

SCIENCE GROUP

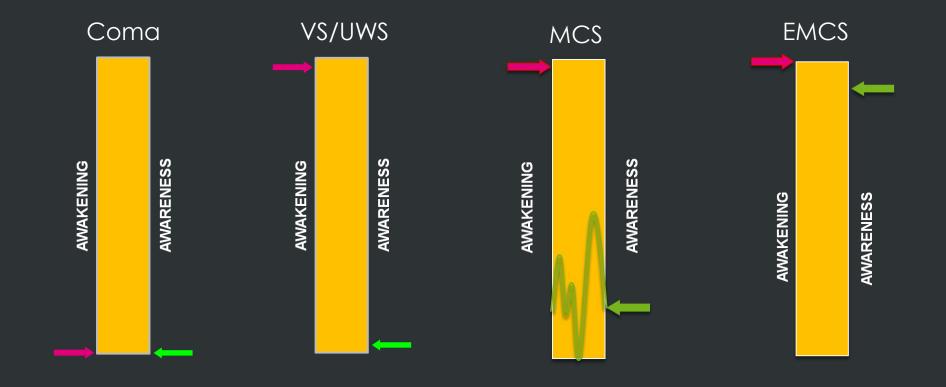
Clinical sub-categorization of minimally conscious state according 6 A to resting functional connectivity

G

FREEDOM TO RESEARCH

Charlène AUBINET

PhD student - Coma Science Group GIGA Research Centre University and University Hospital of Liège



Presenter has no interest to disclose.

PESG and IBIA staff have no interest to disclose.

This continuing education activity is managed and accredited by Professional Education Services Group in cooperation with IBIA. PESG, IBIA, and all accrediting organization do not support or endorse any product or service mentioned in this activity.

Minimally Conscious State

- Oriented (contextualized) behaviors
- Visual pursuit or fixation
- Orientation to noxious stimulation
- Reaching for objects
- Contingent behaviors (emotional)

MCS +

COMA

SCIENCE GROUP

+

- Following simple commands
- Intentional communication
- Intelligible verbalization

Theoretical background

SCIENCE GROUP

Bruno et al., J Neurol, 2012:

• FDG PET – Resting state

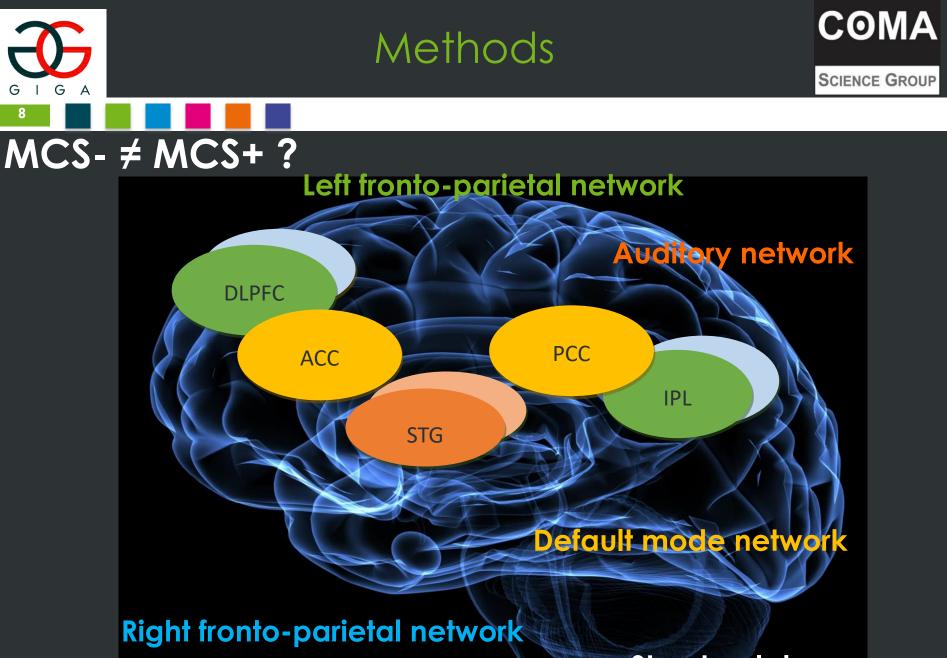
MCS-	 No response to command Metabolic impairment in a bilateral subcortical and cortical (fronto-temporo-parietal) network
MCS+	 Able to respond to command Metabolism = preserved in language related areas Broca's and Wernicke's areas

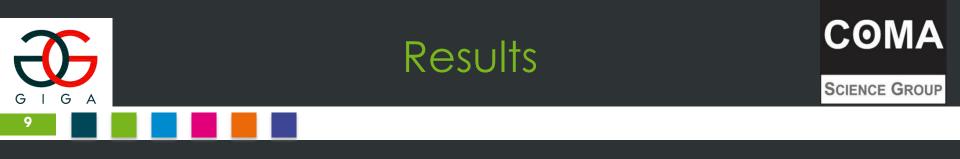
- Differenciate MCS- and MCS+ by means of resting state fMRI
- 2. Characterize the residual command-following ability

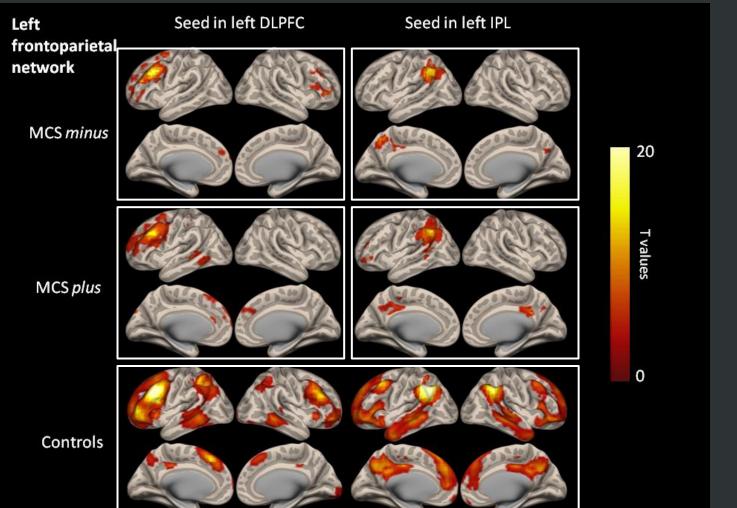
Hypothesis:

- Higher functional connectivity in MCS+ as compared to MCS- in language-related networks
 - → Left fronto-parietal network

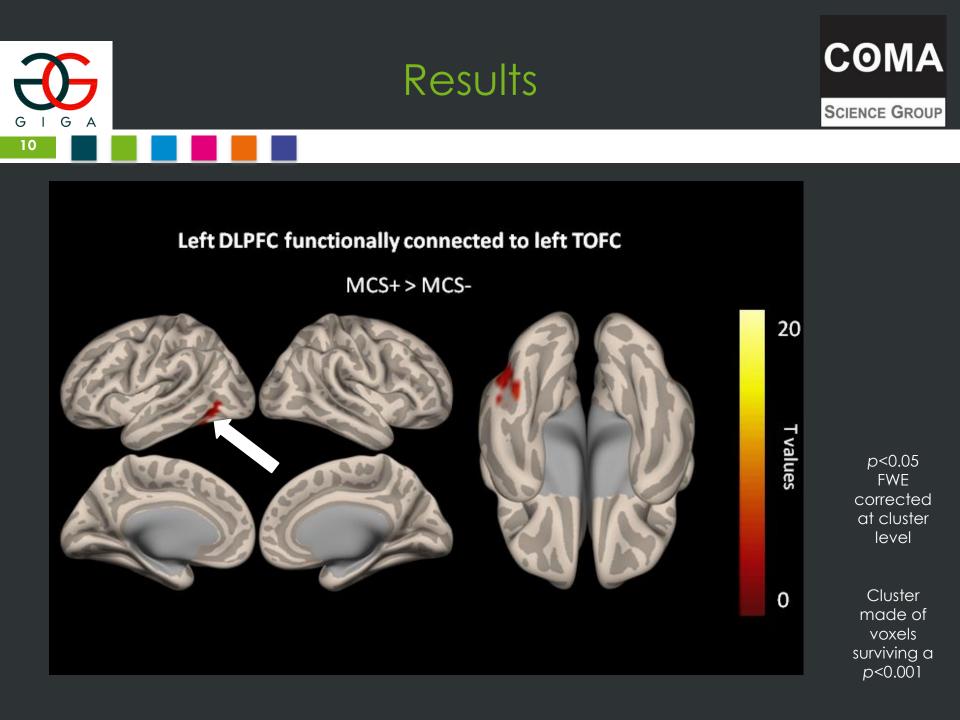
Laird & al., J Cogn Neurosci, 2011; Smith & al., Proc Natl Acad Sci, 2009

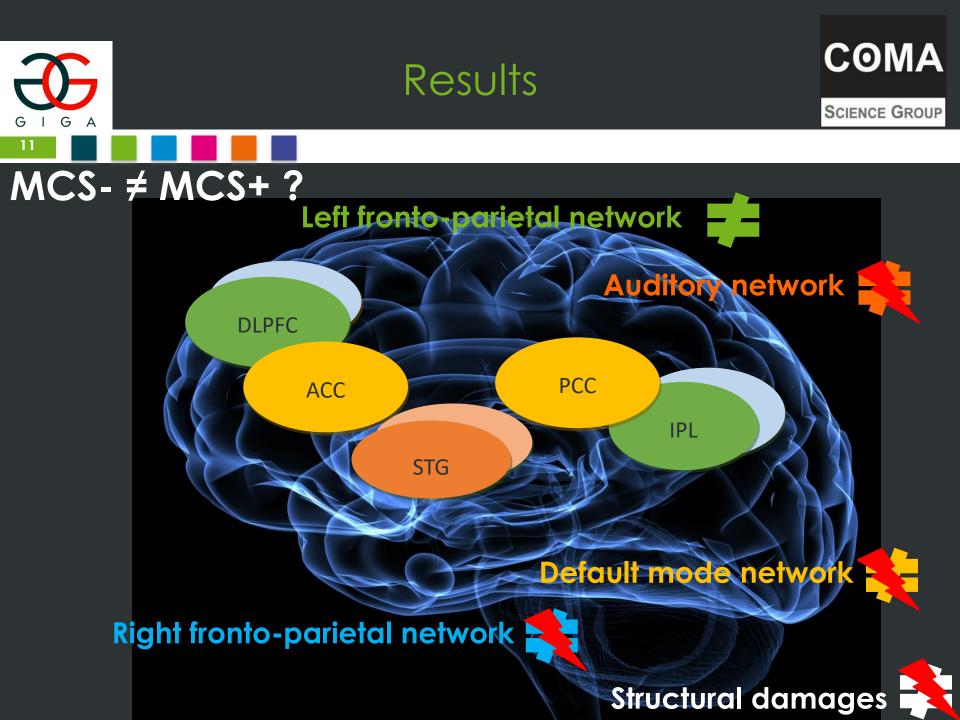

Participants


SCIENCE GROUP


Final sample: MCS patients n = 19

- Matched for:
 - > age
 - > gender
 - etiology
 - disease duration
- 35 controls


+ Structural damages



p<0.05 FWE corrected at cluster level

Cluster made of voxels surviving a p<0.001

Conclusions

- Clinical subcategorization of MCS is sustained by connectivity differences in left FPN
 - Linked to language comprehension processes
- Command following is seemingly not influenced by:
 - auditory capacities
 - perception of external world
 - internal thoughts
 - structural abnormalities
- Clinical perspective: integration and improvement of clinical assessment of patients with disorders of consciousness

Thank you for your attention!

de Liège

Submitted paper

For additional information: caubinet@ulg.ac.be

The Coma Science Group

Our co-authors,

The patients and their families,

Everybody involved

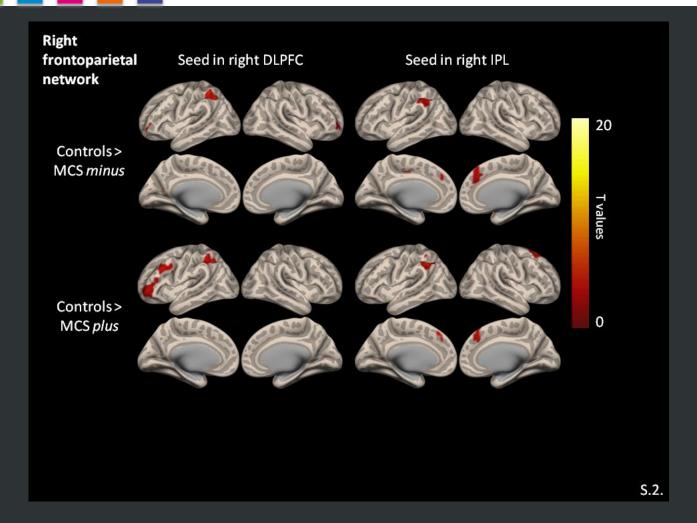
Patient	Age	Sex	Etiology	Months since onset	CRS-R best score	Auditory functions	Visual functions	Motor functions	Oro-motor functions	Final diagnosis
1	66	Ν	CVA	1,5	12	2	3	5	2	MCS-
2	27	М	TBI	12	9	1	3	2	2	MCS-
3	19	F	TBI	26	10	1	3	2	2	MCS-
4	37	М	CVA	60	10	1	3	3	2	MCS-
5	30	М	TBI & Anoxia	14	9	0	1	5	2	MCS-
6	28	м	TBI & Anoxia	3	7	1	3	2	1	MCS-
7	43	М	Anoxia	21	8	2	3	1	2	MCS-
8	45	F	TBI	8	8	2	3	2	1	MCS-
9	38	м	Anoxia	9	9	1	4	1	1	MCS-
10	34	F	TBI	96	12	3	3	2	2	MCS+
11	29	М	TBI	8	11	3	3	3	2	MCS+
12	50	М	TBI	8	13	3	4	2	2	MCS+
13	51	М	Epilepsy	2	14	3	5	2	3	MCS+
14	54	М	TBI	1,5	12	3	3	4	3	MCS+
15	29	м	TBI	1,5	9	3	4	5	2	MCS+
16	57	м	Anoxia	15	7	3	0	2	2	MCS+
17	30	F	TBI	90	8	3	0	2	2	MCS+
18	34	М	TBI	44	8	3	0	2	2	MCS+
19	23	М	TBI	22	10	3	3	3	3	MCS+


G

Α

G

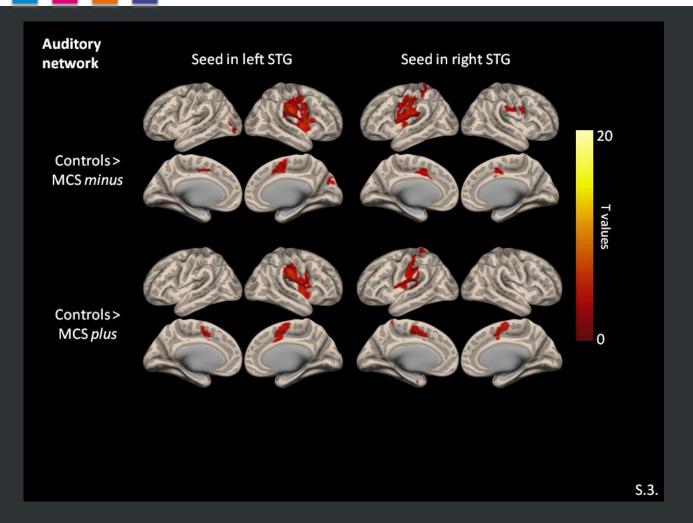
16


G

A

G

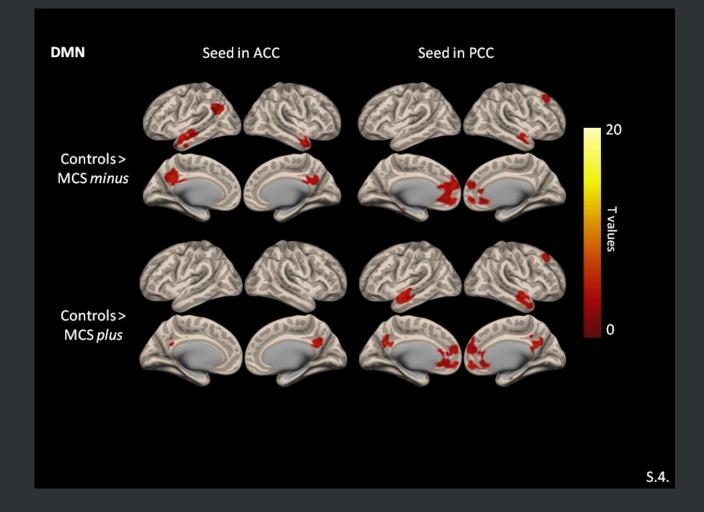
17


G

Α

G

18


G

Α

G

19

SCIENCE GROUP

ROI to ROI analysis

Controls > MCS-

Controls > MCS+

Analysis Unit Seed ACC	Statistic F(39) = 8.08 Intensity = 11.76	p-unc 0.0000	p-FDR 0.0000	Analysis Unit Seed ACC	Statistic F(40) = 7.32 Intensity = 9.90	p-unc 0.0000	p-FDR p- 0.0001
ACC-PCC ACC-DLPFC_L ACC-DLPFC_R Seed STG_R	Size = 3° T(45) = 4.72 T(45) = -3.82 T(45) = -3.22 F(39) = 5.39 Intensity = 5.30	0.0000 0.0004 0.0024 0.0002	0.0014	ACC-PCC ACC-DLPFC_L ACC-DLPFC_R Seed STG_L	Size = 3 T(46) = 3.95 T(46) = -3.18 T(46) = -2.77 F(40) = 6.30 Intensity = 5.53	0.0026	0.0019 0.0092 0.0189 0.0002
STG_R-STG_L Seed PCC	Size = 1 T(45) = 5.30 F(39) = 4.32 Intensity = 4.72	0.0000 0.0013	0.0000 0.0031	STG_L-STG_R Seed IPL_R	Size = 1 T(46) = 5.53 F(40) = 5.94 Intensity = 5.10 Size = 1		0.0000 0.0002
PCC-ACC Seed STG_L	Size = 1 T(45) = 4.72 F(39) = 4.21 Intensity = 5.30	0.0000 0.0015	0.0002 0.0031	IPL_R-IPL_L Seed DLPFC_R	T(46) = 5.10 F(40) = 5.38 Intensity = 7.21 Size = 2	0.0000 0.0002	0.0000 0.0004
STG_L-STG_R Seed DLPFC_R	Size = 1 T(45) = 5.30 F(39) = 3.69 Intensity = 3.22	0.0000 0.0038	0.0000 0.0060	DLPFC_R-DLPFC_L DLPFC_R-ACC Seed IPL_L	T(46) = 4.45 T(46) = -2.77 F(40) = 4.84 Intensity = 5.10		0.0004 0.0284 0.0008
DLPFC_R-ACC Seed IPL_R	Size = 1 T(45) = -3.22 F(39) = 3.57 Intensity = 4.09		0.0167 0.0060	IPL_L-IPL_R Seed PCC	Size = 1 T(46) = 5.10 F(40) = 4.55 Intensity = 3.95 Size = 1		0.0000 0.0010
IPL_R-IPL_L Seed IPL_L	Size = 1 T(45) = 4.09 F(39) = 3.50 Intensity = 4.09	0.0002 0.0052	0.0012 0.0060	PCC-ACC Seed DLPFC_L	T(46) = 3.95 F(40) = 4.46 Intensity = 7.63 Size = 2		0.0019 0.0010
IPL_L-IPL_R Seed DLPFC_L	Size = 1 T(45) = 4.09 F(39) = 3.13 Intensity = 3.82	0.0002 0.0102	0.0012 0.0102	DLPFC_L-DLPFC_R DLPFC_L-ACC Seed STG_R	T(46) = 4.45 T(46) = -3.18 F(40) = 4.46 Intensity = 5.53	0.0001 0.0026 0.0010	0.0004 0.0092 0.0010
	Size = 1				Size = 1		