., using−1 and+1as symbols in lieu
of the conventional binary 0 and 1), with as many digits as branches
starting at the node, and representing in a direct manner the current
state of the sign flippings for each branch.

3. The branches that begin at the node. Each branch is constituted of an-
other tree structure, in a pattern that replicates itself recursively from
the top level to the most distal branches.

Once the tree has been constructed, shufflings can be performed ex-
haustively or, if the number of possible rearrangements is too large, only
a subset needs to be performed. To generate any single permutation in
lexicographic order, the tree is swept from the top node, proceeding re-
cursively down to the next lower level before moving into the next
branch in the same level, skipping the nodes in which the last lexico-
graphic permutation has been reached, and stopping when a single
pairwise permutation of branches can be performed. The respective
branches are then swapped, all previous nodes already visited are
reset back to their original, unpermuted state, and a permutation vector
is constructed by concatenating the (now permuted) indices of the ob-
servations (leaves), from which the permutation matrix is generated.

For sign flippings, the process is similar: the tree is swept, but instead
of computing the next permutation, the counter is incremented. Nodes
that have reached the last possible sign flipping (i.e., with all signs re-
versed) are skipped; when a node can have its counter incremented,
the sweeping stops, the counter is incremented, and all previous nodes
that had been skipped are reset back to their original state. As the coun-
ter uses a numeral system with base 2, the counter itself constitutes a
vector of sign flips that can be applied to the branches that begin at
that node, and generating the sign flipping matrix is then trivial.

As described, the tree representation allows computing exhaustively
and lexicographically all possible rearrangements. However, the tree
can also be perturbed randomly, with the branches that begin in all its
nodes being permuted and/or sign flipped, a feature useful when
performing only a small subset of all possible shufflings.

Variance groups

Themost restrictive set of VGs can also be defined from the same tree
structure. The nodes of the tree are swept from the first branch in the
top node, proceeding recursively down to the next lower level before
moving into the next branch in the same level. At the lowest level,
observations (leaves) that can be permuted are assigned to the same
variance group; those that cannot are each assigned to a distinct
group. At the intermediate nodes, between the top node and the termi-
nal leaves, those in which permutation of the branches is allowed have
their corresponding VGs defined for the first branch, then replicated for
all remaining branches at that level without the need to visit their
lower levels. For the nodes in which permutation of branches is not
allowed, each branch has its own set of VGs defined. A counter is passed
down andup the levels as each node is visited, being incremented to the
next integer every time a new VG is created.

Availability

Implementation for Octave/MATLAB of these two algorithms, directly
usable with the GLM for both imaging and non-imaging data, are avail-
able in the tool Permutation Analysis of Linear Models (PALM), which can
be downloaded freely from www.fmrib.ox.ac.uk/fsl. We name the first,
that permutes the tree branches, as “PALM-Tree”.

Appendix B. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2015.05.092.
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