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Permutation tests are increasingly being used as a reliable method for inference in neuroimaging analysis. How-
ever, they are computationally intensive. For small, non-imaging datasets, recomputing a model thousands of
times is seldom a problem, but for large, complexmodels this can be prohibitively slow, evenwith the availability
of inexpensive computing power. Here we exploit properties of statistics used with the general linear model
(GLM) and their distributions to obtain accelerations irrespective of generic software or hardware improve-
ments. We compare the following approaches: (i) performing a small number of permutations; (ii) estimating
the p-value as a parameter of a negative binomial distribution; (iii) fitting a generalised Pareto distribution to
the tail of the permutation distribution; (iv) computing p-values based on the expected moments of the permu-
tation distribution, approximated from a gamma distribution; (v) direct fitting of a gamma distribution to the
empirical permutation distribution; and (vi) permuting a reduced number of voxels, with completion of the re-
mainder using low rank matrix theory. Using synthetic data we assessed the different methods in terms of their
error rates, power, agreement with a reference result, and the risk of taking a different decision regarding the re-
jection of the null hypotheses (known as the resampling risk). We also conducted a re-analysis of a voxel-based
morphometry study as a real-data example. All methods yielded exact error rates. Likewise, power was similar
across methods. Resampling risk was higher for methods (i), (iii) and (v). For comparable resampling risks,
themethod inwhich no permutations are done (iv)was the absolute fastest. All methods produced visually sim-
ilar maps for the real data, with stronger effects being detected in the family-wise error rate corrected maps by
(iii) and (v), and generally similar to the results seen in the reference set. Overall, for uncorrected p-values, meth-
od (iv) was found the best as long as symmetric errors can be assumed. In all other settings, including for
familywise error corrected p-values, we recommend the tail approximation (iii). The methods considered are
freely available in the tool PALM — Permutation Analysis of Linear Models.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Introduction

Permutation tests allow exact control of error rates, with minimal
assumptions. However, permutation tests are computationally inten-
sive. For small, non-imaging datasets, recomputing a model thousands
of times is seldom a problem, but for imaging applications, that involve
testing at thousands of spatial points (voxels, vertices, faces, edges),
large models that involve many subjects, multiple measurements,
pointwise (voxelwise) regressors, spatial statistics, as well as other
sources of complexity, even with the availability of inexpensive com-
puting power, the same procedure can be prohibitively slow. Strategies
to accelerate the process include the use of efficient or optimised code,
the use of parallel, multi-threaded, or distributed computing, and the
use of graphics processing units (GPUs) (for example applications of
).

Inc. This is an open access article
the latter, see Eklund et al., 2012, 2013; Hernández et al., 2013). While
these methods are attractive for increases in speed, none reduce the
amount of tasks that effectively need to be executed, and the improve-
ments in speed happen through more efficient use of resources avail-
able, or through the introduction of yet more resources. At a time in
which Moore's law (Moore, 1965) approaches physical limits
(Waldrop, 2016), alternative methods to expedite computation are ex-
pected to gain prominence.

Here we exploit properties of the statistics themselves and their dis-
tributions,which could be used to accelerate the evaluation of the test in
order to accept or reject the null hypothesis in a fraction of the time that
otherwise would be needed with a large number of permutations. The
main tenet of these approaches is to obtain a reduction of the number
of actual computations that need to be performed, such that accelera-
tion can be obtained in addition to, or irrespective of, generic improve-
ments of software or hardware. In particular, we discuss the following
approaches: (i) performing a small number of shufflings (with no
other change from the usual case of permutation tests); (ii) estimation
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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of the p-value as a parameter of a negative binomial distribution; (iii)
fitting of a generalised Pareto distribution to the tail of the empirical
permutation distribution; (iv) computing the p-values based on the ex-
pected moments of the empirical distribution, approximated from a
gamma distribution; (v) direct fitting of a gamma distribution to the
empirical distribution; and (vi) shuffling of a reduced number of points
(e.g., voxels), with completion of the remainder using low rank matrix
theory. Details of each are provided in the Theory section.

Very few of such acceleration strategies have been investigated or
used in brain imaging. The tail approximation was considered by Ge
et al. (2012) for an imaging genetics application in which, due to the
sheer volume of data, conventional permutation tests were not consid-
ered feasible. A variant of many possible algorithms for low rankmatrix
completion was proposed by Hinrichs et al. (2013). The fitting of a
gamma distribution without the need for permutations was proposed
recently for a range of statistics byMinas andMontana (2014). For infer-
ence for support-vector machine problems, Gaonkar and Davatzikos
(2012) suggested an analytical approximation to the permutation dis-
tribution of each component of the hyperplane that separates classes.
Here we aim to study, evaluate, and in some cases propose, solutions
that can accelerate permutation tests for the general linear model
(GLM), considering aspects that are specially relevant to imaging, such
as the multiplicity of tests and the use of spatial statistics. In particular,
we make the following main contributions: (I) show how a connection
between Pillai's trace and the popular univariate t statistic allows the di-
rect computation of the p-values from the permutation distribution,
even without performing actual permutations, (II) use the moments of
the empirical permutation distribution for the fit of a gamma distribu-
tion, and (III) propose a novel low rank matrix completion algorithm,
writing the test statistic as the product of twomatrices that can be sam-
pled sparsely, and allowing exact recovery of what otherwise would be
an approximation.

Overview of the paper

In the Theory section we begin by briefly reviewing the uni- and
multivariate GLM, their assessment using permutation tests, and
Table 1
Overview of various strategies that can be considered to accelerate permutation tests.

Method Brief description

Few permutations Compute the p-values using just a few permutations, e.g., less th
thousand.

Negative binomial Run for each voxel as many permutations as needed until a pred
number of exceedances is found. Then divide this number of by
number of permutations.

Tail approximation Run a small number of permutations and, for the p-values below
certain threshold (e.g., 0.10), fit a generalised Pareto distributio
modelling the tail of the permutation distribution.

No permutation For statistics that can be written as trace(AW), where A=XX+,
W=UU', and USV ' =svd(RZY), compute analytically the mome
the permutation distribution, then fit a gamma distribution.

Gamma approximation Run a small number of permutations, compute empirically the
moments of the permutation distribution, then fit a gamma
distribution.

Low rank matrix
completion

Run a certain number of permutations, define orthonormal base
matrices that are linear functions of the data and from which th
statistic can be obtained; continue permuting a random subset o
filling the missing ones via projection to these bases.

Can be used. Can be used, although there are particularities (see main text). Cannot b
CMV: Classical multivariate test (such as MANCOVA); NPC: Non-Parametric Combination; seeW
sidered for essentially any permutation distribution (the latter particularly for unimodal distribu
statistic, as used for familywise error rate (FWER) correction. The negative binomial can be used
many algorithmic variants can be considered, and the complexity needed for CMV and NPC ma
pleted non-spatial (pointwise) statistics, although a direct computation, in a similar way as fo
exact. See main text for details on this and on all other methods.
introduce the notation used throughout the paper. The six different ac-
celeration strategies are then presented in sequence, followed by cer-
tain aspects related to spatial statistics and multiple testing correction
in the context of these methods. In the Evaluation and Results sections
we assess the performance of these differentmethods on both synthetic
and real data. In theDiscussionwe provide recommendations for gener-
al circumstances. A summary of the acceleration strategies is provided
in Table 1. Fig. 1 illustrates four of them.

Theory

Notation and general aspects

At each spatial point of an image representation of the brain, consid-
er a general linear model (GLM) (Scheffé, 1959) expressed as:

Y ¼ Mψþ � ð1Þ

where Y is the N×K matrix of observed data, with N observations of K
distinct (possibly non-independent) variables, M is the full-rank N×R
designmatrix of explanatory variables (i.e., effects of interest and possi-
bly nuisance effects), ψ is the R×Kmatrix of regression coefficients, and
� is theN×Kmatrix of random errors. Estimates for the regression coef-

ficients can be computed as ψ̂ ¼ MþY, where the superscript (+) de-
notes a generalised inverse. One is generally interested in testing the
null hypothesis that a contrast of regression coefficients is equal to
zero, i.e., H0 : C0ψD ¼ 0, where C is an R×S full-rank matrix of S con-
trasts of coefficients on the regressors encoded in M, 1 ⩽ S ⩽ R and D
is a K×Q full-rank matrix of Q contrasts of coefficients on the depen-
dent, response variables in Y, 1 ⩽ Q ⩽ K; if K=1 or Q=1, the model is
univariate. Once the hypothesis has been established, Y can be equiva-
lently redefined as YD, such that the contrast D can be omitted for sim-
plicity, and the null hypothesis stated as H0 : C0ψ ¼ 0. Another useful
simplification is to consider a transformation of the model into a
partitioned one:

Y ¼ Xβþ Zγ þ � ð2Þ
Univariate CMV NPC

Pointwise Spatial Pointwise Spatial Pointwise Spatial

unc. corr. unc. corr. unc. corr. unc. corr. unc. corr. unc. corr.
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inkler et al. (2016) for details. Although the tail and gamma approximations can be con-

tions), the Results showed that thefit performs better for the distribution of the extremum
for NPC, although unlikelywith any acceleration benefit. For low rankmatrix completion,
y offset speed benefits; for this method, spatial statistics can be computed from the com-
r the pointwise, would require a different algorithm with results that would likely not be



Fig. 1.With permutations (i.e., any number of rearrangements, the use of the negative binomial distribution, or the low rank matrix completion), the p-value is the fraction of the test
statistics obtained after permuting that are higher than in the unpermuted T≡T1⁎. In the tail approximation, the tail of the permutation distribution is subjected to the fit of a generalised
Pareto distribution (GPD), from which the p-values are computed. In the method in which no permutations are performed, the first three moments of the permutation distribution are
computed from data andmodel, and thesemoments are used to fit a gamma distribution (Pearson type III) fromwhich the p-values are computed. In the gamma approximation, themo-
ments of the empirical permutation distribution are used for the fit of the gamma distribution. The fig. is merely illustrative: the actual fit uses the cumulative distribution function, such
that histograms are not constructed in practice, hence the fit does not depend on binning.
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where X is the matrix with regressors of interest, Z is the matrix with
nuisance regressors, and β and γ are respectively the vectors of regres-
sion coefficients. Even though such partitioning is not unique, it can be
defined in terms of the contrast C such that the columns of X and Z
are orthogonal to each other, and inference on β is equivalent to infer-
ence on C'ψ (Beckmann et al., 2001; Smith et al., 2007; Winkler et al.,
2014). A suitable, pivotal test statistic, here generically termed T, is com-
puted and its significance assessed through permutations and/or sign
flippings of the data, the model, the residuals, or variants of these. We
sometimes use the terms rearrangement or shuffling when the distinc-
tion between permutations or sign flippings is not pertinent. The p-
value is computed as:

p ¼ 1
J

XJ

j¼1

I T�
j⩾T

� �
ð3Þ

where I(⋅) is the indicator function, Tj⁎ is the test statistic observed at the
j-th shuffling of the data, and J is the number of rearrangements per-
formed, of which thefirst (i.e., j=1) is the unpermuted case.We denote
the significance level of the test as α. In typical cases, J is much smaller
than the number of unique possible rearrangements allowed by the de-
sign and data, Jmax. The same procedure can be used with classical mul-
tivariate tests (CMV), such as MANOVA/MANCOVA or canonical
correlation analysis (CCA), as well aswith Non-Parametric Combination
(NPC); details for both the univariate and multivariate GLM in the con-
text of imaging are discussed in Winkler et al. (2014, 2016).

Resampling risk
Two methods may have similar error rates and power, yet fail to

agree on which tests should have their null hypotheses rejected or
retained. The resampling risk is a quantity that represents the probability
of taking a different decision regarding the rejection or acceptance of
the null hypothesis if the procedure is repeated using the same input
data, but different methods (Jöckel, 1984). Compared to confidence in-
tervals, which can be calculated for p-values derived from permutations
through a binomial approximation (see the Section Few permutations),
the resampling risk is a more generic quantity in that it provides infor-
mation on the chance of reaching a different decision regarding the
null hypothesis that is computable for all the different methods, includ-
ing, for instance, the one in which no permutations are used.

Acceleration methods

Nearly all of the acceleration strategies below can be applied to uni-
variate, uncorrected pointwise tests (“pointwise” as an umbrella term
encompassing voxelwise, vertexwise, facewise, as well as nodewise
and edgewise graph theoretical measurements, or any other relevant
imaging test). If QN1 or KN1, the model is multivariate, and CMV or
NPC can be considered (Winkler et al., 2016). Some of the methods
can also be used with spatial test statistics, and for inferences corrected
for the familywise error rate (FWER) using the distribution of the extre-
mum statistic (see below).

Few permutations
Conditional on the observed data, if all possible rearrangements are

performed, a permutation test is exact in that it yields results that are
not based on distributional assumptions or asymptotic approximations,
but rather represent the exact probability of rejecting the null hypothe-
sis when it is true. If fewer than all possible rearrangements are per-
formed, the p-value obtained is an estimate of the true and unknown
p-value; the test continues to be exact in that the probability of
obtaining an estimate p̂ less than or equal to the significance level α, is
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α itself, i.e., P(p̂⩽ α)= α, provided that the level is sensibly chosen con-
sidering the discreteness of the permutation p-values. Thus, a simple
strategy for acceleration consists in running only a small number of per-
mutations. As indicated above, this results in an unbiased (i.e., correct
on average) estimate of the p-value, but with higher variance (variabil-
ity around the true value) than when using a large number of permuta-
tions. Confidence intervals around p̂ can be computed using one of the
various methods for Bernoulli trials, such as those proposed by Wilson
(1927), Clopper and Pearson (1934) or Agresti and Coull (1998) (for a
comparative review, see Brown et al., 2001). Whichever is used, fewer
permutations imply wider intervals (Table 2), such that the resampling
risk can be expected to increase; in the Evaluation sectionwe assess this
risk for the case of a few permutations, as well as for the other acceler-
ation methods.

Negative binomial
If the permutations are performed randomly (as opposed to in some

order, such as lexicographic), after a few permutations there may al-
ready be sufficient information on whether the null should be rejected,
and continuation of the process narrows the confidence interval around
p̂, although with little chance of changing a decision about the rejection
of the null hypothesis if the estimated p-value lies far from the test level
α. The process can therefore be interrupted after some criterion has
been reached. Various such criteria have been proposed (Andrews and
Buchinsky, 2000; Davidson and MacKinnon, 2000; Fay and Follmann,
2002; Fay et al., 2007; Gandy, 2009; Kim, 2010; Sandve et al., 2011;
Gandy and Rubin-Delanchy, 2013; Ruxton and Neuhäuser, 2013), and
of particular interest is the interruption after a predefined number n of
exceedances Tj⁎⩾T has been found. Weaker effects will quickly be
exceeded after a few random shufflings, whereas stronger effects re-
quire insistence in doing more shufflings until exceedances are found.
The ensuing p-value is the estimated parameter of a negative binomial
distribution (Haldane, 1945) as p̂ ¼ ðn−1Þ=ð j−1Þ, where j is the permu-
tation in which n was reached; this does not include the unpermuted
case, and once that is considered, the permutation p-value becomes p̂ ¼
n= j. This method was proposed by Besag and Clifford (1991), and com-
pared to other approaches, it is attractive for its negligible computation-
al overhead, and for bypassing the need thatα or any other parameter is
defined beforehand. If n has not been reached after a sufficiently large
predefined number J of permutations, the process can be interrupted re-
gardless, and the p-value computed as in Eq. (3).

Tail approximation
The limiting distribution of the maximum of a set of identically dis-

tributed random variables converges to one of three well known fami-
lies of distributions, under a form given by the generalised extreme
value distribution (GEV) [Gnedenko (1943); for reviews, see
Leadbetter et al. (1983), Davison and Huser (2015)]. More broadly,
however, the tail of the distribution of an arbitrary random variable
Table 2
Confidence intervals (95%), computed using the Wilson method, for a p-value
P=0.05 as a function of the number of permutations (J).More permutations nar-
row the confidence interval.

Number of permutations Confidence interval

40 0.0138–0.1650
60 0.0171–0.1370
100 0.0215–0.1118
200 0.0274–0.0896
300 0.0305–0.0808
500 0.0341–0.0728
1000 0.0381–0.0653
2000 0.0413–0.0604
5000 0.0443–0.0564
10,000 0.0459–0.0544
50,000 0.0481–0.0519
can be approximated using a generalised Pareto distribution (GPD)
(Picklands, 1975). For a threshold u→∞, the limiting distribution of
the quantity y=T−u, for TNu, is F(y)=1−(1−ξy/σ)1/ξ, defined for
yN0 and ξy/σb1, with parameters ξ (shape) and σ (scale).1 Methods
to estimate the two parameters of the GPD from the observed permuta-
tion statistics include maximum likelihood, the method of moments, or
themethod of probability-weightedmoments; all three have similar es-
timation efficiency for −1/2bξb1/2, as typical in real world applica-
tions (Hosking and Wallis, 1987; Knijnenburg et al., 2009). Using the
method of moments, the estimators of the scale and shape parameters

are σ̂ ¼ yðy2=s2 þ 1Þ=2 and ξ̂ ¼ ðy2=s2−1Þ=2, wherey and s2 are respec-
tively the sample mean and variance of the values y (Hosking and
Wallis, 1987). Goodness of fit can be assessed with the Anderson–
Darling test (Anderson and Darling, 1952; Choulakian and Stephens,
2001; Knijnenburg et al., 2009).

The algorithm proceeds as follows: a small number of permutations
is initially performed, the set of test statistics Tj⁎ is recorded for each
image point, and initial p-values computed as in Eq. (3). The voxels
with p-values above a loose, liberal significance level (such as twice
the chosen α) remain unchanged; the others have the tail of their per-
mutation distribution used to estimate the GPD parameters. For these,
a reasonable, initial threshold u is the Tj⁎ that defines the upper quartile
of their respective permutation distribution. This threshold is iteratively
increased until a good fit of the GPD is found; if a good fit is not found
when the permutation distribution has been exhausted, no approxima-
tion is made, and the initial p-value is notmodified; otherwise, a new p-
value is computed using the tail of the GPD fitted for that voxel. For the
initial permutation distribution, the unpermuted statistic (T1⁎) may or
may not be included in the process of tail fitting, and the impact of its
inclusion depends on the number of permutations used for the initial
distribution, as we show in the Results section.
No permutation
Pillai's trace (Pillai, 1955) is a suitable statistic that can be considered

to testH0. With the partitioned model, it can be computed as T ¼ trace

ðYe 0HXYeðYe 0YeÞ−1Þ, where HX=XX+, Ye ¼ RZY, RZ= I−ZZ+, and I is the
N×N identity matrix. Alternatively, it can be computed as T=
trace(HXUU'), where U is a N×K matrix containing the K left singular

vectors of Ye that have non-zero singular values.2 Let A≡HX and
W≡UU', such that T=trace(AW). For statistics that can be written in
this form, with A and W being N×N symmetric matrices with mean-
centered columns, the first three moments of the permutation distribu-
tion of the N! possible values for T can be computed analytically under
the assumption of symmetry of the error terms (Box and Watson, 1962;
Mardia, 1971; Kazi-Aoual et al., 1995). With the moments known, a
gamma distribution can be fitted, from which p-values can be obtained
without permutations. The gamma distribution is the Type III distribution
in the Pearson system (Pearson, 1895); references to the classical name
often appear when the distribution is parameterised with respect to its
1 The shape parameter ξ of the GPD corresponds to the shape parameter of the general-
ised extremevalue distribution,whereas the scale parameterσ relates to theGEV scale s as
σ=s−ξ(u−μ), where μ is the GEV location parameter.

2 To see this, letH ¼ ðC0ψ̂DÞ0ðC0ðM0MÞ−1CÞ−1ðC0ψ̂DÞ and E ¼ ð�̂DÞ0ð�̂DÞ be, respectively,
the sums of products explained by themodel (hypothesis) and the sums of the products of
the residuals, i.e., that remain unexplained. Pillai's statistic is T=trace(H(H+E)−1).With

the model simplification and partitioning,H ¼ ðXβ̂Þ0ðXβ̂Þ ¼ ðHXYeÞ0ðHXYeÞ ¼ Ye 0HXYe and
E ¼ ðRXYeÞ0ðRXYeÞ ¼ Ye 0RXYe, where RX= I−HX. Thus, Hþ E ¼ Ye 0ðHX þ RXÞYe ¼ Ye 0Ye. The
trace of a product is invariant to a circular permutation of the factors, such that T ¼

trace
�
Ye 0HXYeðYe 0YeÞ−1

�
¼ trace

�
HXYeðYe 0YeÞ−1

Ye 0
�

¼ trace
�
HXYe Ye þ

�
. Using the factors

of a singular value decomposition, Ye ¼ USV0 and Ye þ ¼ VSþU0 , where U contains only
the K columns that correspond to non-zero singular values, the statistic becomes

T=trace(HXUSV 'VS+U')=trace(HXUU'). The matrices HX, UU', and YeYeþ are N×N.
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moments, although here the current name is used to keep in pace with
modern terminology.

The requirement of mean-centered columns for A and W implies
that the model intercept is entirely represented in Z, and that all col-
umns of X have zero mean. This imposes a restriction on the set of de-
signs for which this method can be considered. Simple group
comparisons and correlations between continuous variables, for in-
stance, are easily accommodated, whereas the means of individual
groups are not.

When rank(C)=1 andK=1(orQ=1),which is by far themost com-
monly encountered situation, the contrast has a direction (positive or
negative), but Pillai's trace is two-tailed, which in principle would seem
to diminish its usefulness, and limit the uses of the above relationship to
just a few situations. This is not a problem in practice: if T is Pillai's
trace, then signðβÞ

ffiffiffi
T

p
is the partial correlation coefficient, which has a

monotonic relationshipwith, and therefore is permutationally equivalent
to, the t statistic. Assuming that the (unknown) distribution of t is sym-
metric around zero, a p-value for the directional test can be computed
by halving the p-value obtained from the gamma fit to the distribution
of T, then subtracting the result fromunity if the sign of the regression co-
efficient in the partitionedmodel (β) is negative. Thus, these relationships
allow p-values that are based on the moments of the permutation distri-
bution for Student's t-tests to be obtained, without doing any actual
permutation.

Gamma approximation
Even for statistics that cannot be written in the form T=trace(AW),

the fit of a gammadistribution throughmomentmatching has potential
to yield valid, useful approximations (Solomon and Stephens, 1978;
Minas and Montana, 2014). This category includes the distributions of
spatial statistics, as well as the distribution of the extremum statistic,
which is used to control error rates for the multiplicity of tests (both
are discussed below). For such statistics, a small number of permuta-
tions is performed, the first three moments (mean, variance, and skew-
ness) are estimated from the permutation distribution, and a gamma
distribution with the corresponding moments fitted, from which the
p-values are computed. Aswith the tail approximation, the unpermuted
statistic (T1⁎) may or may not be included in the initial permutation dis-
tribution (we evaluate both ways, and return to this aspect below). The
gamma distribution does not have infinite support in both directions,
but some test statistics do have, and sometimes the unpermuted test
statistic may fall outside the support of the fitted curve. To address
this issue, depending on the direction of the skewness, the respective
p-value is replaced by either 1 or 1/J, i.e., the smallest attainable if no ap-
proximation is done.

Low rank matrix completion
The statistics computed for each permutation can be organised in a

matrix T of size J×V, where J is the number of permutations and V is
the number of image points (voxels, vertices, etc). Assuming that T
has a low rank, only a small, random subset of its entries needs to be
sampled; the missing ones can instead be recovered approximately
using results from low rank matrix completion theory (Candès and
Recht, 2009; Candès and Tao, 2010), with appreciable acceleration.
However, despite the fact that T tends to have a dominant low rank
component, with many small values in the eigenspectrum, it is still of
full rank for statistics that are non-linear functions of the data, which
is the case for nearly all the useful ones. Ignoring the end of the spec-
trum causes loss of information. While the rank can be recovered
through the introduction of random noise with similar moments
(Hinrichs et al., 2013), there is no guarantee that it will possess the
same spatial structure that would preserve the distribution of spatial
statistics used in imaging. There is also no guarantee that the residual
noise can be characterised by the parameters of a particular distribution,
which is at odds with a usable recovery of this matrix. This is the case
even considering that some of the acceleration methods discussed in
this paper explicitly make this assumption in different contexts.

Here we follow a different strategy: we factorise T into a pair of ma-
trices that can be assembled from linear functions of the data, thus
allowing T to be recovered exactly. We begin by recalling that, using
the partitioned model, when rank(C)=1 and Q=1, a suitable statistic
is the t statistic, such that each element of T is computed as Tjv ¼ β̂jv

ðX0XÞ1=2=σ̂ jv , where β̂jv are the estimated regression coefficients for the
j-th permutation and v-th voxel, and σ̂ jv is the standard deviation of the
respective residuals, σ̂2

jv ¼ �̂0jv �̂jv=ðN−rankðMÞÞ. Thus, T=κB⊙Σ[−1/2],
where B is a J×Vmatrix that has entries β̂jv, Σ is a similarly sized matrix
whose entries are the sums of squares of the residuals, ςjv ¼ �̂0jv �̂jv , κ=
(X 'X(N−rank(M)))1/2 is a scalar constant, ⊙ is the Hadamard
(elementwise) product, and the bracketed exponent in Σ indicates
elementwise power. In this formulation, it is B and Σ that are subjected
to sparse sampling and low rankmatrix completion, instead of T directly;
the results of completion are used to compute T exactly, rather than ap-
proximately, provided that certain conditions are met.

Such exact matrix recovery is not possible unless at least as many
entries as the degrees of freedom of thematrix, ν, are observed, a quan-
tity that depends on the size and rank of the matrix to be recovered
(Candès and Tao, 2010), and that should not to be confusedwith the de-
grees of freedom associated with the GLM. For a J×V matrix, ν=
r(J+V)−r2, where r is the matrix rank. For full rank matrices, this im-
plies observing all their entries, and doing so would not bring any
speed improvement. However, provided that the matrix to be complet-
ed has rank rbmin(J,V), then νb J ⋅V, so that not all its entries need to be
seen or sampled. Moreover, if an orthonormal basis spanning the range
of the matrix is known, such as its left singular vectors, complete recov-
ery of themissing entries on any rowor column can be performed using
ordinary least squares regression (Troyanskaya et al., 2001), provided
that, respectively, at least r observations are available on each row or
column. If fewer are available, approximate recovery may still be
possible.

Our objective is to sample some of the entries of B and Σ, fill the
missing ones, and compute T. Although B and Σ do not need to have a
matching set of entries sampled, it is convenient to do the sampling si-
multaneously, as both are produced from the same regression of the
GLM. The number of entries that needs to be sampled depends then
on which of these two matrices has the highest rank. To determine
that, note thatB can be computed as a product of a J×N and anN×Vma-
trix. The rows and columns of each of these are determined, respective-
ly, by the permutation and regression strategy, as shown in Table 3.
With any of these strategies, the matrix product makes it clear that
the upper bound on the rank of B is N. Likewise, Σ depends on the per-
mutation and regression strategy, and its rank cannot be larger than the
number of possible distinct pairs of N observations, which imposes an
upper bound on the rank of Σ at N(N+1)/2.

Thus we have the conditions in which not all samples are needed,
that allow exact recovery of T, and from which an algorithm arises nat-
urally: (I) min(J,V)NN(N+1)/2, (II) orthonormal bases spanning the
range of Σ are known, and (III) for each permutation j, at least as
many tests (e.g., voxels) as the rank of Σ are observed. For condition
(I), the number N of subjects should ideally not be chosen based on
speed considerations, but rather on statistical power and costs associat-
ed with data collection, and can be considered fixed for an experiment.
The number V of points in an image is typically very large, such that this
condition is trivially satisfied. The number J of permutations, however,
can be varied, and should be chosen so as to satisfy (I). For condition
(III), at least as many voxels than the rank of Σ are randomly sampled.
For condition (II), orthonormal bases can be identified by first running
a number J0=N(N+1)/2 of permutations using all V tests, and assem-
bling initial fully sampled B0 and Σ0 matrices, which are subjected to
SVD. With the two bases known, subsequent permutations j=
{J0+1,… , J} are done using a much smaller set of voxels; the results
for these are projected to the respective orthonormal bases, recovering



Table 3
A number ofmethods are available to obtain parameter estimates and construct the permutation distribution in the presence of nuisance variables. Comparative details and references for
each of these approaches are inWinkler et al. (2014, Table~2); see also Anderson and Legendre (1999), Anderson and Robinson (2001). For themethod of low rankmatrix completion, B

can be written as a product Xe Ye , whereXe is a J×Nmatrix that contains the pseudo-inverse of themodel on each row, and Ye is an N×Vmatrix that contains the data. The j-th row of Xe is

shownas xe j, whereas the v-th columnof Ye is shown as yev. The rank(B) is atmostN, and can be smaller formostmethods, evenwhenVNN and JNN, given theprojection to subspaces due to

RZ and RM. The matrix Σ has rows ς j ¼ diagðYe 0RYeÞ, and its rank is, at most, N(N+1)/2. This determines the number J0 of initial permutations to identify an orthonormal basis, and the
number v0 of tests that need to be done to allow exact recovery. See the text for details.

Method Model xe j yev R

Draper–Stoneman Y=PXβ+Zγ+� Ce 0 ½P jX;Z�þ Y I− [PjX,Z][PjX,Z]+

Still–White PRZY=Xβ+� X+Pj RZY I−P0
jXX+Pj

Freedman–Lane (PRZ+HZ)Y=Xβ+Zγ+� Ce 0 ½X;Z�þP j
RZY I−P′j[X,Z][X,Z]+Pj

Manly PY=Xβ+Zγ+� Ce 0 ½X;Z�þP j
Y I−P′j[X,Z][X,Z]+Pj

ter Braak (PRM+HM)Y=Xβ+Zγ+� Ce 0 ½X;Z�þP j
RMY I−P′j[X,Z][X,Z]+Pj

Kennedy PRZY=RZXβ+� X+RZPj RZY I−P′jRZXX+RZPj

Huh–Jhun PQ ′RZY=Q ′RZXβ+� X+RZQ′+Pj Q ′RZY I−P′jQ ′RZXX+RZQ′+Pj

Dekker Y=PRZXβ+Zγ+� Ce 0 ½P jRZX
0;Z�þ Y I− [PjRZX′,Z][PjRZX′,Z]+

While the models as shown can be used for any general linear model (uni or multivariate), here the focus is on the univariate case (K=1 or Q=1) and in which rank(C)=1, such that Y

andX areN×1matrices (columnvectors). After the partitioning, the effective contrast,Ce , is a columnvector of lengthR, full of zeroes except for the first element, that is equal to one.Q is an
N×N' matrix, where N' is the rank of RZ. Q is computed through Schur decomposition of RZ, such that RZ=QQ' and IN' ×N'=Q 'Q (for this method only, P is N ' ×N'; otherwise it is N×N).
RM=IN×N−MM+. All other variables are described in the text. (It has been brought to our attention that the Smithmethod cited inWinkler et al. (2014) had been proposed previously by
Dekker et al. (2007), hence it is here renamed.)
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the complete j-th row of B and Σ for that permutation, and hence the
corresponding row of T. This proceeds as follows: consider the singular
value decomposition USV ' =B0, where U is an r×V orthonormal basis,
r=rank(B0), rbV. In a givenpermutation j, a (possibly random)number

v, r ⩽ v b V of entries of the row βj of B is observed; call this 1×v rowβe j.

The complete row can be recovered as β j ¼ βe jUeþU, where Ue contains
the respective v columns of U that match the observed row entries.
The same procedure can be applied to the rows ςj of Σ, using the basis
derived from Σ0. Σ and Σ0 have only positive entries, and to minimise
the effects of sign ambiguity on the recovered data (for a description
of the problem, see Bro et al., 2007), the mean can be subtracted before
SVD, and added back after recovery.

The full matrix T is never actually needed. Instead, at each permuta-
tion, its j-th row is computed using completion as above, and discarded
after counters have been incremented (Eq. (3)). To ensure that all per-
mutations are treated equally, the permutations j={1,… , J0} can be
revisited and recomputed through low rank matrix completion once
the orthonormal bases for B0 and Σ0 have been obtained.

A similar strategy can be considered for cases in which rank(C)N1 or
QN1, for statistics other than t. However, to accommodate more regres-
sion coefficients for the F-statistic, or the various off-diagonal sums of
products in the multivariate case for statistics as Wilks' λ or Pillai's trace,
more than just twomatriceswould need to be sampled andfilled, causing
further computational costs that have potential to nullify, or even reverse,
acceleration improvements. Finally, the dependence of the completion on
a common design for all V tests does not allow for pointwise (voxelwise)
regressors in the design matrix; all other acceleration methods discussed
in this paper, however, allow for this possibility.
Inference for spatial statistics

The distribution of spatial statistics, such as cluster extent (Friston
et al., 1994), cluster mass (Poline et al., 1997; Bullmore et al., 1999)
and threshold-free cluster enhancement (TFCE) (Smith and Nichols,
2009), can be computed using few permutations, from which p-values
can be assessed. These can be further refined, at the tails, with a gener-
alised Pareto distribution, or using the fit of a gamma distribution. The
performance of these approaches for spatial statistics are assessed
below. The negative binomial approximation cannot be used, because
the permutations at each voxel are interrupted after a different number
of permutations, preventing spatial statistics from being computed
correctly (except for FWER, see below). Moreover, these statistics can-
not be trivially written as trace(AW), such that themethodwith no per-
mutations cannot be used either. Finally, with low rank matrix
completion, while it is possible to compute these statistics after missing
voxels have been filled, it is unlikely that useful improvements on speed
can be obtained, as most of the time spent on spatial statistics rests on
the computation of neighbourhood information. A direct, possibly
non-exact, recovery of spatial statistics could be considered, though
not with the proposed algorithm.

Multiple testing correction

Controlling the FWER requires the distribution of the extremum
(across tests) statistic. This means that the method in which no permu-
tations are done cannot be used, as the extremum cannot be written as
trace(AW). The negative binomial, as proposed, if operating individually
at each test (voxel) cannot be used either: later rearrangements include
fewer voxels than the initial ones, thus changing the skewness of the
distribution of the extremumas the shufflings are performed. A possible
workaround for the negative binomial is to interrupt the shufflings once
the extremum across tests in a given permutation exceeds (a number n
of times) the extremum in the unpermuted case; the empirical distribu-
tion of the maximum statistic obtained at this point is used for the ad-
justment the p-values. This permits also the use of spatial-statistics. A
potential problem for this approach is that all voxels in an image
would depend entirely on the result found for the single, most extreme
test in the unpermuted case: an incidental incorrect result at that single
voxel would affect the results across the whole image.

Other methods can be used directly for FWER-correction: few per-
mutations, tail and gamma approximations, and low rank matrix com-
pletion can all be used. For the tail and gamma, the GPD and the
gamma distribution are, respectively, fitted to the distribution of the ex-
tremum after a fixed, possibly small number of permutations has been
performed. For the low rank matrix completion, the distribution is ob-
tained by taking the maximum across the V columns of T, thus produc-
ing a vector of length J containing the extrema, fromwhich p-values can
be computed for all voxels in the image.

Such correction is not limited to the points within an image: under
the sameprinciples, the extremum statistic can be used to correct across
multiple imaging modalities, multiple contrasts (i.e., multiple hypothe-
ses using the same data), as well as a mixture of imaging and non-
imaging data (Winkler et al., 2016), provided that the test statistic is
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pivotal, that is, that its asymptotic sampling distribution does not de-
pend on unknown parameters (Winkler et al., 2014).

Controlling the false discovery rate (FDR) (Benjamini and Hochberg,
1995; Genovese et al., 2002) requires that, under the null, the distribu-
tion of the p-values is uniformon the interval [0 1]. This condition can be
relaxed by accepting p-values that are valid for any significance level
smaller than or equal to the proportion of false discoveries that the re-
searcher iswilling to tolerate, i.e.,α ⩽ qFDR, which not only encompasses
the original definition, but also accommodates the cases (e.g., with
TFCE) in which the uniformity of the distribution of p-values is lost
only for high p-values, which are typically of no interest. It should be
noted, however, that from its own definition, FDR is expected to be con-
servative with discrete p-values if too few permutations are performed,
which can be predicted from the original formulation, and as it has been
described in the literature (Gilbert, 2005). This can be the case if some
tests are found significant (the true proportion of false discoveries
may be smaller than the level qFDR, due to ties), or if none is found sig-
nificant (the true familywise error rate, usually weakly controlled by
FDR, may be below qFDR or even equal to zero, as the lower bound on
the p-values, dictated by the number of permutations, may not be suffi-
ciently small to allow any rejection).

Algorithmic complexity

The actual time needed to perform eachmethod depends on choices
made at implementation, including programming strategies, resources
offered by the programming language and the compiler, as well as the
available hardware. Asymptotic bounds and memory requirements
are more realistic as means to provide a fairer comparison, and a sum-
mary is shown in Table 4. Compared to an ideal method in which a
very large, potentially exhaustive (Jmax), number of shufflings is per-
formed, and that would have asymptotic computational complexity
Θ(NVJmax), each method uses a different strategy to increase speed.
Few permutations, tail and gamma approximations use small J. Speed
is increased in the negative binomial case by means of reducing the
number of shufflings based on the number n of exceedances needed,
thus having a stochastic runtime. The no permutation case bypasses
the need for permutations altogether. Compared to the others, the low
rank matrix completion has lower asymptotic run time when N is
small in relation to V and J.

As the acceleration in each of the methods is due to different mech-
anisms, the stage at which the increments in speed happen varies. For
few permutations, aswell as for tail and gamma approximations, the in-
creases in speed happen through the use of fewer shufflings; the latter
two, however, need additional time to allow the fit of a GPD or
gamma distribution respectively, to the initial, permutation
Table 4
Computational complexity and memory requirements for the different methods.

Method Computational complexity Specific storage

Few permutations Θ(NVJ) 2V
Negative binomial Θ(nN log(V)) 2V
Tail approximation Θ(V(NJ+1)) V(J+1)
No permutation Θ(NV) V
Gamma approximation Θ(V(NJ+1)) V(J+1)
Low rank matrix completion Θ(N3(V+ J)) 2V(2J0+1)

N is the sample size, V the number of tests in an image (such as voxels or vertices), n the
number of exceedances, and J thenumber of permutations, and J0 thenumber of fully sam-
ple permutations in the low rankmatrix completionmethod. The computational complex-
ity refers to the acceleration, and does not include steps that are common to all methods,
such as the model partitioning, computation of the test statistic and other procedures.
Likewise, the specific storage refers to the amount of memory needed to store the bulk
of the intermediate data that are particular for each method, and ignores storage needs
that are common to all methods, such as for the data itself, the design matrix, the set of
permutations, etc.; it also ignores small transitory variables that occupy insignificant
amounts of memory. Tail and gamma as indicated consider the fitting for uncorrected p-
values, that need one fit per test (voxel); if only FWER is required, the cost of a single fit
is negligible, and these can be considered Θ(NVJ).
distribution. For FWER-corrected results, such fitting is quick, as it
needs to be performed for only one distribution (of the extremum sta-
tistic); for uncorrected results, however, this process takes considerably
longer, as each voxel needs its own curve fitting. The negative binomial
benefits from fewer permutations, and further, benefits from a reduc-
tion in the number of tests (voxels) that need to be assessed, although
there is a computational overhead due to the selection of tests that did
not reach the number of exceedances and need to continue to undergo
permutations. The low rankmatrix completion benefits from a dramatic
reduction in the number of tests that need to be done, a quantity that
depends only on the number of subjects and not on the size of the im-
ages. The method in which no permutations are performed benefits
from the analytical solution and, as the name suggests, the waiver of
the need to permute anything.

The memory requirements also vary. For the few permutations and
negative binomial, only the array of V elements containing the test sta-
tistic, and another of the same size for the counters to produce p-values
are needed. For the tail and gamma approximations, the test statistics
for all J permutations need to be stored, from which the moment
matching is performed. The no permutation does not require counters.
The low rank matrix completion needs two arrays of size V× J0 to
store the values of B0 and Σ0, and two further arrays of the same size
to store the orthonormal bases (at which point B0 and Σ0 are no longer
needed).

Evaluation methods

In an initial phase, we explored all methods using synthetic univar-
iate and multivariate data and a wide variety of parameters. We
assessed their performance in terms of agreement of the p-values with
those obtained from a reference set constructed from a relatively large
number of permutations, which provide information on error rates
and power. In a second phase, using a more parsimonious set of param-
eters, univariate data, and a hundred repetitions, we assessed the re-
sampling risk and speed. Real data was used as an illustration in
which speed and resampling risk were also evaluated.

Synthetic data: Phase I

The dataset consisted of N=20 synthetic images of size 12×12×12
voxels, containing random variables following either a Gaussian distri-
bution (with zero mean and unit variance) or a Weibull distribution
(with scale parameter 1 and shape parameter 1=3, shifted and scaled
so as to have expected zero mean and unit variance3). The use of
these two distributions is to cover a large set of real world problems,
with a well-behaved (Gaussian) and a skewed (Weibull) distribution.
While the methods are not limited to imaging data, the use of images
is helpful for permitting the assessment of the methods using spatial
statistics.

To these images, and following the notation from the section
Notation and general aspects, simulated effects were added as Mψ,
with ψ = [ψ1 0]', ψ1 being either 0 (no effect) or tcdf

−1(1−α;N−
rank(M))/(C ' (M 'M)+C)1/2, where C=[1 0]' is the contrast and α =
0.05 is the significance level of the permutation test to be performed
at a later stage, thus ensuring a calibrated signal strength sufficient to
yield an approximate power of 50% with Gaussian errors, irrespective
of the sample size; for the Weibull distribution, the signal was further
weakened by a factor 5/8, also ensuring power of approximately 50%.
Signal was added to all voxels, thus avoiding the usual problems of sig-
nal bleeding, due to smoothing, to areas of otherwise pure noise. The ef-
fect was coded in the first regressor only, with the second regressor
modelling an intercept. The first regressor was constructed as a set of
3 Thus with actual skewness (Γ(1+3/k)λ3−3μσ2−μ3)/σ 3≈19.58, where here μ and
σ 2 represent the mean and variance of this distribution, and k and λ the shape and scale
parameters.



4 Available at http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/fslvbm.
5 A mirrored copy that does not require download, though not guaranteed for perma-

nent preservation, can be found at http://fsl.fmrib.ox.ac.uk/analysis/fastpval
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random values following a Gaussian distribution with zero mean and
unit variance. Smoothing was applied with a Gaussian kernel of full
width at half maximum (FWHM) of 4 voxels in all three directions, im-
plemented as multiplication in the frequency domain, without zero
padding, such that positive dependencies among voxels was introduced
as desired, and without producing edge artefacts.

Tests were performed using just one such simulated image (univar-
iate) or three (multivariate data). For the latter, both CMV and NPC test
statistics were considered, usingWilks' λ, and Pillai's trace for CMV, and
the combining functions of Tippett and Fisher for NPC (Winkler et al.,
2016). These cover the most common cases. For all these statistics, per-
mutations (for exchangeable errors, EE), sign flippings (for independent
and symmetric errors, ISE), and permutations with sign flippings (EE
and ISE) were performed. To assess how the parameters needed for
each acceleration could impact results, these were varied:

- Few permutations: J= {40, 60, 100, 200, 300, 500, 1000, 2000,
5000}, where J is the number of permutations.

- Negative binomial: n= {2, 5, 10, 15, 20, 50, 100} and J= {50000},
where n is the number of exceedances before interrupting the
process.

- Tail approximation: J= {40, 60, 100, 200, 300, 500, 1000, 2000,
5000}, using p=0.10 as the threshold below which the p-values
are refined, and including or not the first permutation test statistic,
T1⁎≡T in the initial null distribution to which tail the GPD is fit.

- No permutation: No parameters to be varied for this method.
- Gamma approximation: J= {40, 60, 100, 200, 300, 500, 1000, 2000,
5000}, and including or not the first permutation test statistic in the
initial null distribution, to which the gamma is fit.

- Low rank matrix completion: v= {42, 105, 210, 864} and J= {210,
300, 500, 1000, 2000, 5000, 50000}, where v is the number of voxels
randomly selected to infer the values of all others. The value v=210
corresponds to v0=N(N+1)/2.We expected that v equal to or larg-
er than this critical value would allow perfect reconstruction of the
test statistic, but wanted to assess whether smaller values (one
half or one fifth of this value) would still be acceptable as approxi-
mations; the v=864 corresponds to oversampling. For the univari-
ate case only, a further run using J=50000 and the exact same
permutations as the reference set was used to verify their equality.

The 81 possible configurations above generated 709 sets of results
considering the univariate, the two CMV, and the two NPC, and the uni-
variate non-spatial statistics (uncorrected and FWER-corrected), TFCE
(uncorrected and FWER-corrected) and cluster extent and mass
(corrected). Further, the 12 combinations of signal, noise and shuffling
strategy required a total of 8508 scenarios to be considered. Each of
the six acceleration methods were compared to a reference set pro-
duced with J = 50000 permutations, which were assessed using PP
and QQ plots, constructed in logarithmic scale [henceforth log(PP) and
log(QQ)] so as to emphasise the smaller, more interesting p-values,
and Bland–Altman plots (Bland and Altman, 1986), all with 95% confi-
dence intervals estimated from an approximation to the binomial distri-
bution using theWilson method (Wilson, 1927). Error rates and power
were computed using respectively the simulations without and with
signal.

Synthetic data: Phase II

In addition, for the univariate, Gaussian errors, with andwithout sig-
nal, and exchangeable errors (permutations only), 100 realisationswere
performed using all the variousmethods and respective parameters, ex-
cept low rank matrix completion (Phase I demonstrated it produces
identical results as using ordinary permutations; see the Results sec-
tion). This allowed empirical standard deviations, as opposed to esti-
mated confidence intervals, to be computed and included in the
log(PP) and Bland–Altman plots. Histograms of p-values, with the vari-
ability on the heights of the bars, could also be computed. Estimates of
error rates, power, and resampling risk were obtained, as well as
elapsed times. These simulations also allowed log(QQ) plots for the ex-
tremum statistic, based on the 100 repetitions, as opposed to plots for
the corrected FWER p-values as in Phase I.
Real data

We conducted a re-analysis of the data of the voxel-based mor-
phometry (VBM) study by Douaud et al. (2007). In brief, T1-weighted
magnetic resonance images of 25 subjects diagnosed with schizophre-
nia and 25 controls matched for sex and age were obtained. These
images were analysed with FSL-VBM4 (Douaud et al., 2007), an
optimised VBM protocol (Good et al., 2001) carried out with the
FMRIB Software Library (FSL; Smith et al., 2004). In short, the grey mat-
terwas segmented from the T1-weighted image, non-linearly registered
to a common space, modulated and smoothed, and the two groups of
subjects compared using a design corresponding to a two-sample t-
test. This is the same dataset used in the original evaluation of TFCE
(Smith and Nichols, 2009) and for the present re-analysis, we consid-
ered the same two levels of smoothing, i.e., with σ=3, that correspond
to FWHMof approximately 7mm. The overall number of voxels includ-
ed in this analysis was V=231,259.

The parameters used for the acceleration strategies are the same
used for Phase I of the simulations, except that for low rankmatrix com-
pletion, and considering the N=50, the parameters were held fixed at
v0=N(N+1)/2=1275 and J=5000. The reason is that using a smaller
v would cause the method to fail to recover the non-sampled statistics,
even approximately, as the simulations in Phases I and II demonstrated
(see the Results section), and varying J, once v has been fixed, is equiv-
alent to the few permutations method.
Results

Phase I allowed a comparison between p-values obtained from the
reference set with those obtained by the various acceleration methods
and uncorrected error rates, whereas Phase II allowed an estimation of
the familywise error rate after multiple repetitions. The VBM example
permitted inspection of the results of a practical example of an imaging
modality that offers various statistical challenges, particularly with re-
spect to non-stationarity (Hayasaka et al., 2004; Salimi-Khorshidi
et al., 2011) and skewness (Salmond et al., 2002; Viviani et al., 2007).
The multiplicity of scenarios resulted in the construction of more than
25 thousand plots and maps, which do not fit the journal format; a se-
lection of a few results would unduly overemphasise certain aspects at
the expense of others. Instead, we organised these plots in a browsable
set of pages, and packaged them into a single, 1.9 GB file that can be
downloaded and browsed locally. Thisfile is deposited for long termpres-
ervation and public access at the Research Archive of the Bodleian Librar-
ies (ORA-Data), and it constitutes the Supplementary Material that
accompanies this paper, accessible under the Digital Object Identifier
(DOI): http://dx.doi.org/10.5287/bodleian:v0wY6e6Y0. The results
below make ample reference to this material, and its inspection is
encouraged.5

Despite the large and multidimensional nature of the simulations
and analysis of the real data, both of which considered many possible
parameters, and the fact that each method may have strengths under
different evaluation metrics, the overall results are generally simple to
describe, and are summarised below.

http://dx.doi.org/10.5287/bodleian:v0wY6e6Y0
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/fslvbm
http://fsl.fmrib.ox.ac.uk/analysis/fastpval
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Error rate

Nearly all methods, when used according to their respective theory,
yielded, on average, exact error rates. Evidence for this assertion comes
from the log(QQ) plots produced in Phase I, that show p-values running
along the identity line, or not deviating more than by their respective
95% confidence interval, and the log(PP) and histograms produced
from the hundred repetitions performed in Phase II, as shown in the
Supplementary Material. A notable exception occurred, for the uncor-
rected case, if the unpermuted statistic T1⁎ was not included in the null
distribution for the gamma and tail approximations, and if less than
500 or 1000 permutations respectively were performed, in which case
the error ratewas on average above the nominal level. For the corrected,
error rates were controlled regardless, and the difference between in-
clusion or not was negligible. Another exception was, for low rank ma-
trix completion, the use of fewer than the prescribed v0 tests, which led
to error rates being not well controlled; using at least this quantity not
only allowed the method to remain exact, but produced results in com-
plete agreement (that is, perfectly identical) to using the same number
of permutations and full sampling (that is, without completion).

Power

Conditional on the error rate being controlled, all methods yielded
generally similar power, as evidenced by the histograms in produced
in Phase II, shown in the Supplementary Material. It should be noted,
however, that although more permutations did not intrinsically in-
crease power, as expected they allowed smaller p-values to be found,
thus being beneficial for methods that use permutation (few permuta-
tions, tail approximation, gamma approximation, and low rank matrix
completion) if the significance level were smaller than α=0.05, and
certainly for the use of FDR.

Agreement with the reference set

The smaller p-values (e.g., smaller than 0.10), were generally similar
acrossmethods, agreeingwellwith the reference set of results produced
with 50000 simple permutations, without considerable variations that
would result in entirely different results, both in the presence and ab-
sence of signal, although for p-values in the middle of the distributions,
results often varied widely. In the Supplementary Material, this can ob-
served in the log(PP) and Bland–Altman plots. The two important ex-
ceptions were: (I) for low rank matrix completion using fewer tests
(voxels) than v0, that led to widespread disagreement with the refer-
ence set and often nonsensical results, and (II) for the no permutation
method if the resampling used only sign flipping, or if the errors were
skewed. Moreover, for p-values away from the tail, the disagreement
of the no permutation method with the reference set was substantial,
even with symmetric errors and permutations only.

Resampling risk

The risk of altering decisions about the rejection of null hypotheses
was higher when fewer rearrangements were used for methods
where J was varied. This could be observed in both uncorrected and
corrected p-values. Removal of T1⁎ in the methods that fit a distribution
reduced marginally the resampling risk compared with keeping the
unpermuted statistic in the distribution, althoughmaking the test inva-
lid; in either case, the resampling riskwas always smaller than for using
only few permutations, with either uncorrected or FWER-corrected p-
values. For the negative binomial, resampling risk was higher with
fewer exceedances. Themethodwith no permutations yielded the low-
est resampling risk overall for the settings assessed. In any case, the re-
sampling risk can be said to have been generally small, and well below
1% for corrected p-values in the simulations. Fig. 2 shows the trade-off
between speed and resampling risk for the more conservative case in
which T1⁎ is included in the permutation distribution.

Speed

For comparable resampling risks, the method in which no permuta-
tions are performedwas the absolute fastest. Fewpermutations, gamma
and tail approximations were generally quick, with tail being slower
than gamma for the same number of permutations, and gamma slightly
slower than few permutations. This considers a voxelwise fit, for uncor-
rected p-values; if only corrected p-values are needed, the time needed
for the single fit of the GPD or gamma for the distribution of extremum
statistic is negligible. The negative binomial and, specially, low rankma-
trix completion were the slowest. Low rank, however, is expected to
perform better in settings where there are more tests to be performed
(more voxels) than those used in the simulations and real data, and
with a relatively smaller sample size (Table 4).

Noise distribution and shuffling strategy

The performance of the variousmethodswas similar in terms of error
rates, power, resampling risk, and speed, regardless of the errors being
Gaussian or Weibull (skewed). However, as expected given its assump-
tions, themethod inwhichnopermutations are useddid not produce cor-
rect results that could be comparedwith the reference set if the reference
set used sign-flippings (for either error distribution), or if the errors were
skewed (regardless of the shuffling strategy, i.e., permutations, sign-
flippings, or permutations with sign-flippings).

Spatial statistics

The behaviour for spatial statistics followed the same trends as for
the voxelwise, non-spatial statistics, in terms of error rates, power,
agreement with the reference set, and resampling risk.

Multivariate statistics and non-parametric combination

Likewise, the results for CMV and for NPC followed similar trends as
above, with error rates controlled exactly, and yielding similar power as
the reference set, as evidenced by the results of Phase I shown in the
Supplementary Material.

Real data

All methods yielded visually similar maps for the real data, with
smaller p-values observable with more permutations for the methods
that use permutations, or more exceedances for the negative binomial.
In the TFCE, FWER-corrected maps, stronger effects of interest could
be revealed by tail and gamma methods for equivalent J of few permu-
tations. These results are remarkably similar to the results seen in the
reference set, even using about a hundred times fewer permutations,
with proportional increases in speed, as summarised in Figs. 3 and 4,
and shown in greater detail in the SupplementaryMaterial. The timings
refer to the implementation available in PALM, as described at the end
of the paper. The acceleration methods worked similarly, and yielded
similar increases in speed, for the two levels of smoothing considered.

Discussion

Assumptions

All six methods presented are non-parametric in the sense that they
do not depend on the distribution of the test statistic. Some of the
methods can still be said to be parametric in that certain parameters
need to be estimated, such as for the gamma or for the generalised Pa-
reto distribution, although they remain non-parametric in that the



Fig. 2. Balance between resampling risk when compared to a reference set of J=50000 permutations and the respective running time, with the data simulated for Phase II (hence, 100
repetitions, Gaussian noise). Some methods have parameters that could be varied: few permutations, tail approximation and gamma approximation use a certain number of
permutations that varied in the simulations as J={40,60,100,200,300,500,1000,2000,5000}. The negative binomial distribution uses a fixed upper limit on the number of permutations
(set as J=50000) and a number of exceedances that varied as n={2,5,10,15,20,50,100}. The no permutation method has no parameter to be varied. The low rank matrix completion
has the same resampling risk as the few permutations, but the running time is too dependent on the size of the data, hence is not shown. More permutations reduce the resampling
risk, but take longer to run.
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distribution from which these parameters are estimated is based on
permutations (or at least conceptually, as in the case of the no permuta-
tionmethod). Somemethods nevertheless require certain assumptions:
for the gamma approximation, a fit can only be adequate if the distribu-
tion of the test statistic is unimodal; for themethod in which no permu-
tations are performed, the results are an approximation only to
permutations proper, not to sign-flippings, and only if the distribution
of the errors is symmetric.

Resampling risk and number of permutations

Although the p-values can vary considerably between the methods,
as evidenced by the Bland–Altmanplots, at the tails they are remarkably
similar, thus allowing similar inferences to be drawn, and presenting an
overall low resampling risk for the corrected maps. This means that for
most methods, the overall result upon rejection or not of the null hy-
pothesis is expected to remain broadly the same.

The results permit relaxing the usual common sense that more per-
mutations are better. Although more permutations do reduce the re-
sampling risk, the high computational cost may not bring additional
information upon acceptance or rejection of the null hypothesis, even
considering the large number of tests usually performed in brain imag-
ing. This is particularly the case for FWER corrected results, for which
the resampling risk, even for moderate to small number of permuta-
tions, was quite small.

It should be noted that, althoughmore permutations do not intrinsi-
cally increase power, they allow smaller p-values to be found (Eq. (3)).
Even though p-values much smaller than needed to reach a decision on
the null hypotheses may be not needed, such as for FWER correction,
methods that use uncorrected p-values as a starting point for further
computations, such as for subsequent FDR correction, stand to benefit
more from the greater resolution and potentially greater significance
of p-values derived with a larger number of permutations. This com-
pounds with more accurate fitting of a distribution, such as the GPD
(tail) and gamma, enabled by the larger number of points available in
the empirical distribution.

Tail, gamma, and no permutation

For tail and gamma approximations, a small number of permuta-
tions is initially performed, from which a low resolution null distribu-
tion is built and used for the GPD (tail) or gamma (full distribution)
fit. The results show that inclusion or not of the unpermuted test statis-
tic (T1⁎) in this null distributionmakes a substantial difference in the un-
corrected case if too few permutations are performed, with p-values
that, at the tail, are either conservative (if included) or invalid (if not in-
cluded). Thus, if interest lies solely on uncorrected p-values, such as in
the absence of multiple testing, or for subsequent use of FDR, other ac-
celeration methods that do not suffer from either conservativeness or
invalidity at the tails are advisable. For FWER-corrected p-values, as
the number of tests (voxels) increase, the difference between including
or not the unpermuted statistic in the null distribution becomes
negligible.

This is not an unexpected finding, particularly for test statistics that
happen to be at the tail, such as when there is a true, strong effect of in-
terest: by being at the tail, T1⁎ is among the rarest values found with the
permutations, hence a single extra observation of the statistic is consid-
erably influential if too few permutations are done; for test statistics
lying towards the mode of the distribution, where most of the other
values are located, a single extra observation has little noticeable effect.

These two methods allow p-values to extend further into the tail of
the null distribution than otherwise is possiblewhen only fewpermuta-
tions are used, and are particularly useful for the FWER case, offering a
complement for the nopermutationmethod that is available to produce
uncorrected p-values. The latter, however, requires both symmetric
error terms and that the intercept is entirely contained in Z. Tail and
gamma approximation can also be used even if the number of permuta-
tions is reasonably large (such as 5000), yielding corrected results that



Fig. 3.VBMresults, showinguncorrected p-valuemaps (axial slices z=10and z=48mm,MNI space), and the overall amount of time takenby eachmethod. The tail and gammamethods
generally have higher power compared to few permutations with the same J, evenwith these not including the unpermuted statistic in the null distribution; see the Supplementary Ma-
terial for other maps.
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Fig. 4. VBM results, showing corrected (FWER) p-value TFCE maps (axial slices z=10 and z=48 mm, MNI space), and the overall amount of time taken by each method. As with the
uncorrected, the methods generally have higher power compared to few permutations with the same J, and approximate better the reference set.
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Fig. 5. Decision tree regarding the various acceleration methods. Each of the terminal
boxes show, in order, the preferred methods. For NPC, spatial statistics, or for FWER-
corrected p-values, tail and gamma approximations, and few permutations are in general
recommendead; gamma is faster than tail fitting, but the latter ismore generic. For uncor-
rected p-values, without spatial statistics, and if the errors can be assumed symmetric, the
no permutation method is preferred; if symmetry cannot be assumed, the negative bino-
mial is favoured. The low rank matrix completion (not shown) can be used if N≪V, as a
replacement to the few permutations or to build the initial null distribution before tail
or gamma approximations.
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are remarkably similar to what would be obtained with far more
shufflings.

Low rank matrix completion

Variousmethods can be considered that could make use of low rank
matrix completion. The method proposed here performs completion of
two matrices, using the data from potentially far fewer tests (voxels)
than those present in an image.While completing twomatrices, instead
of only one, may seem an undesirable computational cost, by restricting
the completion to only matrices that can be constructed through linear
operations on the data andmodel, exact recovery is possible. Therefore,
problems with unrecoverable residuals due to imperfect reconstruction
of the matrix that stores the statistic itself are eschewed, and no as-
sumptions need to be introduced, such as for ad hoc attempts for the re-
covery of the residuals themselves, or for the characterisation of its
parameters. The conditions for completion are easily attainable in
brain imaging, and the method produces identical results to those ob-
tained with the conventional permutation test.

The method is expected to perform faster with large images and
with small samples, although performance gains also need a fast imple-
mentation. The simulations were too expensive to use a sufficiently
large image, hence potential advantages of low rank completion could
not be illustrated. Yet, the method remains an option as a potential re-
placement for simple permutations, and as the initial step for tail and
gamma approximations. It has also the benefit that, from the recovered
statistics, spatial statistics can further be calculated, although direct re-
covery of such spatial statistics, that are not linear functions of the
data, would lead to approximate results.

Applicability

Most of the assessed methods are generic and can accommodate
many cases of potential interest. In particular, the tail and gamma ap-
proximations, as well as few permutations, can be applied in a variety
of situations that include univariate and multivariate tests (both CMV
and NPC), spatial statistics, and for the correction using the distribution
of the extremum statistic (minimum or maximum). The low rank ma-
trix completion, by producing identical result to few permutations,
can likewise be considered a generic solution, although its computation-
al benefits only arise for large images andwith relatively smaller sample
sizes, and even so, only for univariate statistics.

Except for the method in which no permutations are performed, all
others can be considered for experiments that use non-independent
data, as long as dependencies between observations have been taken
into account by means of exchangeability blocks, including multiple
levels of exchangeability (Winkler et al., 2015), with the consequence
that these acceleration methods can be used for experiments that
used repeated measurements, heterogeneous variances, or other types
of structured dependencies.

Real data

Using a VBM dataset was especially useful as this imagingmethod is
known to suffer from non-normality, particularly skewness, and spatial
non-stationarity, which could pose difficulties. Yet, the acceleration
methods performed generally well, and the results of the reanalysis
are in line with those of the original study (Douaud et al., 2007). Of
note, at J=500, the tail approximation seemed to produce spatial re-
sults closer to the reference set than the gamma approximation, with
fewer false positives and, importantly, fewer false negatives in relation
to that set, especially in the left Broca's area and the inferior temporal
gyri. Using of any of the acceleration methods that can produce FWER-
corrected p-values resulted in the same conclusions about rejection of
the null, only with considerable increases in speed. Even though the
method in which no permutations are done worked reasonably well
with the real and presumably skewed VBM data, it should be noted
that assumptions were violated, and this method should not in general
be recommended in the presence of skewness.

Recommendations

As a general rule, given its generalisability, its lack of dependence on
symmetry or on unimodality of the permutation distribution, the need
to consider the multiplicity of tests in brain imaging, its availability
not only for univariate tests, but also CMV and NPC, as well as spatial
statistics, and in the absence of any reasonable information about the
data, the tail approximation can be recommended. The gamma approx-
imation can be recommended for the same circumstances, and it tends
to be slightly faster than the tail approximation, although it requires
that the whole permutation distribution is well behaved, and the as-
sumption that its entirety can be approximated by a gamma
distribution.

For uncorrected p-values, and without spatial statistics, if symmetry
of the error terms can be assumed, the method in which no permuta-
tions are performed can be recommended, given its speed. If symmetry
cannot be assumed, negative binomial distribution and tail approxima-
tion can be used; for the latter, the unpermuted statistic may be exclud-
ed from the null distribution if the number of permutations is large
given the significance level (such as about a thousand for an α=0.05,
as considered in the Evaluation), or if the approximation is used for



515A.M. Winkler et al. / NeuroImage 141 (2016) 502–516
FWER corrected p-values. The low rank matrix completion can be con-
sideredwhen the number of tests (voxels) ismuch larger than the num-
ber of subjects, as a replacement to the fewpermutations, or to build the
initial null distribution before tail or gamma approximations.

As for the number of shufflings to be used, the choice depends on
how small the p-value needs to be for a given significance level while
maintaining a reasonably small resampling risk. The results seem to in-
dicate that, even without tail or gamma approximations, using about
500 permutations can give stable results for FWER corrected inference,
althoughwhenever computational resources are available, more should
be considered. The fitting of a GPD or gamma distributions can help
with the discreteness that can render FDR conservative. A flow chart
summarising these recommendations is shown in Fig. 5.

Conclusions

A number of statistical devices can be considered to accelerate per-
mutation tests in addition to, or irrespective of, generic improvements
to accelerations that depend on software implementation or on hard-
ware. The methods considered yielded generally similar results, and as
the different scenarios of error terms and shuffling strategy varied, the
methods performed marginally better or worse than each other as
assessed in terms of conservativeness, agreement with the reference
set, and resampling risk. The methods were in general considerably
faster than the common alternative of running a large number of
permutations.

Implementation of all the acceleration methods described, licensed
under the General Public Licence (GPL), and that can be executed in
MATLAB (The MathWorks Inc., 2015) or Octave (Eaton et al., 2015), is
available in the tool Permutation Analysis of LinearModels (PALM), avail-
able for download at www.fmrib.ox.ac.uk/fsl.
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