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5th April 2017

1 / 66



Overview

1 Introduction

2 Method formulation

3 Lorenz ’96 Twin experiment
Single assimilation
Iterative assimilation

4 NEMO-LIM2

5 Twin Experiment
Monovariate assimilation
Multivariate assimilation

6 Real Case
Single assimilation
Iterative assimilation

7 Perspectives and conclusions

2 / 66



Thesis objective

Most numerical models suffer important errors due to poorly represented
processes. This leads to a systematic error with a non-zero mean: bias.

Bias is considered to be the main source of errors in climatic model. It
allows one only to study the variation of a model, not its absolute results
(Zunz et al., 2013).
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Thesis objective

Most numerical models suffer important errors due to poorly represented
processes. This leads to a systematic error with a non-zero mean: bias.

Bias is considered to be the main source of errors in climatic model. It
allows one only to study the variation of a model, not its absolute results
(Zunz et al., 2013).

Objective: Develop a method aiming at correcting and coming closer to
numerical model bias.
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Model Bias

Bias definition: “It represents an inclination, predisposition or preference,
towards a particular result, opinion, or tendency.”

Examples: confirmation bias, cultural bias, media bias, publication bias,
statistical bias.
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Model Bias

Dee, 2005: Systematic error with regard to the notion of the average of
a model or estimator.

Spatially variable

Time dependence

Depends on regime, situation

5 / 66



Model Bias

Dee, 2005: Systematic error with regard to the notion of the average of
a model or estimator.

Spatially variable

Time dependence

Depends on regime, situation

Origin:

Poor parametrisation and representation of physical processes

Bias in boundary and initial conditions

Bias on observations
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Original motivation

The need for a bias correction method arose during the PredAntar Project:

Understanding and predicting Antarctic sea ice variability at the decadal

timescale.
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Original motivation

The need for a bias correction method arose during the PredAntar Project:

Understanding and predicting Antarctic sea ice variability at the decadal

timescale.

Characteristics and requirements of the project:

Long term simulations

Low resolution model: NEMO-LIM2

Large uncertainties on the effects of small scale
processes
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Original motivation: example with PredAntar

Comparison between 5th Coupled Model Intercomparison Project (CMIP5)
using the ORCA2 grid:

CMCC-CM (Centro Euro-Mediterraneo sui Cambiamenti Climatici -
Climate Model)

CMCC-CMS

NEMO-LIM2 Free run

NEMO-LIM2 with data assimilation

and observational data from OSTIA (Operational SST and Sea Ice
Analysis).
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Original motivation: example with PredAntar

Antarctic ice coverage RMSE (in fraction) for period 1985-2005.
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Original motivation: example with PredAntar

Antarctic ice coverage RMSE (in fraction) for period 1985-2005.
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State of the art: What is data assimilation ?

Data assimilation aims at determining the state of a model by combining
heterogeneous and imperfect observations with model variables in an
optimal way.

(2)
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Data assimilation aims at determining the state of a model by combining
heterogeneous and imperfect observations with model variables in an
optimal way.

xm = M(xm−1) + ηm, (1)

(2)

Variables Descriptions

m Time index subscript.
x, y State vector, observations.
M,H Forward model and observation operators.
η, ǫ model and observational error.
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State of the art: What is data assimilation ?

Data assimilation aims at determining the state of a model by combining
heterogeneous and imperfect observations with model variables in an
optimal way.

xm = M(xm−1) + ηm, (1)

ym = H(xm) + ǫm, (2)

Variables Descriptions

m Time index subscript.
x, y State vector, observations.
M,H Forward model and observation operators.
η, ǫ model and observational error.
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State of the art: Data Assimilation

Data assimilation methods

Nudging

Optimal Interpolation

Kalman Filters

Particle Filters

3DVar

Representer Method

4DVar

Kalman Smoother

Particle Smoother

Sequential Non-Sequential

Adjoint

Variational

Data assimilation methods overview.
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State of the art: Original and Extended Kalman Filter

Original Kalman Filter from Kalman (1960), in the Bayesian framework.
Computes background and error covariance matrix at each step.
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State of the art: Original and Extended Kalman Filter

Original Kalman Filter from Kalman (1960), in the Bayesian framework.
Computes background and error covariance matrix at each step.

Assumptions:

Errors are Gaussian distributed.

Model and observation operators are linear.

Extended Kalman Filter: Linearisation of non linear model and
observation operators.

However, error covariance matrix not computable: Size N2
x , N

2
y , where

Nx > 106, Ny > 104 in realistic models.
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State of the art: Ensemble Transform Kalman Filter

Representation of a probability density function (PDF) using a sample of
that PDF is known as a Monte Carlo algorithm.

13 / 66



State of the art: Ensemble Transform Kalman Filter

Representation of a probability density function (PDF) using a sample of
that PDF is known as a Monte Carlo algorithm.

Ensemble Kalman filter: One aims to avoid using the full covariance
matrix, but a representation through an ensemble (sample). The
assimilation provides a linear combination of ensemble members.

In the linear case and for an infinite ensemble, it converges towards the
Kalman filter.
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State of the art: Ensemble Transform Kalman Filter

Representation of a probability density function (PDF) using a sample of
that PDF is known as a Monte Carlo algorithm.

Ensemble Kalman filter: One aims to avoid using the full covariance
matrix, but a representation through an ensemble (sample). The
assimilation provides a linear combination of ensemble members.

In the linear case and for an infinite ensemble, it converges towards the
Kalman filter.

Ensemble Transform Kalman filter: No perturbations on the
observations.
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State of the art: Bias correction

Data assimilation schemes:

Bias blind: Ignores bias on the observations and in the model
background estimate.
Bias aware: Estimate model state and bias. Bias is isolated from
other state vector variables.
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State of the art: Bias correction

Data assimilation schemes:

Bias blind: Ignores bias on the observations and in the model
background estimate.
Bias aware: Estimate model state and bias. Bias is isolated from
other state vector variables.

Bias correction approaches:

Offline: Bias estimated beforehand, from preliminary model run
Online: Bias estimated and updated during the assimilation scheme.

Data assimilation with numerical model bias
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State of the art: Bias correction

Dee and Da Silva (1998): Online bias correction in sequential data
assimilation, through a separate assimilation step.
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State of the art: Bias correction

Dee and Da Silva (1998): Online bias correction in sequential data
assimilation, through a separate assimilation step.

Requirements for bias correction:

Reference and unbiased data set from which an estimation can be
provided.

Bias model or characterisation with parameters.
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State of the art: Bias correction

Dee and Da Silva (1998): Online bias correction in sequential data
assimilation, through a separate assimilation step.

Requirements for bias correction:

Reference and unbiased data set from which an estimation can be
provided.

Bias model or characterisation with parameters.

Crucial, for that an erroneous correction deteriorates the model even more
than bias blind assimilation.
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Bias correction: A new method

New bias correction method objective: Estimate a bias correction term
through assimilation and rerun the corrected model.
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Bias correction: A new method

New bias correction method objective: Estimate a bias correction term
through assimilation and rerun the corrected model.

Notation of numerical model bias:

xm = Mm (xm−1) , (3)

(5)
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Bias correction: A new method

New bias correction method objective: Estimate a bias correction term
through assimilation and rerun the corrected model.

Notation of numerical model bias:

xm = Mm (xm−1) , (3)

xtm = Mm

(
xtm−1

)
+ βm, (4)

βm = β̃m + b. (5)

One wants to correct the bias term b at every time step.
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Bias correction: A new method

Start from the free and biased model trajectory: x =




x1
x2
...

xmmax


.
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Bias correction: A new method

Start from the free and biased model trajectory: x =




x1
x2
...

xmmax


.

Generate an ensemble of bias correction estimators: b̂(i).

Variables Descriptions
i Ensemble index superscript.
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Bias correction: A new method

Start from the free and biased model trajectory: x =




x1
x2
...

xmmax


.

Generate an ensemble of bias correction estimators: b̂(i).

Run that ensemble to obtain an ensemble of forced runs: x(i).

Variables Descriptions
i Ensemble index superscript.
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Bias correction: A new method

State vector augmentation of the model trajectory with the bias
correction estimator b̂(i), ensemble mean, and assimilation scheme:

x′
(i)

=




x
(i)
1

x
(i)
2
...

x
(i)
mmax

b̂(i)



, (6)
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Bias correction: A new method

State vector augmentation of the model trajectory with the bias
correction estimator b̂(i), ensemble mean, and assimilation scheme:

x′
(i)

=




x
(i)
1

x
(i)
2
...

x
(i)
mmax

b̂(i)



, (6)

x′ =
1

Ne

Ne∑

i=1

x′
(i)
, (7)

K′ = P′fH′T (H′P′fH′T + R)−1, (8)

x′
a
= x′

f
+K′

(
yo −H′x′

f
)
. (9)

Variables Descriptions
f a Forecast and analysis superscripts.
P Covariance matrix of state vector.
R Observation error covariance matrix.
K Kalman gain.
Ne Ensemble size.
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Bias correction: Model time average

Observations are already time averages. To limit the model trajectory and
state vector size, one can take the time average as follow

H′x′ =
1

mmax

mmax∑

m=1

Hxm = Hx. (10)
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Bias correction: Model time average

Observations are already time averages. To limit the model trajectory and
state vector size, one can take the time average as follow

H′x′ =
1

mmax

mmax∑

m=1

Hxm = Hx. (10)

Augmented state vector and observation operator become

x′′ =

[
x

b̂

]
, (11) H′′x′′ = Hx. (12)
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Bias correction: Rerun

Analysis with the average model state is equivalent to full trajectory, and
is expressed as

x′′
a
= x′′

f
+K′′

(
yo −H′′x′′

f
)
. (13)

20 / 66



Bias correction: Rerun

Analysis with the average model state is equivalent to full trajectory, and
is expressed as

x′′
a
= x′′

f
+K′′

(
yo −H′′x′′

f
)
. (13)

The bias correction term b̂a is provided by the analysis x′′a. One obtains
the corrected model rerun with

xrm = Mm

(
xrm−1

)
+ b̂a. (14)

20 / 66



Bias correction: Method Schematic

Create ensemble of 

parametrised bias
Run ensemble of 

trajectories

Assimilate 

observations

Extract analysed bias
Rerun model with 

correction term

Validate correction term 

with external data

General schematic of the bias correction method, from the initial model run xm to
the corrected model run xrm.
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Lorenz ’96 model: introduction

Formulated in 1996 (K = 40 variables), exhibits advection, diffusion,
periodicity, and chaotic behaviour. With k = 1, . . . ,K , it is described by

dXk

dt
= −Xk−2Xk−1 + Xk−1Xk+1 − Xk + F . (15)
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Lorenz ’96: modification

Modification of the forcing parameter by

dXk

dt
= −Xk−2Xk−1 + Xk−1Xk+1 − Xk + Fk . (16)
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Modification of the forcing parameter by

dXk

dt
= −Xk−2Xk−1 + Xk−1Xk+1 − Xk + Fk . (16)

Creates a spatially variable constant in time forcing term Fk with a mean
F and a perturbation depending on covariance P defined by

Pi ,j = 0.3 e
−(i−j)2

15 . (17)
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Lorenz ’96: modification

Modification of the forcing parameter by

dXk

dt
= −Xk−2Xk−1 + Xk−1Xk+1 − Xk + Fk . (16)

Creates a spatially variable constant in time forcing term Fk with a mean
F and a perturbation depending on covariance P defined by

Pi ,j = 0.3 e
−(i−j)2

15 . (17)

Model retains the same characteristics, but spatial Fk is more challenging
to recover.
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Lorenz ’96 model: modification

Lorenz ’96 model mean state
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(b) Spatially variable Fk .
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Lorenz ’96 model: Single assimilation twin experiment

Twin experiment: One simulation is considered as truth or reference.
Observations are extracted from that simulation.

25 / 66



Lorenz ’96 model: Single assimilation twin experiment

Twin experiment: One simulation is considered as truth or reference.
Observations are extracted from that simulation.

Parameters:

Model mean F t = 4

Initial conditions
lmax = 15

Time span mmax = 1000

Ensemble size Ne = 100

25 / 66



Lorenz ’96 model: Single assimilation twin experiment

Twin experiment: One simulation is considered as truth or reference.
Observations are extracted from that simulation.

Parameters:

Model mean F t = 4

Initial conditions
lmax = 15

Time span mmax = 1000

Ensemble size Ne = 100

Model mean obtained from average model
trajectory by

X t
k =

1

lmax

lmax∑

l=1

1

mmax − 199

mmax∑

m=200

X t
k,l ,m.

(18)
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Lorenz ’96 model: Single assimilation twin experiment

Twin experiment: One simulation is considered as truth or reference.
Observations are extracted from that simulation.

Parameters:

Model mean F t = 4

Initial conditions
lmax = 15

Time span mmax = 1000

Ensemble size Ne = 100

Model mean obtained from average model
trajectory by

X t
k =

1

lmax

lmax∑

l=1

1

mmax − 199

mmax∑

m=200

X t
k,l ,m.

(18)

Observations are created by adding noise to the reference model run.
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Lorenz ’96 model: Single assimilation twin experiment

Forcing parameter Output
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Lorenz ’96 model: Single assimilation twin experiment

Forcing parameter Output
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Reference parameter and corresponding model output
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Lorenz ’96 model: Single assimilation twin experiment

Forcing parameter Output

5 10 15 20 25 30 35 40
2

2.5

3

3.5

4

4.5

5

5.5

6

F
or

ci
ng

 P
ar

am
et

er

Reference Run
Ensemble mean before assimilation

(a)

5 10 15 20 25 30 35 40
1

1.2

1.4

1.6

1.8

2

M
od

el
 M

ea
n 

S
ta

te

Reference Run

(b)

Ensemble of forcings is generated.
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Lorenz ’96 model: Single assimilation twin experiment

Forcing parameter Output
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(b)

Ensemble is run to provide an ensemble of model outputs.
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Lorenz ’96 model: Single assimilation twin experiment

Forcing parameter Output
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(b)

Observations are assimilated.
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Lorenz ’96 model: Single assimilation twin experiment

Forcing parameter Output
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(b)

Ensemble of forcing parameters is corrected.
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Lorenz ’96 model: Single assimilation twin experiment

Forcing parameter Output
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(b)

Ensemble is rerun to obtain rerun model outputs.
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Lorenz ’96 model: iterative assimilation

To reduce nonlinear behaviour, one can iterate the assimilation procedure.
Observation batches creation as follows

yo2 =

(
yo

yo

)
, (19) R2 =

(
2R 0
0 2R

)
, (20) H2 =

(
H
H

)
. (21)
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)
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In absence of correlation between subsets of data, iterative assimilation is
equivalent to single assimilation.

(Pa)−1xa = (Pf )−1xf +HTR−1yo = (Pf )−1xf +HT
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Lorenz ’96 model: iterative assimilation

To reduce nonlinear behaviour, one can iterate the assimilation procedure.
Observation batches creation as follows

yo2 =

(
yo

yo

)
, (19) R2 =

(
2R 0
0 2R

)
, (20) H2 =

(
H
H

)
. (21)

In absence of correlation between subsets of data, iterative assimilation is
equivalent to single assimilation.

(Pa)−1xa = (Pf )−1xf +HTR−1yo = (Pf )−1xf +HT
2 R

−1
2 yo2 . (22)

However, for a nonlinear observation operator, iterations allow smaller
steps by model rerun.
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Lorenz ’96 model: iterative assimilation

Suggested in Annan et al., 2005, and similar to running in place (RIP)
algorithm (Kalnay and Yang, 2010).
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Lorenz ’96 model: iterative assimilation

Suggested in Annan et al., 2005, and similar to running in place (RIP)
algorithm (Kalnay and Yang, 2010).

Experiment parameters:

F t = 5

F f = 6

lmax = 10

mmax = 1000

Ne = 50

nmax
iter = 1, 4

niter = 1, nmax
iter
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Lorenz ’96 model: iterative assimilation

Suggested in Annan et al., 2005, and similar to running in place (RIP)
algorithm (Kalnay and Yang, 2010).

Experiment parameters:

F t = 5

F f = 6

lmax = 10

mmax = 1000

Ne = 50

nmax
iter = 1, 4

niter = 1, nmax
iter

Different F t and F f for readability. Spread is
sufficient.

Same initial condition for every iteration
experiment.

Increase in computational cost proportional to
nmax
iter .
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Lorenz ’96 model: iterative assimilation
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Lorenz ’96 model: iterative assimilation
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Lorenz ’96 model: iterative assimilation

Exact RMSE values on the forcing parameter:

Background RMSE Analysed RMSE

nmax
iter Background niter = 1 niter = 2 niter = 3 niter = 4

1 1.270 0.726
2 1.270 0.915 0.663
3 1.270 1.007 0.799 0.639
4 1.270 1.060 0.887 0.737 0.619

Table : RMSE on Fk
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Lorenz ’96 model: iterative assimilation

Exact RMSE values of the corrected model state rerun ensemble mean:

Background RMSE Rerun RMSE

nmax
iter Background niter = 1 niter = 2 niter = 3 niter = 4

1 0.304 0.187
2 0.304 0.233 0.170
3 0.304 0.254 0.203 0.163
4 0.304 0.263 0.227 0.195 0.160

Table : RMSE on the time average of the model state

38 / 66



Lorenz ’96 model

Conclusion:

Modified Lorenz ’96 model application.

Bias correction term is estimated.

Model rerun exhibits a significant improvement on the non-corrected
run.

Iterative assimilation reduces bias even further.
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Conclusion:

Modified Lorenz ’96 model application.

Bias correction term is estimated.

Model rerun exhibits a significant improvement on the non-corrected
run.

Iterative assimilation reduces bias even further.

Time to test the method with a realistic model.
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NEMO-LIM2: Bias correction generation

Realistic model: NEMO (Nucleus for European Modelling of the Ocean),
coupled to the LIM2 (Louvain-la-Neuve Sea Ice Model) sea ice model.

Bias: Caused by low resolution, currents too weak.
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NEMO-LIM2: Bias correction generation

Realistic model: NEMO (Nucleus for European Modelling of the Ocean),
coupled to the LIM2 (Louvain-la-Neuve Sea Ice Model) sea ice model.

Bias: Caused by low resolution, currents too weak.

Method implementation: Correct currents by adding a random forcing
into the ocean dynamics equations.

Constraints: Model stability, physical restrictions on currents.

Assimilation Scheme: Local assimilation with ETKF scheme from OAK
(Ocean Assimilation Kit).
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NEMO-LIM2: Bias correction generation

Forcing term generation from random field Ψ = Ψ(x , y) and from the
Hessian of the cost function J(Ψ) by

J(Ψ) =

∫

Ω
L4h(∇

2Ψ)2 + 2L2h(∇Ψ)2 +Ψdx . (23)

This provides a random stream function tendency with constraints on
correlation length Lh.
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Forcing term generation from random field Ψ = Ψ(x , y) and from the
Hessian of the cost function J(Ψ) by

J(Ψ) =

∫

Ω
L4h(∇

2Ψ)2 + 2L2h(∇Ψ)2 +Ψdx . (23)

This provides a random stream function tendency with constraints on
correlation length Lh.

One avoids perpendicular currents with ∇Ψ • t = 0, and uses spatial
filtering to increase model stability.
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NEMO-LIM2: Bias correction generation

Vertical extension with
yearly mean mixed layer
depth by

Ψ′(x , y , z) =
Ψ(x , y)

1 + exp( z−T (x ,y)
Lv

)
.

Average mixed layer depth

Yearly average of the mixed layer depth from a
NEMO-LIM2 free run, in m.
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NEMO-LIM2: Bias correction generation

Zonal and meridional forcings from stream function

Fu(x , y , z) = −
∂Ψ′(x , y , z)

∂y
, (24) Fv (x , y , z) =

∂Ψ′(x , y , z)

∂x
. (25)
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NEMO-LIM2: Bias correction generation

Zonal and meridional forcings from stream function

Fu(x , y , z) = −
∂Ψ′(x , y , z)

∂y
, (24) Fv (x , y , z) =

∂Ψ′(x , y , z)

∂x
. (25)

Modified ocean dynamics equations:

du

dt
= −

1

ρ

∂p

∂x
+ fv +

1

ρ

∂τx

∂z
+ Fu, (26)

dv

dt
= −

1

ρ

∂p

∂y
− fu +

1

ρ

∂τy

∂z
+ Fv . (27)
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NEMO-LIM2: Experiment Set-up

NEMO-LIM2 experiments set-up, both twin and realistic cases, as follow:

44 / 66



NEMO-LIM2: Experiment Set-up

NEMO-LIM2 experiments set-up, both twin and realistic cases, as follow:

Experiment parameters

Correlation length:
5000km

SSH spatial
variability: 30cm

Ensemble size: 100
members

44 / 66



NEMO-LIM2: Experiment Set-up

NEMO-LIM2 experiments set-up, both twin and realistic cases, as follow:

Experiment parameters

Correlation length:
5000km

SSH spatial
variability: 30cm

Ensemble size: 100
members

Procedure

Run ensemble with random forcing

Assimilate SSH observations

Extract optimal forcing

Rerun ensemble mean and validate

44 / 66



NEMO-LIM2: Experiment Set-up

NEMO-LIM2 experiments set-up, both twin and realistic cases, as follow:

Experiment parameters

Correlation length:
5000km

SSH spatial
variability: 30cm

Ensemble size: 100
members

Procedure

Run ensemble with random forcing

Assimilate SSH observations

Extract optimal forcing

Rerun ensemble mean and validate

State vector is augmented with the observations: x′′ =



SSH

F̂u

F̂v


 .
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NEMO-LIM2 Twin Experiment: SSH

Ensemble of forcings is run. Observations are taken from the reference run.

Yearly mean sea surface height (in m)
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(a) Average of the ensemble.

 

 

−2

−1

0

1

2

(b) Twin experiment true run.
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NEMO-LIM2 Twin Experiment: Zonal forcing

After SSH assimilation, the analysis provides estimated bias correction
terms.

Zonal forcing (in ms−2)
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NEMO-LIM2 Twin Experiment: Meridional forcing

After SSH assimilation, the analysis provides estimated bias correction
terms.

Meridional forcing (in ms−2)
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(a) Ensemble mean after analysis.
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NEMO-LIM2 Twin Experiment: SSH rerun

The optimal forcing is rerun, providing a bias corrected run.

Model rerun SSH (in m)
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NEMO-LIM2 Twin Experiment: SSH RMSE

Twin experiment SSH RMSE
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True Run (in m)
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NEMO-LIM2 Twin Experiment: SST Validation

SST validation (in C◦)
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NEMO-LIM2 Twin Experiment: SST Validation

SST validation (in C◦)
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NEMO-LIM2 Twin Experiment: Multivariate Assimilation

SSH and SST can be assimilated together, for a better estimation of the
bias correction forcing.

Variable Forecast Monovariate Multivariate
name analysis rerun analysis rerun

F̂u in ms−2

F̂v in ms−2

SSH in m
SST in C◦

SSS in PSU

Table : RMSE values of the multivariate rerun for a ARMSE = 1 C◦ value,
compared to the monovariate assimilation. Empty values are not relevant.
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Variable Forecast Monovariate Multivariate
name analysis rerun analysis rerun

F̂u in ms−2 1.66 × 10−6

F̂v in ms−2 1.24 × 10−6
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SST in C◦ 0.999
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SSH and SST can be assimilated together, for a better estimation of the
bias correction forcing.

Variable Forecast Monovariate Multivariate
name analysis rerun analysis rerun

F̂u in ms−2 1.66 × 10−6 6.27 × 10−7

F̂v in ms−2 1.24 × 10−6 5.81 × 10−7

SSH in m 0.220
SST in C◦ 0.999
SSS in PSU 0.268

Table : RMSE values of the multivariate rerun for a ARMSE = 1 C◦ value,
compared to the monovariate assimilation. Empty values are not relevant.
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NEMO-LIM2 Twin Experiment: Multivariate Assimilation

SSH and SST can be assimilated together, for a better estimation of the
bias correction forcing.

Variable Forecast Monovariate Multivariate
name analysis rerun analysis rerun

F̂u in ms−2 1.66 × 10−6 6.27 × 10−7 5.96 × 10−7

F̂v in ms−2 1.24 × 10−6 5.81 × 10−7 5.45 × 10−7

SSH in m 0.220 0.068
SST in C◦ 0.999 0.539
SSS in PSU 0.268 0.197

Table : RMSE values of the multivariate rerun for a ARMSE = 1 C◦ value,
compared to the monovariate assimilation. Empty values are not relevant.
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NEMO-LIM2 Twin Experiment: Multivariate Assimilation

SSH and SST can be assimilated together, for a better estimation of the
bias correction forcing.

Variable Forecast Monovariate Multivariate
name analysis rerun analysis rerun

F̂u in ms−2 1.66 × 10−6 6.27 × 10−7 5.96 × 10−7

F̂v in ms−2 1.24 × 10−6 5.81 × 10−7 5.45 × 10−7

SSH in m 0.220 0.068 0.061
SST in C◦ 0.999 0.539 0.509
SSS in PSU 0.268 0.197 0.150

Table : RMSE values of the multivariate rerun for a ARMSE = 1 C◦ value,
compared to the monovariate assimilation. Empty values are not relevant.
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NEMO-LIM2 Real Case

SSH observations come from the mean dynamic topography (MDT) of
CNES-CLS09 (Centre National d’Etudes Spatiales, Collecte Localisation
Satellites).

SSH RMSE
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RMSE on SSH with CNES-MDT observations (in m).
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NEMO-LIM2 Real Case: SSH

Strong currents are too weak in NEMO.

Yearly mean SSH (in m)
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(b) Model free run.
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NEMO-LIM2 Real Case: SSH

Corrected rerun shows small scale structure, but also stronger currents.

Yearly mean SSH (in m)
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(b) Optimal forcing rerun.
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NEMO-LIM2 Real Case: SSH average error

Yearly mean SSH average error with the observations (in m)

(a) Average of the ensemble. (b) Model free run.
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NEMO-LIM2 Real Case: SSH average error

Yearly mean SSH average error with the observations (in m)

(a) Analysis. (b) Optimal forcing rerun.
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NEMO-LIM2 Real Case: final forcing

Final forcing

 1
80

o W
 

 1
20

o W
 

  6
0

o W
 

   0o  

  60 o
E

 
 120 oE

 
 180

oW
 

  8
0

o S 

  40
o S 

   0o  

  40 o
N 

  80 o
N

 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−5

Analysed forcing from CNES-MDT observations, used to rerun the model (in
ms−2).
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NEMO-LIM2 Real Case: final forcing

Real global current map

Real global average current map of the oceans. Adapted from
http://www.georgemaps.com/
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NEMO-LIM2 Real Case: SST Validation

SST climatology from NODC-WOA13V2 data provided by the National
Oceanic and Atmospheric Administration (NOAA).

Yearly mean SST average error (in C◦)

(a) Optimal forcing. (b) Model free run.
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NEMO-LIM2 Real Case: Iterative Analysis

SSH RMSE
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NEMO-LIM2 Real Case: Iterative Analysis

Exact RMSE values on the SSH for single and iterative experiments.

ARMSE on SSH (in m) RMSE (in m)
Background Single Assim Iterative Assim

R 2R iter 1 iter 2

0.0215 0.0431
0.0464 0.0928
0.1000 0.2000
0.2154 0.4308
0.4642 0.9284

Table : RMSE on SSH from the ensemble mean before analysis with CNES-MDT
observations, from the forced rerun with the observations, and from the first and
second successive iterated assimilations.
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Exact RMSE values on the SSH for single and iterative experiments.

ARMSE on SSH (in m) RMSE (in m)
Background Single Assim Iterative Assim

R 2R iter 1 iter 2

0.0215 0.0431 0.1965
0.0464 0.0928 0.1965
0.1000 0.2000 0.1965
0.2154 0.4308 0.1965
0.4642 0.9284 0.1965

Table : RMSE on SSH from the ensemble mean before analysis with CNES-MDT
observations, from the forced rerun with the observations, and from the first and
second successive iterated assimilations.
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NEMO-LIM2 Real Case: Iterative Analysis

Exact RMSE values on the SSH for single and iterative experiments.

ARMSE on SSH (in m) RMSE (in m)
Background Single Assim Iterative Assim

R 2R iter 1 iter 2

0.0215 0.0431 0.1965 0.1604
0.0464 0.0928 0.1965 0.1592
0.1000 0.2000 0.1965 0.1571
0.2154 0.4308 0.1965 0.1554
0.4642 0.9284 0.1965 0.1589

Table : RMSE on SSH from the ensemble mean before analysis with CNES-MDT
observations, from the forced rerun with the observations, and from the first and
second successive iterated assimilations.
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NEMO-LIM2 Real Case: Iterative Analysis

Exact RMSE values on the SSH for single and iterative experiments.

ARMSE on SSH (in m) RMSE (in m)
Background Single Assim Iterative Assim

R 2R iter 1 iter 2

0.0215 0.0431 0.1965 0.1604 0.1604
0.0464 0.0928 0.1965 0.1592 0.1579
0.1000 0.2000 0.1965 0.1571 0.1554
0.2154 0.4308 0.1965 0.1554 0.1574
0.4642 0.9284 0.1965 0.1589 0.1640

Table : RMSE on SSH from the ensemble mean before analysis with CNES-MDT
observations, from the forced rerun with the observations, and from the first and
second successive iterated assimilations.
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NEMO-LIM2 Real Case: Iterative Analysis

Exact RMSE values on the SSH for single and iterative experiments.

ARMSE on SSH (in m) RMSE (in m)
Background Single Assim Iterative Assim

R 2R iter 1 iter 2

0.0215 0.0431 0.1965 0.1604 0.1604 0.1315
0.0464 0.0928 0.1965 0.1592 0.1579 0.1305
0.1000 0.2000 0.1965 0.1571 0.1554 0.1341
0.2154 0.4308 0.1965 0.1554 0.1574 0.1416
0.4642 0.9284 0.1965 0.1589 0.1640 0.1511

Table : RMSE on SSH from the ensemble mean before analysis with CNES-MDT
observations, from the forced rerun with the observations, and from the first and
second successive iterated assimilations.
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NEMO-LIM2 Real Case: Iterative Analysis SSH average

error

Yearly mean SSH average errors (in m)

(a) First iteration rerun. (b) Second iteration rerun.
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NEMO-LIM2 Real Case: Conclusions and perspectives

The twin experiment shows a significant reduction on the SSH bias
through adequate model forcing. The real case shows that the bias
generation is important, and the strong seasonal cycle in the Antarctic
ocean.
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NEMO-LIM2 Real Case: Conclusions and perspectives

The twin experiment shows a significant reduction on the SSH bias
through adequate model forcing. The real case shows that the bias
generation is important, and the strong seasonal cycle in the Antarctic
ocean.

Possible development options for the future:

Real 3D forcing

Time dependent forcing, with seasonal variations

Validation against other bias correction methods

Parametrisation of the final forcing

Extract local optimal forcing

64 / 66



Thesis: Conclusions

Theoretical formulation of the bias correction method.
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Thesis: Conclusions

Theoretical formulation of the bias correction method.

The application on the Lorenz ’96 shows:

Estimation of the bias correction term.

Reduced model bias on the model rerun.

NEMO-LIM2 implementation:

Correction term forcing is stable on the model.

Bias correction works on complex models.

Iterative assimilation is more accurate.

Thesis objectives:

Model correction can be used for future projections.

Applicable to other models.

65 / 66



Thesis: Conclusions

Thank you for your attention.
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State of the art: Data Assimilation Notation

Multiple notations through time. Unified notation in Ide et al. (1997).

Variables Descriptions

m Time index subscript.
f a Forecast and analysis superscripts.
x, y State vector, observations.
M,H Forward model and observation operators.
P Covariance matrix of state vector.

Q,R Model and observation error covariance matrix.
K Kalman gain.
i Ensemble index superscripts.
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NEMO-LIM2 Twin Experiment: Multivariate Assimilation

SSH and SST can be assimilated together, for a better estimation of the
bias correction forcing.

Variable Forecast Monovariate Multivariate
name analysis rerun analysis rerun

F̂u in ms−2 1.66 × 10−6 6.27 × 10−7 5.96 × 10−7

F̂v in ms−2 1.24 × 10−6 5.81 × 10−7 5.45 × 10−7

SSH in m 0.220 0.039 0.068 0.0457 0.061
SST in C◦ 0.999 0.539 0.453 0.509
SSS in PSU 0.268 0.197 0.150

Table : RMSE values of the multivariate rerun for a ARMSE = 1 C◦ value,
compared to the monovariate assimilation. Empty values are not relevant.
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NEMO-LIM2 Real Case: final forcing

Final forcing
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Analysed forcing from CNES-MDT observations, used to rerun the model (in
ms−2).
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NEMO-LIM2 Real Case: Gulf Stream

Zonal current Gulf Stream (in ms)
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(a) Free model.
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(b) Corrected model.
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NEMO-LIM2 Real Case: Gulf Stream

Zonal current Gulf Stream, latitude cut (in m/s)
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(a) Free model.
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(b) Corrected model.

Free model range: -0.2921 to 0.25035 (m/s). Forced model: -0.57111 to
0.53793 (m/s).
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