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Abstract: In this work, we show how permutation methods can be applied to combination analyses such
as those that include multiple imaging modalities, multiple data acquisitions of the same modality, or sim-
ply multiple hypotheses on the same data. Using the well-known definition of union-intersection tests and
closed testing procedures, we use synchronized permutations to correct for such multiplicity of tests,
allowing flexibility to integrate imaging data with different spatial resolutions, surface and/or volume-
based representations of the brain, including non-imaging data. For the problem of joint inference, we pro-
pose and evaluate a modification of the recently introduced non-parametric combination (NPC) methodol-
ogy, such that instead of a two-phase algorithm and large data storage requirements, the inference can be
performed in a single phase, with reasonable computational demands. The method compares favorably to
classical multivariate tests (such as MANCOVA), even when the latter is assessed using permutations. We
also evaluate, in the context of permutation tests, various combining methods that have been proposed in
the past decades, and identify those that provide the best control over error rate and power across a range
of situations. We show that one of these, the method of Tippett, provides a link between correction for the
multiplicity of tests and their combination. Finally, we discuss how the correction can solve certain prob-
lems of multiple comparisons in one-way ANOVA designs, and how the combination is distinguished
from conjunctions, even though both can be assessed using permutation tests. We also provide a common
algorithm that accommodates combination and correction. Hum Brain Mapp 37:1486–1511, 2016. VC 2016
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INTRODUCTION

In this paper we show that permutation tests can pro-
vide a common solution to seemingly disparate problems
that arise when dealing with multiple imaging measure-
ments. These problems refer to the multiplicity of tests,
and to the combination of information across multiple
modalities for joint inference. We begin by describing each
of these problems separately, then show how they are
related, and offer a complete and generic solution that can
accommodate a myriad of designs that can mix imaging
and non-imaging data. We also present an algorithm that
has with amenable computational demands for treating
these problems.

Multiple Tests — but Not the Usual Multiplicity

Because in neuroimaging one statistical test is typically
performed at each of many thousands of imaging units

(e.g., voxels or vertices), the problems related to such mul-
tiplicity of tests were recognized almost as early as these
techniques were developed [for pioneering examples, see
Fox et al., 1988; Friston et al., 1991]. There is now a com-
prehensive body of literature on multiple testing correction
methods that include those based on the random field
theory, on permutation tests, as well as on other strategies
that control the familywise error rate (FWER) or the false
discovery rate (FDR) [for reviews, see Nichols and Haya-
saka, 2003; Nichols, 2012]. However, the multiplicity of
tests in neuroimaging can appear in other ways that are
less explicit, and most importantly, that have not been
fully appreciated or made available in software packages.
In the context of the general linear model [GLM, Scheff�e,
1959], these other multiple tests include:

A. Multiple hypotheses in the same model: Testing more
than one hypothesis regarding a set of explanatory
variables. An example is testing the effects of multi-
ple variables, such as presence of a disease along
with its duration, some clinical score, age and/or
sex of the subjects, on a given imaging measure-
ment, such as maps from functional magnetic reso-
nance imaging (FMRI) experiments.

B. Multiple pairwise group comparisons: Often an initial
global (omnibus) test is performed, such as an F-test
in the context of analysis of variance (ANOVA), and if
this test is significant, subsequent (post hoc) tests are
performed to verify which pairwise difference(s)
drove the global result, thus introducing a multiple
comparisons problem.

C. Multiple models: Testing more than one set of explan-
atory variables on one given dataset, that is, assem-
bling and testing more than one design matrix, each
with its own set of regressors, which may differ
across designs, and each with its own set of con-
trasts. An example is interrogating the effect of dis-
tinct seeds, one at a time, in a resting-state FMRI

experiment; another is in an imaging genetics experi-
ment, testing multiple candidate polymorphisms.

D. Multiple modalities: Testing separately, in the same
study, more than one imaging modality as the
response variable, such as FMRI and positron-
emission tomography (PET), or different metrics from
the same modality, such as various measurements
from diffusion tensor imaging (DTI), as fractional ani-
sotropy (FA), mean diffusivity (MD), or radial diffu-
sivity (RD), or the effect of various networks
identified using independent component analysis
(ICA).

E. Imaging and non-imaging: Testing separately, in the
same study, imaging and non-imaging measure-
ments as response variables. An example is studying
group effects on FMRI and on behavioral or cognitive
scores, such as IQ, or disease severity scores, among
countless other non-imaging measurements.

Abbreviations

ANOVA analysis of variance
CCA canonical correlation analysis
CVA canonical variates analysis
CMV classical multivariate test (e.g. MANOVA, CCA);
CTP closed testing procedure
DTI diffusion tensor imaging
DTP dual truncated product
EE exchangeable errors
EEG electroencephalography
FA fractional anisotropy
FMRI functional magnetic resonance imaging
FDR false discovery rate
FWER familywise error rate
GLM general linear model
ICA independent component analysis
ISE independent and symmetric errors
IQ intelligence quotient
IUT intersection–union test
JNH joint null hypothesis
LSD least significant difference
MANOVA multivariate analysis of variance
MANCOVA multivariate analysis of covariance
MD mean diffusivity
MRI magnetic resonance imaging
MTP-I multiple testing problem I
MTP-II multiple testing problem II
NPC non-parametric combination
PALM Permutation Analysis of Linear Models
PET Positron emission tomography
RD radial diffusivity
RTP rank truncated product;
SII secondary somatosensory cortex
TFCE threshold-free cluster enhancement
TPM truncated product method
TS tail strength
TTS truncated tail strength
UIT union–intersection test
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F. Multiple processing pipelines: Testing the same imag-
ing modality multiple times, each time after a differ-
ent processing pipeline, such as using filters with
different widths for smoothing, or using different
strategies for registration to a common space.

G. Multiple multivariate analyses: Testing more than one
multivariate hypothesis with the GLM in repeated
measurements designs, such as in profile analyses, in
which the same data allows various different
hypotheses about the relationships between explana-
tory and response variables.

In all these cases, the multiple tests cannot be assumed
to be independent, so that the simple FWER correction using
the conventional Bonferroni method risks a considerable
loss in power. Modelling the degree of dependence
between these tests can be a daunting task, and be subop-
timal by invariably requiring the introduction of assump-
tions about the data, which, if at all valid, may not be
sufficient. By contrast, robust, generic, multistep proce-
dures, which do not depend as much on assumptions, or
on independence among tests, such as the Benjamini–
Hochberg procedure that controls the false discovery rate
(FDR) [Benjamini and Hochberg, 1995; Genovese et al.,
2002], do not guarantee that the spatial relationship
between voxels or vertices within test is preserved when
applied across these multiple tests, therefore being not as
useful as in other settings. More specifically, the difficulty
relates to correcting across various distinct imaging tests,
while maintaining control across space within any given
test, as opposed to controlling only within a single imag-
ing test as commonly done. For the same reason, various
multiple testing approaches that are applicable to many
particular cases can hardly be used for the problems we
discuss here; extensive details on these tests can be found
in Hochberg and Tamhane [1987] and in Hsu [1996].

We call the multiple tests that arise in situations as those
listed above “multiple testing problem II” (MTP-II), to allow
a distinction from the usual multiple testing problem due
to the many voxels/vertices/faces that constitute an
image, which we denote “multiple testing problem I” (MTP-
I). Methods that can be used in neuroimaging for the MTP-I

not always can be considered for the MTP-II, a problem that
has remained largely without treatment; for two rare coun-
ter examples in which the MTP-II was considered, we point
to the studies by Licata et al. [2013] and Abou Elseoud
et al. [2014].

Combination of Imaging Modalities

Acquisition of multiple imaging modalities on the same
subjects can allow the examination of more complex
hypotheses about physiological processes, and has potential
to increase power to detect group differences. Such combi-
nation of modalities can refer strictly to data acquired from
different instruments (e.g., MRI, PET, EEG), or more broadly,

to data acquired from the same instrument using different
acquisition parameters (e.g., different MRI sequences, differ-
ent PET ligands); for overviews, see Uluda�g and Roebroeck
[2014], Zhu et al. [2014] and Calhoun and Sui [2016]; for
example applications, see Hayasaka et al. [2006] and
Thomas et al. [2015]. Irrespective of which the modalities
are, the options in the context of the GLM rest in testing for
a single multivariate hypothesis, or in testing for a combi-
nation of multiple univariate hypotheses. Single multivari-
ate tests encompass various classical tests, known in
particular cases as multivariate analysis of variance (MAN-

OVA), multivariate analysis of covariance (MANCOVA), or
canonical correlation/variates analysis (CCA/CVA); these tests
will be referred here as classical multivariate tests, or CMV.

The combination of multiple univariate hypotheses
requires that each is analyzed separately, and that these
results are grouped together to test, at each voxel (or ver-
tex, or face) a joint null hypothesis (JNH); in this context, the
separate tests are termed partial tests. Different criteria to
decide upon rejection of the JNH give rise to three broad
categories of combined tests: (I) reject if any partial test is
significant; (II) reject if all partial tests are significant; and
(III) reject if some aggregate measure from the partial tests
is significant. The first of these can be traced back to Tip-
pett [1931], and in current terminology, could be defined
as rejecting the joint null hypothesis if any partial test is
rejected at the FWER level using the �Sid�ak correction [�Sid�ak,
1967]; it also corresponds to a union–intersection test [UIT,
Roy, 1953]. The second is the intersection–union test [IUT,
Berger, 1982], that in neuroimaging came to be known as
conjunction test [Nichols et al., 2005]. The third offers a
trade-off between the two other approaches, and gives rise
to a large number of possible tests, each with a different
rejection region, and therefore with different sensitivity
and specificity profiles; some of these tests are popular in
meta-analyses, with the method of Fisher [Fisher, 1932]
being one of the most used, and new approaches are con-
tinually being developed. A summary is shown in Table I,
and a brief overview of these and yet other tests, along
with bibliographic information, is in Appendix A.

Both cases — a single multivariate test or the combina-
tion of multiple univariate tests — can be assessed para-
metrically when the asymptotic distribution of the test
statistic is known, which may sometimes be the case if
various assumptions about the data are met. These gener-
ally refer to the independence or common dependence
between observations and between tests, to the distribu-
tion of the error terms, and for brain imaging, to yet other
assumptions regarding the relationship, across space,
between the tests. However, if the observations are
exchangeable, that is, if their joint distribution remains
unchanged after shuffling, then all such assumptions can
be eschewed at once, and instead, permutation tests can
be performed. The p-values can then be computed for
either the classical multivariate tests, or for the combina-
tion of univariate tests; when used in the last case, the
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strategy corresponds to Pesarin’s method of non-parametric
combination [NPC, Pesarin, 1990, 2001], discussed below.
Exchangeability is assumed only for the observations
within each partial test (or for the errors terms of the
respective models, see below); exchangeability is not
assumed between the partial tests for either CMV or NPC.
Moreover, non-independence does not need to be explic-
itly modelled, either between observations, between partial
tests, or across space for imaging data, thus making such
tests applicable to a wide variety of situations.

Overview of the Article

We show that a single, elegant permutation solution is
available for all the situations described above, addressing
the comparisons of response variables when these can be
put in comparable scale, the correction of p-values, via
adjustment to allow exact control over FWER in the various
multiple testing scenarios described above, and the combi-
nation of multiple imaging modalities to allow for joint
inference. The conjunction of multiple tests is a special
case in which the null hypothesis differs from that of a

TABLE I. A list of various functions for joint inference.

Method Test statistic (T) p-value (P)

Tippett min pkð Þ 12 12Tð ÞK

Fisher 22
PK
k51

ln pkð Þ 12v2
cdf T; m52Kð Þ

Stouffer 1ffiffiffi
K
p
PK
k51

U21 12pkð Þ 12U T; l50; r251
� �

Wilkinson
PK
k51

I pk � að Þ
PK
k5T

K
k

� �
ak 12aÞK2k
�

Good
QK
k51

pwk

k

PK
k51

wK21
k T1=wk

Qk21
i51 wk2wið Þ21

� � QK
i5k11 wk2wið Þ21

� �
Lancaster

PK
k51

wkF21
k 12pkð Þ 12G Tð Þ

Winer
PK

k51 t21
cdf 12pk; mkð Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
k51

mk

mk22

q
12U T; l50; r251

� �
Edgington

PK
k51

pk

PbTc
j50

21ð Þj K
j

� �
T2jð ÞK

K!

Mudholkar–George 1
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 5K14ð Þ
K 5K12ð Þ

q PK
k51

ln 12pk

pk

� �
12tcdf T; m55K14ð Þ

Darlington–Hayes 1
r

Pr
k51

U21 12p kð Þ
� �

Computed through Monte Carlo methods. Tables are available.

Zaykin et al. (TPM)
QK
k51

p
I pk�að Þ
k

PK
k51

K
k

� �
12að ÞK2k I T > ak

� �
ak1I T � ak

� �
T
Pk21

j50
kln að Þ2ln Tð Þj

j!

� �
Dudbridge–Koeleman (RTP)

Qr
k51

p kð Þ
K

r11

� �
r11ð Þ

Ð 1
0 12tð ÞK2r21A T; t;Kð Þdt

Dudbridge–Koeleman (DTP) max
Qr

k51 p kð Þ;
QK

k51 p
I pk�að Þ
k

� � Pr
k51

K
k

� �
12að ÞK2kA T;a; kð Þ1I r < Kð Þ K

r11

� �
r11ð Þ

Ð a

0 12tð ÞK2r21A T; t;Kð Þdt

Taylor–Tibshirani (TS) 1
K

PK
k51

12p kð Þ
K11

k

� �
12U T; l50; r2 � 1

K

� �
Jiang et al. (TTS) 1

K

PK
k51

I p kð Þ � a
� �

12p kð Þ
K11

k

� �
Computed through Monte Carlo methods.

Various functions are available for joint inference on multiple tests. For each method, both its statistic (T) and associated p-value (P) are
shown. These p-values are only valid if, for each method, certain assumptions are met, particularly with respect to the independence
between tests, but sometimes also with respect to underlying distributions. Under exchangeability, the p-values can be computed using
permutation tests, and the formulae in the last column are no longer necessary. The tests are shown in chronological order; see Appen-
dix A for details and bibliographic information. T is the statistic for each method and P its asymptotic p-value. All methods are shown
as function of the p-values for the partial tests. For certain methods, however, the test statistic for the partial tests, if available, can be
used directly. K is the number of tests being combined; pk, k5 1; 2; . . . ;Kf g are the partial p-values; wk are positive weights assigned to
the respective pk; p rð Þ are the pk with rank r in ascending order (most significant first); a is the significance level for the partial tests; I �ð Þ
is an indicator function that evaluates as 1 if the condition is satisfied, 0 otherwise; �b c represents the floor function; v2

cdf is the cumula-
tive distribution function (cdf) for a chi-squared distribution, with m degrees of freedom; tcdf is the cdf of the Student’s t distribution
with degrees of freedom m, and t21

cdf its inverse; U is the cdf of the normal distribution with mean l and variance r2, and U21 its inverse;
and F and G are the cdf of arbitrary, yet well chosen distributions. For the two Dudbridge–Koeleman methods,
A T; a; bð Þ5I T > ab

� �
ab1I T � ab

� �
T
Pb21

j50 bln a2ln Tð Þj=j!.
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combination, even though it can be approached in a simi-
lar fashion; because the distinction is quite an important
one, it is also discussed.

In the next section, we outline the notation used
throughout the paper. We then use the definition of
union-intersection tests, closed testing procedures, and
synchronized permutations to correct for multiple hypoth-
eses, allowing flexibility to mix in the same framework
imaging data with different spatial resolutions, surface
and/or volume-based representations of the brain, and
even non-imaging data. For the problem of joint inference,
we propose and evaluate a modification of the NPC, such
that instead of two phases and large data storage require-
ments, the permutation inference can be performed in a
single phase, without prohibitive memory needs. We also
evaluate, in the context of permutation tests, various com-
bining methods that have been proposed in the past deca-
des, and identify those that provide the best control over
error rate and power across a range of situations. We also
exemplify the potential gains in power with the reanalysis
of the data from a pain study. In the Appendices, we pro-
vide a brief historical review of various combining func-
tions and discuss criteria of consistency and admissibility.
In the Supporting Information we provide an algorithm
that allows combination and correction in a unified
framework.

THEORY

Notation and General Aspects

For a given voxel (or vertex, or face), consider a multi-
variate GLM:

Y5Xb1� (1)

where Y is the N3K matrix of observed data, with N
observations of K distinct (possibly non-independent) vari-
ables, X is the full-rank N3R design matrix that includes
explanatory variables (i.e., effects of interest and possibly
nuisance effects), b is the R3K matrix of R regression coef-
ficients for each of the K variables, and � is the N3K array
of random errors. Estimates for b can be computed by
ordinary least squares, i.e., b̂5X1Y, where the superscript
1ð Þ denotes a pseudo-inverse. One generally wants to test

the null hypothesis that a given combination (contrast) of
the elements in b equals to zero, that is, H0 : C’bD50,
where C is a R3S full-rank matrix of S contrasts of coeffi-
cients on the regressors encoded in X, 1 � S � R and D is
a K3Q full-rank matrix of Q contrasts of coefficients on
the dependent, response variables in Y, 1 � Q � K. Often
more than one such standard multivariate hypothesis is
tested, each regarding different aspects of the same data,
and each using a different pair of contrasts C and D. Not
uncommonly, even different sets of explanatory variables
are considered, sometimes arranged in entirely different
designs. We denote the set of such design matrices as

X5 Xf g, the set of pairs of contrasts for each hypothesis
related to that design as CX5 C;Dð Þf g, and the set of sets
of such contrasts as CXf g.

Depending on the values of K, Q, and S, H0 can be
tested using various common statistics. If K51, or if K > 1
and Q51, the problem reduces to the univariate case, in
which a t statistic can be used if S51, or an F-statistic if
S � 1. If K > 1 and Q > 1, the problem is a multivariate
proper and can be approached via CMV when respective
multivariate Gaussian assumptions are satisfied; in these
cases, if S51, the Hotelling’s T2 statistic can be used
[Hotelling, 1931], whereas if S > 1, various other statistics
are available, such as the Wilks’ k [Wilks, 1932], the Law-
ley–Hotelling’s trace [Hotelling, 1951; Lawley, 1938], the
Roy’s largest root(s) [Kuhfeld, 1986; Roy, 1953], and the
Pillai’s trace [Pillai, 1955]; the merits of each in the para-
metric case are discussed in various textbooks [Anderson,
2003; e.g., Christensen, 2001; Johnson and Wichern, 2007;
Timm, 2002], and such tests have been applied to neuroi-
maging applications [Chen et al., 2014].

The model in Eq. (1) can be rewritten as ~Y5X~b1~�,
where ~Y5YD, ~b5bD and ~�5�D. If Q51, this is a univari-
ate model, otherwise it remains multivariate, with ~Y hav-
ing ~K5Q columns, and the null hypothesis simplified as
H0 : C’~b50. This null is equivalent to the original, and can
be split into multiple partial hypotheses H0

~k
: C’~b~k 50,

where ~b~k is the ~k-th column of ~b, ~k5 1; . . . ; ~K. This trans-
formation is useful as it defines a set of separate, even if
not independent, partial hypotheses, that can be tested
and interpreted separately. We drop heretofore the “�”
symbol, with the modified model always implied.

Non-parametric inference for these tests can be obtained
via permutations, by means of shuffling the data, the
model, the residuals, or variants of these, in a direct exten-
sion from the univariate case [Winkler et al., 2014, Table
2]. To allow such rearrangements, some assumptions need
to be made: either of exchangeable errors (EE) or of inde-
pendent and symmetric errors (ISE). The first allows per-
mutations, the second sign flippings; if both are available
for a given model, permutations and sign flippings can be
performed together. We use generically the terms rear-
rangement or shuffling when the distinction between per-
mutations or sign flippings is not pertinent. These
are represented by permutation and/or sign flipping mat-
rices Pj, j5 1; . . . ; J, where J is the number of such
rearrangements.

TABLE II. Joint hypotheses tested with union–intersec-

tion and intersection–union of K partial tests

UIT IUT

Null hypothesis (H0) \K

k51H0
k [K

k51H0
k

Alternative hypothesis (H1) [K

k51H1
k \K

k51H1
k

In the UIT, the null is also called global null hypothesis, whereas in
the IUT, the null is also called conjunction null hypothesis.
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Another aspect that concerns permutation tests refers to
the use of statistics that are pivotal, i.e., that have sam-
pling distributions that do not depend on unknown
parameters. Most statistics used with parametric tests (and
all the uni- and multivariate examples from the previous
paragraph) are pivotal if certain assumptions are met,
especially homoscedasticity. Their benefits in non-
parametric tests are well known [Hall and Wilson, 1991],
and for neuroimaging, pivotal statistics are useful to allow
exact correction for the MTP-I.

Union–Intersection and Intersection–Union Tests

Consider the set of p-values pkf g for testing the respec-
tive set of partial null hypotheses H0

k

� �
. A union–intersec-

tion test [UIT, Roy, 1953] considers the JNH corresponding
to a global null hypothesis that all H0

k are true; if any such
partial null is rejected, the global null hypothesis is also
rejected. An intersection–union test [IUT, Berger, 1982] con-
siders the JNH corresponding to a conjunction null hypothesis
(also termed disjunction of null hypotheses) that any H0

k is
true; if all partial nulls are rejected, the conjunction null
hypothesis is also rejected. In the UIT, the null is the inter-
section of the null hypotheses for all partial tests; the alter-
native is the union of the alternatives. In the IUT, the null
is the union of the null hypotheses for all partial tests; the
alternative is the intersection of the alternatives. A UIT is
significant if the smallest pk is significant, whereas an IUT

is significant if the largest pk is significant. Figure 1 illus-
trates the rejection regions for UIT and IUT cases based on
two independent t-tests, in which the statistic larger than a
certain critical level is considered significant. Table II
shows the null and alternative hypotheses for each case.

Enlarging the number of tests affects UITs and IUTs differ-
ently. For the UIT with a given statistic threshold, more
tests increase the chances of false positives, and correction
for this multiplicity needs to be applied. In fact, it can be
shown that a UIT at a significance level a is equivalent to
controlling the FWER at a for the same tests. In other words,
a union-intersection procedure is an FWER procedure. For
an IUT, in contrast, the procedure does not change with
more tests. The conjunction null hypothesis is composite,
consisting of different parameter settings. For the extreme
case that exactly one partial null is true and K21 effects
are real, an IUT is exact for any K; if two or more partial
nulls are true, an IUT becomes increasingly conservative
with larger K.

The null hypothesis of the UIT can be rejected if the
smallest pk is significant or, equivalently, its corresponding
statistic, that is, the extremum statistic. For tests in which
larger statistics provide evidence against the null hypothe-
sis, the relevant extremum is the maximum. Conversely,
for tests in which smaller statistics provide evidence
against the null, the extremum is the minimum. Clearly, if
the most extreme statistic is significant, at least one partial
hypothesis is rejected, therefore the global null hypothesis

can be rejected without the need to continue testing the
other K21 partial hypotheses. The null hypothesis of the
IUT can be rejected if the largest pk is significant or, equiva-
lently, its corresponding least extreme statistic. Clearly, if
the least extreme statistic is significant, all partial hypothe-
ses can be rejected, therefore the conjunction hypothesis
can be rejected without the need to continue testing all
other K21 partial hypotheses.

In brain imaging, the term conjunction refers to a test
performed when one wants to localize regions where there
is signal in all partial tests, that is, a logical AND of all alter-
native hypotheses [Nichols et al., 2005], and is synony-
mous with the IUT. In noting the lack of power of such a
proper conjunction test, Friston et al. [2005] suggested a
partial conjunction, in which fewer than all alternatives
need to intersect. Using the same notation of Table I, both
approaches have the same statistic, T5max pkð Þ, but the p-
value of the latter can be computed as TK2v11, so that the

Figure 1.

(a) Rejection region of a union–intersection test (UIT) based on

two independent t-tests. The null is rejected if either of the par-

tial tests has a statistic that is large enough to be qualified as sig-

nificant. (b) Rejection region of an intersection–union test (IUT)

based the same tests. The null is rejected if both the partial

tests have a statistic is large enough to be qualified as significant.

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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test is a conjunction of at least v alternative hypotheses; if
v5K, it is an IUT, and if v51 the null is equivalent to that
of a UIT (such a test, however, is inconsistent for a UIT; see
Appendix B). Benjamini and Heller [2008] further general-
ized the procedure by allowing the combination of the
largest p-values using any of various possible combining
functions, such as those we present in Table I and in
Appendix A.

Closed Testing

In a closed testing procedure (CTP), each H0
k is rejected if,

and only if, it is significant in its own right at a certain
level a, and if all possible sub-JNHs that include the same
H0

k and comprise some or all of the partial hypotheses
(that is, subsets of the global JNH formed by some of the
partial tests) are also rejected at a using a suitable test.
Various such tests can be considered, including CMVs and
NPC (next section).

A CTP guarantees strong control over FWER [Marcus et al.,
1976]. To produce adjusted p-values, the original method
requires that all 2K21 sub-JNHs are tested1, a requirement
that is computationally onerous, even for a moderate num-
ber of tests, a problem aggravated by the large number of
tests that are considered in an imaging experiment. There
exists, however, a particular test for the sub-JNHs that obvi-
ates the need for such a gargantuan computational venture:
the union–intersection test. In a UIT using the extremum sta-
tistic, the most extreme of the global JNH that comprises all
the K partial tests is also the most extreme of any other
sub-JNH that includes that particular partial hypothesis, such
that the other joint subtests can be bypassed altogether. As
a UIT is also an FWER-controlling procedure, this raises vari-
ous possibilities for correction of both MTP-I and MTP-II.
While such a shortcut can be considered for both paramet-
ric [Holm, 1979] and non-parametric cases [Westfall and
Young, 1993], for the non-parametric methods using permu-
tation, one additional feature is needed: that the joint sam-
pling distribution of the statistic used to test each of the
sub-JNH is the same regardless whether the null is true for
all the K partial tests, or just some of them. This property is
called subset pivotality [Westfall and Troendle, 2008; West-
fall and Young, 1993], and it constitutes the multivariate
counterpart to the univariate pivotality.

Non-Parametric Combination

The NPC consists of testing each of the H0
k using shuf-

flings that are performed synchronously for all K partial
tests. The resulting statistics for each permutation are
recorded, allowing an estimate of the complete empirical
null distribution to be constructed for each partial test. In
a second stage, the empirical p-values for each statistic are
combined, for each permutation, into a joint statistic. As

such a combined joint statistic is produced from the previ-
ous permutations, an estimate of its empirical distribution
function is immediately known, and so the p-value of the
unpermuted statistic, hence of the joint test, can be
assessed. The method was proposed by Pesarin [1990;
1992], and independently, though less generically, by Blair
et al. [1994]; a thorough description is available in Pesarin
[2001] and Pesarin and Salmaso [2010a]. An early applica-
tion to brain imaging can be found in Hayasaka et al.
[2006], its use to combine different statistics within the
same modality in Hayasaka and Nichols [2004], and a
summary description and practical examples are presented
in Brombin et al. [2013]. The JNH of the combined test is
that all partial null hypotheses are true, and the alternative
that any is false, which is the same null of a UIT, although
the rejection region may differ widely from the example in
Figure 1a, depending on the combining function.

The only two requirements for the validity of the NPC

are that the partial test statistics have the same direction
suggesting the rejection of the null hypothesis, and that
they are consistent (see Appendix B). For the combining
function, it is desirable that (I) it is non-decreasing with
respect to all its arguments (which are the p-values pk, or
12pk, depending on the combining function), (II) that it
approaches its maximum (or minimum, depending on the
function) when at least one of the partial tests approaches
maximum significance (that is, when at least one p-value
approaches zero), and (III) that for a test level a > 0,
the critical significance threshold is smaller than the func-
tion maximum value. These requirements are easily satis-
fied by almost all functions shown in Table I, which
therefore can be used as combining functions in the frame-
work of NPC (see Appendix B for a discussion on the few
exceptions).

One of the most remarkable features of NPC is that the
synchronized permutations implicitly account for the
dependence structure among the partial tests. This means
that even combining methods originally derived under an
assumption of independence, such as Tippett or Fisher,
can be used even when independence is untenable. In fact,
modifications to these procedures to account for non-
independence [e.g., Brown, 1975; Kost and McDermott,
2002 for the Fisher method] are made redundant. As the
p-values are assessed via permutations, distributional
restrictions are likewise not necessary, rendering the NPC

free of most assumptions that thwart parametric methods
in general. This is why NPC methods are an alternative to
CMV tests, as each of the response variables in a MANOVA or
MANCOVA analysis can be seen as an univariate partial test
in the context of the combination.

Transformation of the Statistics

While NPC offers flexibility in a simple and uncompli-
cated formulation, its implementation for brain imaging
applications poses certain challenges. Because the statistics1From the Pascal triangle:

PK
i51

K
i

� �
52K21.
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for all partial tests for all permutations need to be
recorded, enormous amounts of data storage space may be
necessary, a problem further aggravated when more
recent, high resolution imaging methods are considered.
Even if storage space were not a problem, however, the
discreteness of the p-values for the partial tests becomes
problematic when correcting for multiple testing, because
with thousands of tests in an image, ties are very likely to
occur among the p-values, further causing ties among the
combined statistics. If too many tests across an image
share the same most extreme statistic, correction for the
MTP-I, while still valid, becomes less powerful [Pantazis
et al., 2005; Westfall and Young, 1993]. The most obvious
workaround — run an ever larger number of permutations
to break the ties — may not be possible for small sample
sizes, or when possible, requires correspondingly larger
data storage.

However, another possible approach can be considered
after examining the two requirements for the partial tests,
and also the desirable properties (I)–(III) of the combining
functions, all listed earlier. These requirements and prop-
erties are quite mild, and if the sample size is reasonably
large and the test statistics homogeneous, i.e., they share
the same asymptotic permutation distribution, a direct
combination based not on the p-values, but on the statis-
tics themselves, such as their sum, can be considered
[Pesarin and Salmaso, 2010a]. Sums of statistics are indeed
present in combining functions such as of Stouffer, Lancas-
ter, Winer, and Darlington–Hayes, but not others listed in
Table I and Appendix A. In order to use these other com-
bining functions, most of them based on p-values for the
partial tests, and under the same premises, the statistics
need to be transformed to quantities that behave as p-val-
ues. In the parametric case, these would be the parametric
p-values, computed from the parametric cumulative distri-
bution function (cdf) of the test statistic. If the parametric
assumptions are all met for the partial tests, their respec-
tive parametric p-values are all valid and exact; if the
assumptions are not met, these values are no longer
appropriate for inference on the partial tests, but may still
be valid for NPC, for satisfying all requirements and desira-
ble properties of the combining functions. As they are not
guaranteed to be appropriate for inference on the partial
tests, to avoid confusion, we call these parametric p-values
“u-values”.

Another reason for not treating u-values as valid p-val-
ues is that they do not necessarily need to be obtained via
an assumed, parametric cumulative distribution function
for the statistics of the partial tests. If appropriate, other
transformations applied to the statistics for the partial tests
can be considered; whichever is more accurate to yield
values in the interval 0; 1½ � can be used. The interpretation
of a u-value should not be that of a probability, but merely
of a monotonic, deterministic transformation of the statistic
of a partial test, so that it conforms to the needs of the
combining functions.

Transformation of the statistic to produce quantities that
can be used in place of the non-parametric p-values effec-
tively simplifies the NPC algorithm, greatly reducing the
data storage requirements and computational overhead,
and avoiding the losses in power induced by the discrete-
ness of p-values. This simplification is shown in Figure 2,
alongside the original NPC algorithm.

Regardless of the above transformation, the distribution
of the combined statistic, T, may vary greatly depending
on the combining function, and it is always assessed non-
parametrically, via permutations. Different distributions for
different combining functions can, however, pose practical
difficulties when computing spatial statistics such as cluster
extent, cluster mass, and threshold-free cluster enhance-
ment [TFCE, Smith and Nichols, 2009]. Consider for instance
the threshold used to define clusters: prescribed values
such as 2.3 or 3.1 [Woo et al., 2014] relate to the normal
distribution and are not necessarily sensible choices for
combining functions such as Tippett or Fisher. Moreover,
for some combining functions, such as Tippett and Edging-
ton, smaller values for the statistic are evidence towards
the rejection of the null, as opposed to larger as with most
of the others. To address these practical issues, a mono-
tonic transformation can be applied to the combined statis-
tic, so that its behavior becomes more similar to, for
instance, the z-statistic [Efron, 2004]. This can be done
again by resorting to the asymptotic behavior of the tests:
the combined statistic is converted to a parametric p-value
(the formulas are summarized in Table I) which, although
not valid for inference unless certain assumptions are met,
particularly with respect to the independence among the
partial tests, are useful to transform, at each permutation,
the combined statistic to the z-statistic, which can then be
used for inference using cluster extent, mass, or TFCE.

Directed, Non-Directed, and Concordant

Hypotheses

When the partial hypotheses are one-sided, i.e., H0
k : C’bk

> 0 or H0
k : C’bk < 0, and all have the same direction (either),

the methods presented thus far can be used as described. If
not all have the same direction, a subset of the tests can be
scaled by 21 to ensure a common direction for all.

If the direction is not relevant, but the concordance of
signs towards one of them (either) is, a new combining test
can be constructed using one-sided p-values, pk, and
another using 12pk, then taking the best of these two
results after correcting for the fact that two tests were per-
formed. For example, for the Fisher method, we would
have:

T5max 22
XK

k51

ln pkð Þ;22
XK

k51

ln 12pkð Þ
 !

(2)

where T is the combined test statistic, with its p-value, P,
assessed via permutations.
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If direction or concordance of the signs are not rele-
vant, two-sided (non-directed) tests and p-values can be
used before combining, that is, ignoring the sign of the
test statistic for the partial tests, or using a statistic that
is non-directional (e.g., with F-tests for the partial
hypotheses). It worth mentioning, however, that it is
not appropriate to simultaneously ignore directions of

the partial tests and use a combination that favors con-
cordant signs. Such a test would lack meaning and
would be inadmissible, with examples shown in Appen-
dix C.

Rejection regions for these three cases, for four different
combining functions, are shown in Figure 3, as functions
of the partial p-values, for K52 partial tests.

Figure 2.

The original NPC algorithm combines non-parametric p-values and,

for imaging applications, requires substantial amount of data stor-

age space. Two modifications simplify the procedures: (1) the sta-

tistic tk for each partial test k is transformed into a related quantity

uk that has a behavior similar to the p-values, and (2) the combined

statistic is transformed to a variable that follows approximately a

normal distribution, so that spatial statistics (such as cluster extent,

cluster mass, and TFCE) can be computed as usual. The first simplifi-

cation allows the procedure to run in a single phase, without the

need to retrieve data for the empirical distribution of the partial

tests. [Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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The Method of Tippett

From the various combining functions listed in Table I,
consider the combining function of Tippett [1931], that has
statistic T5minðpkÞ and, when all partial tests are inde-
pendent, a p-value P512ð12TÞK. This test has interesting
properties that render it particularly attractive for imaging:

� It defines a UIT test: If the minimum p-value remains
significant when all tests are considered, clearly the
global null hypothesis can be rejected.
� It controls the FWER: Controlling the error rate of a UIT

is equivalent to an FWER-controlling procedure over
the partial tests.
� If the partial tests are independent, it defines an exact

FWER threshold: The function is closely related to �Sid�ak

[1967] correction: set P5aFWER, then TFWER512

ð12aFWERÞ1=K; one can retain only the partial p-values
that satisfy pk � TFWER. Adjusted p-values can be
obtained similarly through the �Sid�ak procedure, that
is pFWER

k 512ð12pkÞ1=K.
� If the partial tests are not independent, it still defines

an FWER threshold and adjusted p-values: As a UIT, the
Tippett function can be used in a closed testing proce-
dure. Further, it is the function that makes CTP with
large K feasible in practice; adjusted p-values are
obtained with the distribution of the minimum p-
value (or of the extremum statistic).
� Because it subsumes correction using the extremum

statistic that is already in use in imaging to account

for MTP-I, the correction for the MTP-II can be done by

Figure 3.

Upper row: Rejection regions for the combination of two partial

tests using four different combining functions, and with the p-

values assessed parametrically (Table I). The regions are shown

as function of the p-values of the partial tests (pk). Middle row:

Rejection regions for the same functions with the modification

to favor alternative hypotheses with concordant directions.

Lower row: Rejection regions for the same functions with the

modification to ignore the direction altogether, that is, for two-

tailed partial tests. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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pooling the maximum statistics across both space and

the set of partial tests. This allows algorithmic advan-

tages that we exploit in the proposed implementation

shown in the Supporting Information.
� It can be used as the combining function with NPC,

thus providing a common procedure for correction
and for combination of p-values.
� It is fast to compute: Taking the extremum statistic or

minimum p-value is trivial compared with other func-
tions that require cumulative sums or products, multi-
ple parameters, integrations, or that depend on Monte
Carlo simulations.

While the Tippett function is advantageous for all these
reasons, note that, even when other combining functions
are used for NPC, the extremal statistic (equivalent to the
Tippett combining function) is also used for the MTP-I to
control FWER over space.

A Unified Procedure

Armed with these concepts, and with the modifications
to the original NPC algorithm, we are positioned to tackle
the various problems identified in the Introduction:

Combination of multiple modalities

With K modalities, all in register and with the same spa-
tial resolution, each is tested separately, using synchron-
ized permutations, and their statistics converted to u-
values for each shuffling. These are combined using a suit-
able combining function, such as one from those shown in
Table I. The p-values for the combined statistic are pro-
duced using the same set of permutations used to assess
each test separately. This is the modified NPC algorithm
that we propose, shown in Figure 2.

Correction for multiple modalities

With K modalities, which are not necessarily in register,
nor with the same resolution, nor of the same type (e.g.,
some from volumetric, some from surface representations
of the brain), or which may not necessarily be all related
to imaging (e.g., some imaging and some non-imaging
data), each is tested separately using a suitable test statis-
tic. The permutation distribution of the extremum statistic
across all tests is produced and used to compute FWER-
adjusted p-values that simultaneously address the MTP-I

and MTP-II.

Correction for multiple designs and contrasts

Each pair of contrasts defined by C;Dð Þ allows the cor-
responding design matrix to be partitioned into effects of
interest and nuisance effects [Winkler et al., 2014, Appen-
dix A], and also the redefinition of the response variables

(Section “Notation and general aspects”). Thus, multiple
designs and their respective contrasts can be tested sepa-
rately. Differently than for the correction for multiple
modalities, however, with different contrasts, their respec-
tive statistics may possess different asymptotic behavior
(due to, e.g., the contrasts having different ranks, or the
designs having different degrees of freedom), thus pre-
cluding the use of the distribution of the extremum statis-
tic. When known, the asymptotic behavior can be used to
convert these statistics — univariate or multivariate — to a
z-statistic. The distribution of the maximum across the
results of the various designs and contrasts can then be
computed and used for correction.

Correction for multiple modalities, designs,

and contrasts

Following the same principles, it is also possible to
account for the multiplicity of input modalities, each
tested with their respective design and set of contrasts, or
each tested versus all designs and contrasts. Each test is
applied separately, statistics converted to a z-statistic
based on their asymptotic behavior, and the distribution of
the extremum used to obtain adjusted p-values for all in a
CTP using a UIT. It is not necessary that all are in register,
neither that all use the same kind of image representation
of the brain (i.e., volume or surface), nor that they are
even all (or any) imaging-related, and can therefore
include clinical or behavioral, biomarkers, and other types
of data.

Conjunctions

An IUT can be assessed through permutations simply by
computing max pkð Þ, which is, in its own right, the p-value
of the IUT, such that there is no need for transformation
into u-values for the assessment of the combined statistic.
In the context of imaging, such conjunctions can be used
with statistics at every voxel (or vertex or face), thus
allowing also certain spatial statistics such as TFCE.

Since combinations and conjunctions are performed at
each individual image point, it is necessary that all images
have been registered to the same common space and pos-
sess similar spatial resolution [Lazar et al., 2002]. This can
be accomplished through intrasubject and intersubject
registration, and resampling. By contrast, correction for the
multiplicity of tests uses the maximum statistic across
such tests, thus not requiring that the tests match on
space, or even that they are all related to imaging. How-
ever, they explicitly require pivotal statistics [for pivotality
in this context, see Winkler et al., 2014], so that the
extreme is taken from statistics that share the same sam-
pling distribution. The statistics used with CMV and NPC are
all pivotal and therefore can be used. Spatial statistics,
however, lack this property and require similar search vol-
umes and resolutions, even for correction. Moreover, by
including information from neighboring voxels, such as
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using spatial smoothing or spatial statistics like TFCE [Smith
and Nichols, 2009], subset pivotality is lost, meaning that
strong control of FWER cannot be guaranteed. In practice,
though, the power gained by pooling information over
space is essential. In the Supporting Information we pro-
vide an algorithm that generically implements the combi-
nation and correction methods presented.

EVALUATION METHODS

Validity of the Modified NPC

To assess the validity of the proposed modification to
the NPC, we consider one of the simplest scenarios that
would have potential to invalidate the method and reduce
power: this is the case of having a small number of partial
tests, small sample size, and with each partial test possess-
ing substantially different distributions for the error terms.
We investigated such a scenario with K52, varying sample
sizes N5f 8, 12, 20, 30, 40, 50, 60, 70, 80, 120, 200 g, and
different error distributions. Using the notation defined in
Section “Notation and general aspects”, response variables
were generated for each simulation using the model
Y5Xb1�, with Y sized N3K. Each modality was simu-
lated as having 500 points, these representing, for instance,
voxels or vertices of an image representation of the brain.
The errors, �5 �1; �2½ �, were simulated following either a
Gaussian distribution with zero mean and unit variance,
or a Weibull distribution (skewed), with scale parameter 1
and shape parameter 1/3, shifted and scaled so as to have
expected zero mean and unit variance. Different combina-
tions of error distributions were used: Gaussian for both
partial tests, Weibull for both partial tests, or Gaussian for
the first, and Weibull for the second partial test.

The response data, Y, were constructed by adding the
simulated effects, Xb, to the simulated errors, where
b5 b1; b2½ �, with bk 5 b1; 0½ �’, b1 being either 0 (no signal)
or t21

cdf 12a; N2rank Xð Þð Þ=
ffiffiffiffi
N
p

(with signal), where a 5

0:05 is the significance level of the permutation test to be
performed. This procedure ensures a calibrated signal
strength sufficient to yield an approximate power of 50%
for each partial test, with Gaussian errors, irrespective of
the sample size; for non-Gaussian errors this procedure
does not guarantee power at the same level. The actual
effect was coded in the first regressor of X, constructed as
a vector of random values following a Gaussian distribu-
tion with zero mean and unit variance; the second regres-
sor was modelled an intercept. All four possible
combinations of presence/absence of effect among the K5

2 partial tests were simulated, that is, (1) with no signal in
any of the two partial tests, (2) with signal in the first par-
tial test only, (3) with signal in the second partial test only,
and (4) with signal in both partial tests.

The simulated data was tested using the Tippett and
Fisher methods. The case with complete absence of signal
was used to assess error rates, and the others to assess

power. The p-values were computed with 500 permuta-
tions, and the whole process was repeated 500 times,
allowing histograms of p-values to be constructed, as well
as to estimate the variability around the heights of the his-
togram bars. Confidence intervals (95%) were computed
for the empirical error rates and power using the Wilson
method [Wilson, 1927]. The p-values were also compared
using Bland–Altman plots [Bland and Altman, 1986],
modified so as to include the confidence intervals around
the means of the methods.

Performance of Combined Tests

We also took the opportunity to compare the combining
functions shown in Table I. While other comparisons have
been made in the past (for a list of references, see Appen-
dix A), none included all these functions, nor explored
their performance under permutation or NPC, and there-
fore, did not consider the modifications that we introduce
to the procedure to render it feasible for imaging applica-
tions. In addition, we investigate the performance of two
classical multivariate tests, the Hotelling’s T2, and the
Wilks’ k, both assessed through permutations.

Four different simulation sets were conducted, named
A–D; in all, the number of partial tests being combined
could vary in the range K52; . . . ; 16, and the number of
partial tests containing true, synthetic signal could vary in
the range Ks50; . . . ;K. In simulation A, K varied, while Ks

was held fixed at 0, that is, no synthetic signal was added.
In simulation B, K varied, while Ks was held fixed at 1,
that is, just one partial test had signal added. In simulation
C, K was held fixed at 16, while Ks varied. Finally, in simu-
lation D, K varied, and Ks was set as equal to K, that is, all
partial tests had synthetic signal added. Figure 4 shows
graphically how K and Ks varied in each simulation.

The response variables Y had size N3K, N520, that is,
simulating measurements for 20 subjects, each with K
image modalities (partial tests). Each modality was simu-
lated as having 500 points, these representing, for instance,
voxels or vertices. The errors were simulated following
either a Gaussian distribution with zero mean and unit
variance, or a Weibull distribution, with scale parameter 1
and shape parameter 1

3, shifted and scaled so as to have
expected zero mean and unit variance. The response data
were constructed by adding to the errors the simulated
effects — either no signal, or a signal with strength cali-
brated to yield an approximate power of 50% with Gaus-
sian errors, irrespective of the sample size, as described
above for the simulations that tested the validity of the
modified NPC; for the Weibull errors, the signal was further
decreased, in all these four simulations, by a factor 5

8, thus
minimising saturation at maximum power in simulation D.
The actual effect was coded in the first regressor only,
which was constructed as a set of random values follow-
ing a Gaussian distribution with zero mean and unit var-
iance; the second regressor was modelled as an intercept.
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The simulated data was tested using 500 shufflings (per-
mutations, sign-flippings, and permutations with sign-flip-
pings). For all the simulations, the whole process was
repeated 100 times, allowing histograms of p-values to be
constructed, as well as to estimate the variability around
the heights of the histogram bars. Confidence intervals
(95%) were computed for the empirical error rates and
power using the Wilson method.

Example: Pain Study

While the proposed correction for the MTP-II has a pre-
dictable consequence, that is, controlling the familywise
error rate at the nominal level, the combination of modal-
ities, designs, and contrasts may not be quite as obvious.
In this section we show a re-analysis of the data of the
pain study by Brooks et al. [2005]. In brief, subjects
received, in separate tests, painful, hot stimuli in the right
side of the face (just below the lower lip), dorsum of the
right hand, and dorsum of the right foot. The objective
was to investigate somatotopic organization of the pain
response in the insular cortex using FMRI, and the complete
experimental details, stimulation and imaging acquisition
protocols, analysis and conclusions can be found in the
original publication. Here we sought to identify, at the
group level, in standard space, areas within the insula that
jointly respond to hot painful stimuli across the three
topologically distinct body regions. We used the modified
NPC, comparing the combining functions of Tippett, Fisher,

Stouffer and Mudholkar–George, as well as the Hotelling’s
T2 statistic, and an IUT (conjunction). At the group level,
the design is a one-sample t-test, for which only sign flip-
pings can be used to test the null hypothesis. We used
twelve of the original subjects, and performed exhaus-
tively all the 4096 sign flippings possible.

RESULTS

A large number of plots and tables were produced and
are shown in the Supporting Information. The Figures
below contain only the most representative results that are
sufficient to highlight the major points.

Validity of the Modified NPC

Both the original and the modified NPC methods con-
trolled the error rates at exactly the level of the test. Such
validity was not limited to a50:05, and the histograms of
uncorrected p-values under complete absence of signal
were flat throughout the whole 0; 1½ � interval for both the
original and modified NPC methods, using either the Tip-
pett or the Fisher combining functions. A representative
subset of the results, for the Fisher method only, and for
sample sizes N5f 8, 12, 20, 40 g, is shown in Figure 5.

When considering the uncorrected p-values, the modi-
fied NPC yielded a mostly negligible increase in power
when compared with the original NPC, with the difference
always within the 95% confidence interval. Although this
slight gain can be hardly observed in the histograms and
Bland–Altman plots for the uncorrected p-values, they are
clearly visible in the Bland–Altman plots for the p-values
corrected across the 500 tests. In these plots, the predomi-
nance of smaller (towards more significant) p-values can
be seen as a positive difference between the original and
modified NPC p-values. A representative subset of the
results is shown in Figure 6.

Performance of Combined Tests

Representative results demonstrating the performance of
the methods of Tippett, Fisher, Stouffer, Mudholkar–
George, as well as Hotelling’s T2, is shown in Figure 7.
The remaining results are browsable in the Supporting
Information. In the absence of signal (simulation A), all
combining functions controlled the error rate at the level
of the test or below it, never above, thus confirming their
validity. With normally distributed (Gaussian) errors, most
functions yielded uniformly distributed p-values, although
some functions seemed to converge towards uniformity
only as the number of partial tests is increased; this was
the case for the methods of Wilkinson, Zaykin, Dud-
bridge–Koeleman (DTP) and Jiang. With skewed (Weibul-
lian) errors, the error rate was controlled at the test level
with the use of permutations; with sign-flippings or per-
mutations with sign-flippings, the combined results tended

Figure 4.

The simulations A–D. Each was constructed with a set of K par-

tial tests, a number of which (Ks) had synthetic signal added.

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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Figure 5.

Histograms of frequency of p-values for the simulation without

signal in either of the two partial tests (upper panel, blue bars)

or with signal in both (lower panel, green bars). The values

below each plot indicate the height (in percentage) of the first

bar, which corresponds to p-values smaller than or equal to

0.05, along with the confidence interval (95%, italic). Both origi-

nal and modified NPC methods controlled the error rates at the

nominal level, and produced flat histograms in the absence of

signal. The histograms suggest similar power for both

approaches. See also the Supporting Information. [Color figure

can be viewed in the online issue, which is available at wileyonli-

nelibrary.com.]
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Figure 6.

Bland–Altman plots comparing the original and modified NPC, for

both uncorrected and corrected p-values, without signal in

either of the two partial tests (upper panel, blue dots) or with

signal in both (lower panel, green dots). The values below each

plot indicate the percentage of points within the 95% confidence

interval ellipsoid. For smaller sample sizes and non-Gaussian

error distributions, the methods differ, but the differences

become negligible as the sample size increases. In the presence

of signal, the modification caused increases in power, particularly

for the corrected p-values, with dots outside and above the

ellipsoid. See the Supporting Information for zoomed in plots, in

which axes tick labels are visible. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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to be conservative, and more so for the Hotelling’s T2 sta-
tistics (and likewise the Wilks’ k).

With signal added to just one of the partial tests (simu-
lation B), the method of Tippett was generally the most

powerful, followed by the methods of Fisher and Dud-
bridge–Koeleman (both RTP and DTP variants). As the num-
ber of tests was increased, predictably, the power was
reduced for all tests. The method of Stouffer did not in

Figure 7.

Performance of the modified NPC with four representative com-

bining functions (Tippett, Fisher, Stouffer, and Mudholkar–

George) and of one CMV (Hotelling’s T2), using normal or skewed

errors, and using permutations (EE), sign flippings (ISE), or both.

All resulted in error rates controlled at or below the level of

the test. The Tippett and Fisher were generally the most power-

ful, with Tippett outperforming others with signal present in a

small fraction of the tests, and with Fisher having the best

power in the other settings. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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general have good performance with skewed errors, pre-
sumably because the dependence on z-statistics strength-
ens the dependence on the assumption of normality of the
statistics for the partial tests in the modified NPC. The CMV

did not deliver a good performance either, being generally
among the least powerful.

With the number of partial tests held fixed, as the num-
ber of tests with signal was increased (simulation C), the

Figure 8.

Without combination, and with correction across voxels (MTP-I),

no significant results were observed at the group level for any

of the three tests. Combination using the methods of Fisher,

Stouffer and Mudholkar–George (M–G), however, evidenced

bilateral activity in the insula in response to hot, painful stimula-

tion. A classical multivariate test, Hotelling’s T2, as well as the

Tippett method, failed to identify these areas. An intersection-

union test (conjunction) could not locate significant results; such

a test has a different null hypothesis that distinguishes it from

the others. Images are in radiological orientation. For cluster-

level results, comparable to Brooks et al. [2005], see the Sup-

porting Information. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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power of the method of Fisher increased more quickly
than of the other methods, although when most of the par-
tial tests had signal, most of the combining functions
reached similar power, all close to 100% for both normal
or skewed errors. Hotelling’s T2 test was considerably less
powerful than any of the combining functions used with
the modified NPC.

As the total number of partial tests and the number of
partial tests with signal were both increased (simulation
D), almost all combined tests had similar power, and
reached saturation (100% power) quickly, particularly for
the Weibullian errors, in which the calibration, even after
reduction with the 5

8 factor, yielded power above 50% for
each partial test. With Gaussian errors, in which calibra-
tion ensured average 50% power, two tests had consider-
ably lower sensitivity: Tippett’s and Hotelling’s T2, the last
with the remarkable result that power reached a peak,
then began to fall as the number of tests kept increasing.

Example: Pain Study

Using a conventional, mass univariate voxelwise tests,
assessed through sign flippings, and after correction for
multiple testing (MTP-I), only a few, sparse voxels could be
identified at the group level for face, hand, and foot stimu-
lation separately, in all cases with multiple distinct foci of
activity observed bilaterally in the anterior and posterior
insula. However, the joint analysis using the modified NPC

with Fisher, Stouffer and Mudholkar–George evidenced
robust activity in the anterior insula bilaterally, posterior
insula, secondary somatosensory cortex (SII), and a small
focus of activity in the midbrain, in the periaqueductal
gray area. The combining function of Tippett, however,
did not identify these regions, presumably because this
method is less sensitive than the others when signal is
present in more than a single partial test, as suggested by
the findings in the previous section.

The Hotelling’s T2 was not able to identify these regions,
with almost negligible, sparse, single-voxel findings in the
anterior insula, bilaterally. The conjunction test, that has a
different JNH, and searches for areas where all partial tests
are significant, identified a single, barely visible, isolated
voxel in the right anterior insula.

The above results are shown in Figure 8. Cluster-level
maps that can directly be compared to the original find-
ings of Brooks et al. [2005] are shown in the Supporting
Information.

DISCUSSION

Validity of the Modified NPC

The modified NPC combines u-values, which are simply
parametric p-values here renamed to avoid confusion. The
renaming, however, emphasizes the fact that the conver-
sion to u-values via a parametric approximation should

only be seen as a data transformation, in which the inter-
pretation as a p-value is not preserved because of unsound
assumptions. The combination method continues to be
non-parametric as the combined statistic is assessed non-
parametrically. More importantly, irrespective of the valid-
ity of parametric assumptions, any dependence between
the tests is accounted for, implicitly, by the combination
procedure, without the need of any modelling that could,
at best, introduce complex and perhaps untenable assump-
tions, and at worst, be completely intractable.

The results suggest that, even in the cases in which the
modified NPC could have failed, i.e., with small sample
sizes and different distributions, the combined statistic
controlled the error rate at the level of the test. This con-
trol, maintained even in such difficult scenarios, supports
the notion that the modified NPC controls the error rates in
general. The results also suggest that the modification
increases power, even if such increase is minute in some
scenarios. The Bland–Altman plots indicate that gains in
sensitivity are more pronounced in the results corrected
for the MTP-I, suggesting that the modified method is
appropriate not merely due to its expediency for imaging
applications, but also for having increased sensitivity com-
pared to the original NPC.

Performance of Combined Tests

The results also demonstrate that the NPC method is
more powerful than the Hotelling’s T2. The superiority of
combined permutation tests when compared with classical
multivariate tests has been observed in the literature [Blair
et al., 1994], and the fact that power increases as the num-
ber of partial tests with signal increases is one of its most
remarkable features. While CMV depends on the positive-
definiteness of the covariance matrix of the vectors of
residuals, such limitation does not apply to NPC [Pesarin
and Salmaso, 2010b]. As a consequence, although in the
comparisons only the Hotelling’s T2 and the Wilks’ k sta-
tistics were used (in the simulations, rank Cð Þ51), and had
their p-values assessed through permutations, similar
behavior can be expected when using other CMVs, such as
Pillai’s trace (and with rank Cð Þ > 1). With effect, NPC can
be used even when the number of variables equals or
even greatly exceeds the number of observations, that is,
when K � N. In the results shown in Figure 7, this can be
noted as a reduction in power that can be seen with the
Hotelling’s T2, particularly for simulation D, and this is the
case even considering that the test is assessed through
permutations.

Regarding the different combining functions, the simula-
tions show that the method of Tippett is the most power-
ful when signal is present in only a small fraction of the
partial tests. For other cases, other combining functions,
particularly that of Fisher, tend to be considerably more
powerful.
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The results also indicate that the use of sign flipping
when the errors are not symmetric (a violation of assump-
tions) tends to produce a conservative test, with error rates
below the nominal level, even if the power eventually
remained unaltered when compared with permutations.
While permutations together with sign flippings did allevi-
ate conservativeness, at least for the Tippett method, the
error rate remained below the nominal level. In general, if
the errors are known to be skewed, only permutations
should be used; if sign flippings are used, the error rate
can be expected to be below the test level.

Interpretation of Combined Tests

The key aspect of the NPC is that these tests seek to iden-
tify, on the aggregate of the partial tests, a measure of evi-
dence against the JNH, even if only some or none of them
can be considered significant when seen in isolation, just
as originally pointed out by Fisher [1932]:

When a number of quite independent tests of significance have
been made, it sometimes happens that although few or none can
be claimed individually as significant, yet the aggregate gives an
impression that the probabilities are on the whole lower than
would often have been obtained by chance. It is sometimes
desired (. . .) to obtain a single test of the significance of the
aggregate.

This is the logic and interpretation of all of these com-
bining statistics, with the exception of the conjunction
inference. Combination of information is known to be able
to answer questions that could otherwise not be answered
be at all, or be answered less accurately if each informa-
tion source were considered separately [Draper et al.,
1992]. Here the simulations and the pain study exemplify
these aspects, and the improved sensitivity compared to
each partial test when seen in separate.

As they depend on fewer assumptions than classical
multivariate tests, NPC can be considered whenever the
validity of the former cannot be guaranteed. Even when
parametric CMV assumptions hold, note that the NPC can
have superior power when sample size is small and pre-
vents precise estimation of a covariance.

It should be noted that the aggregation of information
follows a different principle than using different measure-
ments separately to interrogate particular aspects of the
brain (or of any other experiment or physiological phe-
nomenon). Used judiciously, NPC provides a complete
framework that can be used for both the aggregate and for
the correction of tests separately, with the valuable feature
of being based on minimal assumptions.

Correction over Contrasts and over Modalities

Correction over contrasts using synchronized permuta-
tions provides a novel solution to the multiple compari-

sons problem for certain common experimental designs, in
particular, for the popular one-way ANOVA layout, that is,
when the means of multiple groups are compared. The
classical Fisher’s protected least significant difference (LSD),
that consists of performing an omnibus F-test and only
proceeding to the group-wise post hoc tests if this initial
test is significant, is known to fail to control the error rate
if there are more than three groups [Hayter, 1986;
Hsu, 1996; Meier, 2006], and the failure can be by a wide
margin, that grows as the number of groups being com-
pared increases. Even though the same may not happen
with other correction methods [e.g., Tukey’s range test,
Tukey, 1949], the correction done non-parametrically also
renders these older, parametric methods, redundant.

The correction over contrasts further obviates methods
that are based on what has been termed “logical con-
straints” among hypotheses [Hochberg and Tamhane, 1987;
Shaffer, 1986], as the dependencies among the tests are
implicitly taken into account by the correction using the dis-
tribution of the extremum across contrasts, with or without
concomitant combination or correction across multiple K
variables. In fact, the use of an omnibus F-test as a way to
guard against multiple testing becomes quite unnecessary.

In the same manner, while combination across multiple
modalities is a powerful substitute for classical multivari-
ate tests as shown earlier, the correction across such
modalities can replace the post hoc tests that are usually
performed after significant results are found with CMVs.

Pain Study

Joint significance is an important consideration when
trying to interpret data such as these, that are distinct in
some aspects (here, the topography of the stimulation), but
similar in others (here, the type of stimulation, hot and
painful), strengthening the case for distinct representations
in some brain regions, but not in others. In terms of identi-
fying areas with significant joint activity, the results sug-
gest involvement of large portions of the anterior insula
and secondary somatosensory cortex. The Fisher, Stouffer
and Mudholkar–George combining functions were particu-
larly successful in recovering a small area of activity in the
midbrain and periaqueductal gray area that would be
expected from previous studies on pain [Petrovic et al.,
2002; Reynolds, 1969; Roy et al., 2014; Tracey et al., 2002],
but that could not be located from the original, non-
combined data.

Relationship with Meta-Analysis

Most of the combining functions shown in Table I were
originally defined based on p-values, and some of them
are popular in meta-analyses, such as those of Fisher and
Stouffer [Borenstein et al., 2009]. Although there are com-
monalities between these meta-analytical methods and
NPC, it is worth emphasising that the two constitute
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distinct approaches to entirely different problems. In the
NPC, the objective is to interrogate joint significance across
the multiple observed variables (or multiple designs and
contrasts if these are instead combined) when the data for
each individual observation is readily available to the
researcher. Meta-analyses methods based on p-values,
while sometimes using the same combining functions,
attempt to identify a joint effect across multiple studies
that not have necessarily been performed on the same
experimental units, and when the data for the individual
observations are not available. Moreover, the p-value of
the combined statistic in the NPC is produced through per-
mutations, a procedure that is not available for ordinary
meta-analytical methods.

The fact that NPC and meta-analysis form different
approaches to separate problems also imply that certain
criticisms levelled at the use of certain combined functions
in the context of meta-analysis do not extend trivially to
NPC. As the simulations show, various of the combining
functions more recently developed did not in general out-
perform older combining methods, such as Fisher and
Stouffer, even though these were developed precisely for
that purpose, in the context of meta-analyses, or for prob-
lems framed as such.

CONCLUSION

We proposed and evaluated a modified version of Non-
Parametric Combination that is feasible and useful for
imaging applications, and serves as a more powerful alter-
native to classical multivariate tests. We presented and
discussed aspects related multiple testing problems in
brain imaging, and proposed a single framework that
addresses all these concerns at once. We showed that com-
bination and correction of multiple imaging modalities,
designs, and contrasts, are related to each other in the
logic of their implementation, and also through the use of
the simplest and the oldest of the combining functions,
attributed to Tippett.

An open-source working implementation, that can be
executed in MATLAB [The MathWorks Inc., 2013] or Octave
[Eaton et al., 2015], is available in the tool Permutation
Analysis of Linear Models (PALM), available for download
at www.fmrib.ox.ac.uk/fsl.

APPENDIX A: BRIEF OVERVIEW OF

COMBINING FUNCTIONS

Below are a few details and references for the methods
shown in Table I, plus a few others, presented in chrono-
logical order. A number of studies comparing some of
these functions in various scenarios have been published
[Berk and Cohen, 1979; Bhandary and Zhang, 2011; Birn-
baum, 1954; Chang et al., 2013; Chen, 2011; Lazar et al.,
2002; Loughin, 2004; Oosterhoff, 1969; Rosenthal, 1978;
Westberg, 1985; Whitlock, 2005; Won et al., 2009; Wu,

2006; Zaykin, 2011; Zwet and Oosterhoff, 1967]. Some of
these are permutationally equivalent to each other, that is,
their rejection region under permutation is the same, and
it becomes immaterial which is chosen.

Tippett

This is probably the oldest, the simplest, and the most
intuitive of the combination methods, having appeared in
the first edition of Tippett’s book The Methods of Statistics
[Tippett, 1931]. The combined test statistic is simply the
minimum p-value across all partial tests, and Tippett
shows its distribution has a simple closed form.

Fisher

This method appeared in the fourth edition of Statistical
Methods for Research Workers [Fisher, 1932], and follows the
idea of treating the joint probability as the intersection of
all partial tests, which is given by their product

Q
kpk. This

product, however, is not uniformly distributed, even if the
global null hypothesis is true. Using a few properties of
the uniform distribution, Fisher showed that twice the
negative logarithm of the products follows a v2 distribu-
tion, with degrees of freedom 2K.

Stouffer

This method appeared in footnotes in the extensive
report of the sociological study conducted among veterans
of the World War II by Stouffer et al. [1949, footnote 15,
and page 151, footnote 14]. The idea is to sum z-scores,
normalize the variance of this sum, and from this statistic
obtain a p-value for the joint hypothesis.

Wilkinson

The probability of observing r significant p-values at the
level a can be computed using a binomial expansion, as
proposed by Wilkinson [1951]. The statistic is simply r,
and the probability does not depend on the actual
p-values for the partial tests, but only on r and a.

Good

A generalization of the Fisher method that assigns arbi-
trary, unequal positive weights wk for each of the partial
tests, was suggested by Good [1955]. The weights are
defined according to some criteria, such as the sample size
for each of the partial test, the number of degrees of free-
dom, or some other desirable feature, such as ecological or
internal validity [Rosenthal, 1978].

Lipt�ak

Another generalized combined statistic can be produced
using the inverse cdf, F21, of the pk, summing the values
of the statistics, and computing a new p-value for the
global null using the cdf G of the sum of the statistics, a
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method proposed by Lipt�ak [1958]. Each summand can be
arbitrarily weighted, as in the Good method. In principle,
any continuously increasing function with support in the
interval 0; 1½ � can be used for F, albeit a more obvious
choice is the cdf of the normal distribution, which can be
used as both F and G, and which equals the approach to
the Stouffer method if all weights are 1.

Lancaster

While the Lipt�ak method generalizes combining strat-
egies such as Fisher and Stouffer, the Lancaster method
[Lancaster, 1961] further generalizes the Lipt�ak approach
by allowing different F21

k for each partial test. Choices for
F21

k include, for instance, the cdf of the gamma distribu-
tion with scale parameter u52, possibly with different
shape parameters taking the place of the weights for each
partial test. If the weights are all positive integers, the p-
values can be assessed from the cdf of a v2 distribution
with degrees of freedom m52

P
kwk [Berk and Cohen,

1979].

Winer

A combination strategy that resembles the Stouffer
method, but uses the Student’s t statistic, was proposed by
Winer [1962], albeit not found in later editions of the book.
The idea is to sum the t statistics for all the partial tests,
then normalize the sum so that the resulting statistic fol-
lows a standard normal distribution. The normalization is
based on the fact that the variance of the t distribution can
be determined from its degrees of freedom m as m= m22ð Þ.
The method cannot be applied if mk � 2 for any of the par-
tial tests. Moreover, mk should not be too small for the nor-
mal approximation to be reasonably valid (e.g., mk � 10).
The Winer method is a particular case of the Lancaster
method.

Edgington

The probability of observing, due to chance, a value
equal or smaller than the sum of the partial p-values was
proposed by Edgington [1972] as what would be a more
powerful alternative to the Fisher method. The method
however, lacks consistency (see Appendix B).

Mudholkar–George

It is possible to use a simple logit transformation to
compute a statistic that approximates a scaled version of
the Student’s t distribution, as shown by Mudholkar and
George [1979]. If the scaling is taken into account, the
combined statistic follows a t distribution.

Darlington–Hayes

In a discussion about pooling p-values for meta-
analysis, Darlington and Hayes [2000] raised a number of
limitations of these methods, and proposed a modification
over the method of Stouffer that would address some of

these concerns. The modified method, called by the
authors as Stouffer-max, uses as test statistic the mean of
the r highest z-scores, rather than the normalized sum of
all the z-scores as in the original method. When r51, it is
equivalent to the Tippett method, whereas when r5K, is
equivalent to the original Stouffer. The p-values for inter-
mediate values of r can be computed through Monte Carlo
simulation, and the authors provided tables with critical
values.

Zaykin et al.

This method, called truncated product method (TPM) was
proposed by Zaykin et al. [2002] as a way to combine fea-
tures of the Fisher and Wilkinson methods. The statistic is
the product of only the partial p-values that are significant
at the level a, whereas in the Fisher method, all p-values are
used. If a5min pkð Þ, the approach is equivalent to the Tippett
method. If max pkð Þ � a � 1, the approach is equivalent to
the Fisher method. An expression for the p-values that pro-
duces exact values was provided by the authors. The expre-
sion, however, is prone to over/underflows for certain
combinations of large K and a, and when p-values cannot
be obtained analytically, Monte Carlo methods can be used.

Dudbridge–Koeleman

While the Zaykin method combines only the partial tests
that are significant at the level a, it is also possible to cre-
ate a statistic that combines only the most r significant
tests, where r is specified in advance. This method was
proposed by Dudbridge and Koeleman [2003] and called
rank truncated product (RTP). The main benefit of this strat-
egy is that it depends only on a predetermined number of
partial tests to be rejected, rather than on their p-values,
which are random quantities. As with the Zaykin method,
for certain combinations of r and large K, the p-values
need to be computed through Monte Carlo methods. In the
same article, the authors also introduced a combination of
the TPM and RTP, and named it rank-and-threshold trun-
cated product or dual truncated product (DTP). The statistic
is the largest of either if these two, and its p-value can be
computed analytically or via Monte Carlo methods.

Taylor–Tibshirani

If the p-values are sorted in ascending order, these
ranked p-values can be compared to their expectations
under the global null hypothesis. Large deviations from the
expected values suggest the presence of the effect among
the tests. Taylor and Tibshirani [2006] suggested that a mea-
surement of this deviation could be used to infer the overall
significance of the tests. The corresponding statistic was
termed tail strength (TS), and under the assumptions that
the global null is true and that the tests are independent, it
follows a normal distribution with zero mean and a var-
iance that can be approximated as 1

K for large K, from which
the p-value can be assessed. When these assumptions are
not met, non-parametric methods can be used.
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Jiang et al.

The statistic of the Taylor–Tibshirani method has a
variance that depends asymptotically only on the num-
ber of tests. However, the value of the statistic can be
small when effect is truly present in only a few partial
tests, therefore potentially reducing power. By analogy to
the Zaykin method, Jiang et al. [2011] proposed to com-
pute the tail strength using only partial tests with p-val-
ues smaller than a certain level a. The method is called
truncated tail strength (TTS). The analytical form for the

distribution is not known, and the authors propose com-
puting the p-value using Monte Carlo or permutation
methods.

Li–Tseng

Li and Tseng [2001] proposed a modification of the
Fisher method that is used not to test the JNH (hence not
shown in Table I), but to identify which of the partial tests
contribute the most to the resulting combined statistic. The

Figure B1.

Examples of inconsistent combining functions for testing the

global null hypothesis: (a) Addition of p-values for the partial

tests [Edgington 1972]; (b) Maximum of p-values for the partial

tests, with the p-value computed as TK [Friston et al., 2005]; (c)

Maximum of p-values for the partial tests, but with the p-value

computed as T [Nichols et al., 2005]. While the last is not

appropriate for testing the global null, it is appropriate for the

conjunction null. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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authors define a quantity AW52
PK
k51

wkln pkð Þ, where wk is

a weight that can be either 0 or 1. All possible 2K21 non-
trivial combinations W5 w1; . . . ;wK½ � are evaluated to pro-
duce a value for AW . The respective p-values pW are com-
puted via permutations, and the W that yields the smallest
such p-value over all possible combinations of weights, is
the one that identifies the subset among the K tests that
contributes the most to the combined p-values.

APPENDIX B: CONSISTENCY OF

COMBINED TESTS

A hypothesis test is said to be consistent if, for a fixed
test level, its power goes to unity as the sample size
increases to infinity. The use of a non-consistent combin-
ing function to form an NPC test is problematic, as the
rejection region may not be reached even if the p-value for
one or more of the partial tests approach zero, thus violat-
ing the second of the three desirable properties of the
combining functions, presented in Section “Non-
Parametric Combination”.

Among the functions shown in Table I, the notable non-
consistent combining functions are the Edgington and Wil-
kinson (see Appendix A). Also, it should be noted that
functions that define conjunctions (IUT), such as those

based on max pkð Þ, are likewise not consistent in the con-
text of NPC, as the latter serves to test the global null
hypothesis. Figure B1 shows rejection regions for some
inconsistent combining functions, and variants, similarly
as for the (consistent) shown in Figure 3.

APPENDIX C: ADMISSIBILITY OF

COMBINED TESTS

A combined hypothesis test is said to be admissible if
there exists no other test that, at the same significance
level, without being less powerful to all possible alterna-
tive hypotheses, is more powerful to at least one alterna-
tive [Lehmann and Romano, 2005]. This can be stated in
terms of either of two sufficient conditions for admissibil-
ity: (I) that rejection of the null for a given p-value implies
the rejection of the null for all other p-values smaller or
equal than that, or (II) that the rejection region is convex in
the space of the test statistic.

Combinations that favor tests with concordant directions
(Section “Directed, non-directed, and concordant hypoth-
eses”), if used with of non-directional partial tests, create
tests that are inadmissible, that is, tests that are not opti-
mal in the sense that there exist other tests that, without
being less powerful to some true alternative hypotheses,
are more powerful to at least one true alternative.

Figure C1.

Upper row: Inadmissible versions of the four consistent combining functions shown in Figure 3

(in the same order). Lower row: Inadmissible versions of the three inconsistent combining func-

tions shown in Figure 9 (in the same order). These inadmissible functions arise if one attempts

to favor alternatives with the same sign while performing two-tailed partial tests. [Color figure

can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Inadmissibility implies that the test cannot be used, as cer-
tain combinations of partial tests lead to nonsensical
results, such as rejecting the JNH for some partial p-values,
and failing to reject for some p-values that are even
smaller. Figure C1 shows rejection regions of inadmissible
versions of the combining functions considered in Figures
3 and B1; clearly none of the two conditions above are sat-
isfied. The particular combining function shown in Equa-
tion (2) was suggested by Pearson [1933] and used by
David [1934], but after a paper by Birnbaum [1954], it was
for decades thought to be inadmissible. However, it is in
fact admissible [Owen, 2009].

Admissibility is important in that it allows, for more
than just two partial tests, combined tests that favor alter-
native hypotheses with the same direction. Other possibil-
ities favoring alternatives with common direction, such as
multiplying together the partial test statistics to produce a
combined statistic, do not extend trivially to more than
two tests [Hayasaka et al., 2006].
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