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Alvera Azcarate, Thi Hong Ngu Huynh, Charles Troupin, Stephane Lesoinne, Igor

Tomazic, Subekti Mujiasih, Gaelle Parard and Svetlana Karimova for the Friday

afternoon coffees and the ensuing discussions and presentations who made me dis-

cover other aspects of oceanography.

To my upstairs and downstairs neighbours and colleagues, Maxime Hubert, Se-

bastien Mawet, and Christophe Becco, I want to express my thanks for your help,

encouragements, and questions which provided me with a different point of view on

my work.

I am also thankful to the two wonderful persons who organise all the events

around the GHER, Charlotte Peelen and Cécile Pregaldien.

A special thanks to Manon Mathieu, without whose support throughout those

four years this thesis would not have been possible.



V

I would like to thank two friends, Romain Van der Keilen, and Werrick Deneu,

whose companionship and help to solve programming issues have been immensely

helpful.

A special thank to my family, whose encouragements helped me through all my

levels of educations.

This work was funded by the project PREDANTAR (SD/CA/04A) from the

federal Belgian Science policy (http://www.climate.be/PREDANTAR) and the San-

goma FP7-SPACE-2011 project (grant 283580) (http://www.data-assimilation.net/).

Alexander Barth is an F.R.S. - FNRS Research Associate. Computational re-

sources have been provided by the Consortium des Équipements de Calcul Intensif
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Abstract

A new method of bias correction using an ensemble transform Kalman

filter as data assimilation scheme is developed. The objective is to cre-

ate a stochastic forcing term which will partially remove the bias from

numerical models. The forcing term is considered as a parameter to be

estimated through state vector augmentation and the assimilation of ob-

servations.

The theoretical formulation of this method is introduced in the gen-

eral context of numerical modelling. A specially designed and modified

Lorenz ’96 model is studied, and provides a testing environment for this

new bias correction method. Several different aspects are considered

through both single and iterative assimilation in a twin experiment.

The method is then implemented on the global general circulation model

of the ocean NEMO-LIM2. The forcing term generation is detailed to

respect particular physical constraints. Again, a twin experiment allows

to assess the efficiency of the method on a realistic model. The assim-

ilation of sea surface height observations is performed, with sea surface

salinity and temperature as control variable. Subsequently, a multivari-

ate assimilation shows further improvement of the bias correction.

Finally, the method is confronted to real sea surface height observations

from the CNES-CLS09 global mean dynamic topography. A thorough

study of the NEMO-LIM2 model response to the bias correction forcing

term is proposed, and specific results are highlighted. An iterative as-

similation concludes the method investigation. Possible ideas and future

developments are suggested.



VIII



Abstract

Une nouvelle méthode de correction de biais utilisant un filtre d’ensemble

de Kalman transformé est développée. L’objectif est de construire un

terme de forçage stochastique afin de réduire le biais d’un modèle numérique.

Ce terme de forçace est considéré comme un paramètre à estimer via

l’augmentation du vecteur d’état lors de l’assimilation d’observations.

La formulation théorique de cette méthode est présentée dans le contexte

de la modélisation numérique. Le modèle de Lorenz ’96, spécifiquement

modifié dans le cadre de cette étude, permet de disposer d’un environ-

nement controlé pour éprouver la méthode de correction du biais. Une

expérience jumelle est utilisée pour expérimenter ses différents aspects

au travers d’assimilation successivement simple et itérative.

Cette méthode est ensuite implémentée sur le modèle global et général

de circulation de l’ocean NEMO-LIM2. La génération du terme de

forçage est détaillée afin de respecter différentes contraintes physiques

et numériques. Une expérience jumelle permet d’évaluer l’efficacité de la

méthode sur un modèle réaliste. La hauteur de la surface de la mer est

considérée comme donnée d’observation et assimilée, la température et

la salinité de surface de la mer servant de variable de contrôle. Enfin, ces

deux premières variables sont assimilées simultanéement, permettant la

comparaison avec l’assimilation simple.

Pour terminer, la méthode est confrontée à un cas opérationnel, avec

des données de topographie dynamique moyenne provenant de CNES-

CLS09. Une étude approfondie du modèle NEMO-LIM2 lors de l’application

de la méthode de correction du biais est présentée. L’assimilation itérative

de ces mêmes données cloture les expériences menées autour de cette

méthode. Différentes idées de développements futurs sont proposées.
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Chapter 1

Introduction

Contents
1.1 Historical perspective . . . . . . . . . . . . . . . . . . . . . 1

1.2 Data assimilation . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1 Historical perspective

Historically, in 1922, Richardson published the first attempt at a numerical forecast

of weather (Richardson, 1922; Lynch, 2008). His so called ”forecast factory” inter-

polated available observations to build initial conditions at t0. From there, by hand,

he produced a 6-hour forecast of the atmosphere over two points in central Europe,

using a hydrostatic variation of Bjerkness’ primitive equations. The results were,

unfortunately, completely unrealistic, resulting in a surface pressure over a six-hour

period of 145 hPa (Lynch, 2006). The simple interpolation used did not respect

the physical constraints, therefore developing unstable modes which eventually con-

ducted to model instability. Moreover, the initial conditions were unnatural. This

inevitably led to spurious tendencies and imbalance between the pressure and wind

fields. Despite the generally favorable reviews of his work, the impracticality of his

method with the available tools deterred others to follow his path for a couple of

decades.

It is only with the arrival of computers that weather prediction and climate mod-

elling would again be conceivable. In the early 1950’s, a team was able to produce

24-hour forecasts, which needed 24 hours of computation. It was the first time that

1



2 Chapter 1. Introduction

numerical weather prediction was able to keep up with time. Improvements in nu-

merical analysis, with new and stable algorithms, the development of data retrieval

tools, such as satellites, and the introduction of data exchange, provided a solid and

fertile ground for further research in numerical modelling of the earth.

The close relationship between the atmosphere and the ocean, whether it be

the physical properties and transfers between both, or the similarities regarding

the numerical particularities of those systems, led to ocean modelling to follow the

path of weather prediction. Two major operational differences remain between the

two geofluids. The first resides in the interest of producing daily forecasts of those

systems: the need for daily atmospheric weather forecasts did not originally find a

similar interest in ocean modelling. It is only recently that the need for seasonal

and inter-annual oceanic forecasts arose. In particular, the influence of the ocean

on global climate, and the prediction of large-scale phenomena linked to the ocean,

such as El-Niño, required a knowledge of oceanic processes to be available before-

hand. There is also an interest in short-range forecasts (on an oceanic scale) for e.g.

world navies, fisheries, off-shore drilling, search and rescue operations, or oil spill

forecasts. The second difference relates to the available data sets, which are consid-

erably smaller for the ocean. The ocean, compared to the atmosphere, is a harsh

environment which strains data collection systems. Whereas, on the continents, ob-

servations stations have been monitoring the weather for a long time, similar tools

could not be used in the ocean. For a long time, due to the necessity of having a

human performing the measurements, oceanic measures only relied on boats sailing

through the ocean. It is only since the arrival of electronics that automatic drifters

and buoys have provided regular data sets. The rise of satellites also greatly helped

to provide large coverage for the size of the oceans. Consequently, the available

measures of the ocean still lack sufficient coverage for extended time periods, and

for remote regions.

Nonetheless, numerical modelling of geophysical systems brings a certain num-

ber of problems which can not be ignored. Examples are the limitation that comes

from the finite computational power available which results in limited resolution,

imperfect specification of boundary conditions, and poor representation of sub-grid

physical processes. The initialization of a model also requires either a climatology

based on another model or retrieved through observations, or an excellent knowl-

edge of the system, in order to avoid early imbalances in the model. All those issues

require a particular treatment with specifically developed methods.
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1.2 Data assimilation

One of those methods is data assimilation. It is a technique developed to handle

the difficulties that arise from numerical modelling. It describes a method which

aims at determining the state of a model by combining heterogeneous and imperfect

observations in an optimal way. In particular, its purpose is to correct numerical

models representing an dynamical system for which observations are available. A

perfect representation of a real dynamical system is not possible. As such, compro-

mises have to be made, and lead to poor processes parametrisation and approximate

initial states. Errors are therefore inevitable, and need to be coped with, in order

to obtain a more accurate estimation of the state of the system.

Data assimilation can be summarised as the combination of mathematical algo-

rithms which incorporates observations into the model state of a numerical model,

using prior error and statistical information about both the observations and the

model state, and the mathematical equations describing and governing the model.

Those available information are all different in nature, quantity and quality. Com-

monly, the state of the model prior to assimilation is called the forecast, and the

result of the assimilation is then an optimal representation of the model state which

is called the analysis.

A concrete example can easily be detailed for the weather forecast. After taking

the temperature in two cities during a couple of days, one wishes to forecast the daily

temperature in the forthcoming days, for both cities, and the land that separates

them. A relatively straightforward method is to extrapolate the evolution of the

temperature, assuming that the measurements curve is smooth enough. One could

also rely on a statistical database of previous evolution of temperature. With the

help of numerical modelling, one could also aim to forecast the temperature through

simulations. On the next day, the forecast can be compared with the real weather.

By taking new measurements in both cities, the model forecast can be corrected.

However, supposing that no data is available for the space separating both cities,

the model would still also need correction at those points. Finally, errors on the

measurements need also be to taken into account. Data assimilation techniques try

to optimise those corrections by using the available information about the model

and the measured data.



4 Chapter 1. Introduction

Originally developed for meteorology and numerical weather prediction, data

assimilation dates back to the 1950’s (Panofsky, 1949) , and has a long history of

applications in many different fields such as oceanography, glaciology, seismology,

nuclear fusion, medicine, agronomy, ... The recurring common factor of data as-

similation applications is inaccurate numerical models for which observations are

available. In particular in geoscience, with high dimensional systems, the number

of observations and the huge number of variables in the system, respectively up to

107-109 nowadays, are a real issue and impose constraints due to the limited com-

putational power available.

At first, empirical methods were developed. The successive corrections method

(SCM) dates back to 1955 (Bergthörsson and Döös, 1955), and is an iterative process

which starts with a background field or first guess. A linear weighing scheme is then

used to adjust the initial guess and subsequent estimates to fit the grid point values

to the observations, taking into account the ratio of the observation error variance

to the background error variance (Cressman, 1959). It was improved later by Barnes

(1964) for analyses where no available background field could be provided. Bratseth

(1986) showed that SCM can be made to converge to a optimal interpolation pro-

vided that adequate weights are chosen.

Data assimilation methods can currently be divided into different categories, de-

pending on their inherent hypotheses, and their approaches. In essence, they can

be either sequential or nonsequential. In sequential assimilation, the model is in-

tegrated over a period of time with no available observations. When the model

reaches a point in time where observations are present, it is stopped. The model

is then used as a first guess or background estimate which needs to be corrected

or updated with the observations. The statistical information about the model and

the observations error are used to obtain the best corrected state, or analysis. The

model is then restarted from that point in time. This process is repeated until all

observations are used. One can thus look at sequential data assimilation as a suc-

cession of integrations and corrections over a period of time where observations are

distributed and available. The particularity of sequential data assimilation is that

the observations are only used to correct the model forward in time. There is no

backwards correction of the previous or initial state from later observations.

Nudging is an empirical and sequential method, also called Newtonian relax-
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ation. In this method, an additional source term, or sink term, is added to the

prognostic equations of the observed variables. This will then nudge the solution

towards the observation (interpolated to the model grid) during the integration of

the model equations. Hence, nudging has a continuous effect on the model, at every

time step. A relaxation time scale is chosen based on empirical considerations. A

too short relaxation time and the solution will converge too fast, causing imbalanced

model states. A too long relaxation time causes model errors to grow too large. Ex-

ample of this method application are altimetry assimilation in the North Atlantic

(Blayo et al., 1996), or a 15 year reanalysis from the ECMWF (European Centre

for Medium-Range Weather Forecasts) (Kaas et al., 1999). In practice, nudging is

easy to implement, and the computational cost is nearly negligible. However, it is

not applicable when using indirect observations, and unobserved variables have to

adjust themselves through the model dynamics. Still, nudging is still used for spe-

cific applications, such as the assimilation of gridded data from a reanalysis. More

recently, Auroux and Blum (2005) proposed a back and forth nudging, using an

inverse source term and integrating the model backwards in time to the initial state.

Optimal interpolation is also a sequential assimilation method (Gandin and

Hardin, 1965). Unlike nudging, optimal interpolation uses physical assumptions

and error statistics. For instance, one can connect sea surface temperature and

altimetry to general circulation models, such as will be used later in this work. Op-

timal interpolation refers to methods originating from linear estimation theory. It is

based on a background error covariance matrix which is assumed constant in time.

More recently, optimal interpolation schemes using a different parametrisation for

the error covariance matrix and its numerical representation have been developed,

such as the multivariate optimal interpolation scheme (Daley, 1991), or the ensem-

ble optimal interpolation scheme (Oke et al., 2002), used in Counillon and Bertino

(2009) to forecast the Loop Current in the Gulf of Mexico.

3D-Var is another sequential assimilation method (Courtier et al., 1998). The

idea is to provide the model state as input, which is then adjusted in such a way

that the model output is as close as possible to the observations and to the back-

ground field. 3D-Var can be seen as a variational method in the sense that it requires

the development of the adjoint of the observation operator. Therefore, the model

dynamics is not involved, and the relationship between the model state and the

observations is performed through the adjoint. If this observational model is linear,

3D-Var becomes equivalent to optimal interpolation.



6 Chapter 1. Introduction

The Kalman filter, and its numerous derivations, are also sequential methods

(Kalman, 1960). Essentially the background and its error covariance matrix are

computed and updated at each assimilation cycle. It assumes that the errors are

additive, unbiased, uncorrelated and Gaussian distributed for the model and the

observations, and that the model and observation operator are linear. The extended

Kalman filter proposes to linearise the model dynamics and the nonlinear observa-

tion operator (Jazwinski, 1970). The Kalman filter and the extended version can

not be used directly on realistic models, where the model dynamics is nonlinear,

causing the error covariance matrix to become difficult to compute. An interesting

derivation of the Kalman filter is its ensemble formulation, known as the ensemble

Kalman filter (Evensen, 1994). It was introduced to overcome the the limitations of

the first-order approximation of the extended Kalman filter through a Monte Carlo

approach. The full derivation of the Kalman filter, the extended Kalman filter and

the ensemble Kalman filter, is detailed in chapter 3. Because of their efficiency,

robustness, and the ease of implementation, the Kalman filter and all the existing

modifications are very popular in geophysical applications (Edwards et al., 2015).

The particle filter eliminates the need for the Gaussian assumption required by

the Kalman filter (DEL MORAL et al., 1995; Van Leeuwen, 2009). Therefore, it

handles the nonlinearities much better than the Kalman filter. It is directly drawn

from the Bayes theorem, without any additional assumption. Each ensemble mem-

ber (similarly to the ensemble Kalman filter) is called a particle, and is integrated

through the nonlinear model. The objective is to represent the posterior probability

function without any prior assumption on its distribution. When observations be-

come available, the information contained in the observations is incorporated into

the particles. Probabilities based on an estimated likelihood function resample then

the ensemble, and provide a new analysed ensemble. The particle filter is also a

sequential assimilation method. It is however difficult to apply to realistic cases due

to the curse of dimensionality of high dimensional data and state spaces, causing a

large number of particles to be required.

In nonsequential assimilation methods, the information is propagated both for-

ward and backwards. This allows the estimation of a past model state based on

posterior observations. For example, the Kalman smoother (Gelb, 1974) is an ex-

tension of the Kalman filter which uses past and future observations by integrating

the time dimension into the state vector. In Cosme et al. (2010), a square-root
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smoother algorithm is presented as an extension from the singular evolutive ex-

tended Kalman filter (Pham et al., 1998). The same generalisation can be applied

to the particle filter, which is then called a particle smoother (Tanizaki, 2001).

Another class of nonsequential assimilation methods are adjoint methods. They

are powerful tools that provide and estimate of the sensitivity of a model output with

respect to an input. In particular, in data assimilation, an optimal analysis is one

that fits the observations best, using assumptions and available information about

the error characteristics of the data used. This is where adjoint methods perform

efficiently, allowing the optimization problem to be solved in a reasonable time for

application to real-time forecasting (Errico, 1997). Basically, adjoint methods make

use of adjoint of the model whose solution is being examined (hence, ”adjoint”),

where the adjoint is formally defined as the transpose of the tangent linear model.

A control solution and a measure of the forecast are considered. The gradient of this

forecast at the control solution is evaluated with respect to perturbations of each

component of the model output. This gradient can be interpreted as the sensitivity

of the forecast to the perturbations. Those perturbations can be on the initial con-

ditions, boundary conditions, or even model parameters.

However, adjoints methods also show limitations. The model equations have to

be differentiable, which is not always the case (Zupanski et al., 2008). One also

needs to store either the complete trajectory, or to be able to partially recompute

it to evaluate the adjoint. This involves sophisticated check-point techniques to

efficiently solve the problem. The derivation of the adjoint (and the tangent lin-

ear) model can prove to be difficult and tedious. Some improvements in automatic

adjoint compilers have been performed, but the procedure is still challenging (He-

imbach et al., 2005). Additionally, the cost-function might have a local minimum,

causing the minimisation to converge only to the local minimum, and not the global

one. In particular, for 4D-Var, if the probability density function has multiple sec-

ondary modes, finding the global one can be a challenge.

4D-Var is a nonsequential data assimilation method which makes use of the ad-

joint of the model (Dimet and Talagrand, 1986; Talagrand and Courtier, 1987). It

is able to take all observations into account. However, all error sources must be

control variables of the optimisation process. Since one can not take into account

the error introduced at every time step, the model is assumed to be perfect. This
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is imposed as a strong constraint. One can interpret the 4D-Var scheme as an time

extension of the 3D-var. 4D-Var is still commonly applied to various practical cases

in oceanography (Ngodock and Carrier, 2014; da Rocha Fragoso et al., 2016).

In the representer method (Bennett, 1992), the model error is accounted for,

unlike the 4D-Var method. However, this can be prohibitive if a lot of information

are available, such as satellite data coverage.

1.3 State of the art

Bias is commonly defined as a systematic error with a nonzero mean. In a more

formal formulation, any kind of component of error which is systematic, with regard

to the notion of the average of a model or estimator, can be considered as bias (Dee,

2005). The effects of bias can significantly deteriorate the model solution. Bias

can take multiple different forms, spatially variable, seasonal, or even depend on

specific situations. In numerical modelling, current limitation comes among others

from the finite computational power available, which, in ocean models, results in

limited resolution. With inaccurate surface forcings, those are examples of model

associated bias. The limited knowledge of the system also leads to imperfect specifi-

cation of boundary conditions, and poor representation of subgrid physical processes

(Baek et al., 2009). Those differences between the numerical model and the dynam-

ics of the real ocean induce systematic errors in the numerical forecasts. Daytime

high-altitude radiosonde temperatures can be biased due to solar radiation effects,

and radar altimetry affected by electromagnetic bias originating from the smaller

reflectivity of wave crests than troughs, are examples of observation related bias

(Ghavidel et al., 2016). Finally, bias can even come from the assimilation itself,

when unbiased observations are assimilated into a biased model. The model drift

towards its biased state causes bias in the assimilation, and can lead to apparent

changes in characteristics of the observing system (Santer et al., 2004).

When used for prediction, or long term simulations with a limited number of

available observations, those systematic errors cause the model to exhibit significant

differences in climatologies when compared to the reality. In some circumstances,

they can even be comparable or larger than random or nonsystematic error of the

model solution. While the random part of the model error has been reduced thanks

to several advances in numerical modelling, it has become increasingly necessary to

address the systematic model error (Keppenne et al., 2005). The bias in climatic
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modelling can be so large, that only variation and anomalies are studied rather that

the absolute model results (Zunz et al., 2013).

In the context of oceanography, state of the art ocean models exhibit significant

differences in the climatological mean state when compared to observations from

the real ocean (Flato et al., 2013). For instance, eddy-mean processes can be poorly

represented, which causes western boundary currents to be responsible for large sea

surface temperature bias, such as for the Gulf Stream and the Kuroshio currents

(Large and Danabasoglu, 2006).

To reduce the error of the model, one can make use of data assimilation schemes.

However, a critical assumption for analysis schemes is that the mean of the back-

ground error is zero. This hypothesis is clearly violated in the presence of bias. Data

assimilation schemes that are designed to use nonbiased observations to correct ran-

dom errors with zero mean in a model background estimate, are called bias-blind. In

presence of bias, those analysis schemes are suboptimal, and can generate spurious

corrections and undesired trends in the analysis (Dee and Uppala, 2009). Most data

assimilation schemes are designed to handle small, random errors and make small

adjustments to the background fields that are consistent with the spatial structure

of random errors (Dee, 2005). Unfortunately, due to the systematic character of

model errors, their representation as random errors, or noise, is rather poor. In

some cases, such as satellite observations, bias can even be larger that the actual,

useful signal present in the observations (Cucurull et al., 2014).

Bias-aware data assimilation scheme are designed to simultaneously estimate the

model state variables and parameters that are set to represent systematic errors in

the system. However, assumptions need to be made about the error covariance of

the bias and its attribution to a particular source. It also needs to be represented

and expressed in a set of well-defined parameters.

Model bias estimation was first introduced by Friedland (1969), and more deeply

described by Jazwinski (1970); Gelb (1974). He suggested a scheme in which the

model state vector should be augmented with a decoupled bias component that can

be isolated from the other state vector variables. This allows the estimation of the

bias prior to the estimation of the model.

Bias correction approaches can be separated into different approaches (Keppenne
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et al., 2005; Chepurin et al., 2005). In offline methods, bias is estimated from the

model mean and the climatology, using a preliminary model run. Offline methods

are simple to implement and have a small computational cost. In online methods,

bias is updated during the data assimilation step, resulting in an analysed bias.

The most known and referred to algorithm for online estimation and correction of

the bias in sequential data assimilation is presented in Dee and Da Silva (1998). Bias

is estimated during the assimilation by adding an extra and separate assimilation

step. It was successfully applied in Dee and Todling (2000) to the global assimila-

tion of humidity observations in the Goddard Earth Observing System. A simplified

version of this algorithm using a single assimilation step (where Dee and Da Silva

(1998) needed two) was applied by Radakovich et al. (2001) to land-surface temper-

ature assimilation, and by Bell et al. (2004) for the online estimation of subsurface

temperature bias in tropical oceans. It was also used for model bias estimation by

Baek et al. (2006), and observation bias correction in Fertig et al. (2009). In Carton

et al. (2000b), a 46-year global retrospective analysis of the upper-ocean tempera-

ture, salinity and currents, was performed, with bias originating both from model

limitations and poor surface forcings. In Keppenne et al. (2005), bias between the

climatology of the model and the data was problematic for the use of satellite al-

timeter data from TOPEX/Poseidon. In Chepurin et al. (2005), the effect of bias

on a 31-year long historical analysis of the physical state of the ocean is studied,

with a focus on the mixed layer and thermocline depth in the tropical Pacific Ocean,

and in Nerger and Gregg (2008), a singular evolutive interpolated Kalman filter was

extended with an online bias correction scheme.

However, a critical requirement is that most methods of bias correction need a

reference data set which is defined as bias free, from which a bias estimation can

be provided. In practice, it can be difficult to find such a data set. The bias also

needs to be charaterised in terms of some well-defined set of parameters. While

this is obvious for bias estimation, it is a critical condition when attempting bias

correction. The attribution of bias to an erroneous source will force the assimilation

to be consistent with a biased source. In some cases, the bias correction would even

deteriorate the assimilation procedure, and perform worse than a classic, bias-blind

assimilation (Nakamura et al., 2013; Massari et al., 2015).

Hence, the effect of bias on the model climatology can not be neglected. The ne-

cessity of removing, or at least, reducing the effects of bias on the model has driven
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to the development of methods allowing to force the model towards a nonbiased

climatology. Addressing systematic model errors, such as oceanographic biases, is

even more tricky, since a representation of the bias itself, or the generation mech-

anism, is needed. The bias in the background field can be directly modelled by

assuming some kind of persistence (Dee and Da Silva, 1998; Chepurin et al., 2005).

Background errors (defined as the nonzero mean residuals) being observable, it is rel-

atively straightforward to formulate a consistent bias-estimation scheme. Suppress-

ing the bias generation during the integration of the model would even be preferable.

For example, in Derber and Rosati (1989), a variational continuous assimilation

technique is applied. In the same way as nudging for data assimilation, it is a modi-

fication of the adjoint techniques, where a correction term is added to the equations,

in order to correct the bias. It aimed at optimally fitting the data throughout the

assimilation period, rather than relaxing the solution towards the values at observa-

tion times. It has been applied to radiative transfer model in Derber and Wu (1998).

Another example is in Radakovich et al. (2004), the model is so heavily affected

by bias that a classic bias aware assimilation scheme (Dee and Da Silva, 1998) is

not sufficient enough. The bias correction term is only applied during the assimila-

tion scheme, but due to the model characteristics, it quickly slips back to its biased

state and dissipates the correction term. In that study, an adapted incremental bias

correction term was applied, during the model run, proportional to the initial state

and the time separating two analysis steps (Radakovich et al., 2004). In some cases,

the bias is handled through a post integration bias correction (Stockdale, 1997).

Recently, Vossepoel et al. (2004) evaluated the possibility of reconstructing wind

stress forcing fields with both a random and constant error part, with a 4D-Var

assimilation scheme on a twin experiment. Leeuwenburgh (2008) performed the

estimation of surface wind-stress through an ensemble Kalman filter and corrected

the boundary conditions of the model, effectively reducing the model bias. A very

similar study to the work presented here is Ngodock et al. (2016), where an extra

term is introduced in the tidal forcing, to correct errors in the tide model due to

imperfect topography and damping terms.
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1.4 Objectives

In this work, the problematic of model bias correction is tackled by developing a

new method which combines stochastic forcing and data assimilation. While most

previously developed and existing methods correct bias in the model results, the

objective here is to come closer to the origin of the bias, and correct it by applying a

stochastic forcing into the model equations. Data assimilation, and in particular the

Ensemble Transform Kalman Filter (ETKF) is used, in a similar way to parameter

estimation, to tune and find an optimal forcing term which is directly injected into

the modified model equation. The aim is to provide a continuous bias correction by

forcing the model.

The initial motivation to develop a new bias correction method arose in the con-

text of the PredAntar project (Goosse et al., 2015), which consisted in the study of

the Antarctic sea-ice coverage during the period 1980-2009 through the use of the

coupled sea ice ocean NEMO-LIM2 model. Considering the long integration period

of the project, compromises were made to respect the multiple limitations inherent

to the project, such as a coarse model resolution. These caused the model to suffer

from bias. Reanalysis throughout the model run provided adequate corrections, but

highlighted the effects of bias, and the current bias correction methods limitations.

This novel approach is detailed in a general Kalman filter theoretical framework

to prove its theoretical consistency. The successive steps are carefully detailed in

the context of data assimilation, so that it can easily be transposed from the current

oceanic application to any biased numerical model.

For the first application of the new bias correction method, the classic Lorenz

’96 mathematical model (Lorenz, 1996; Lorenz and Emanuel, 1998) is chosen for its

chaotic characteristics. Necessary modifications are applied to adjust the model to

the specific needs of this study. Hence, the modified Lorenz ’96 model characteristics

are investigated to show particular connections to realistic ocean models. A classic

twin experiment on a Lorenz ’96 model is then implemented to test the efficiency

and adaptability of the new bias correction method. Results are presented and

studied in the context of a single assimilation procedure. Since applying a forcing

in a nonlinear model exposes one to a nonlinear response of the model, an iterative

assimilation is performed and compared to the single assimilation experiment.
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The encouraging results of the Lorenz ’96 twin experiment lead to the applica-

tion of the bias correction method to the coupled sea ice ocean NEMO-LIM2 model.

This model is presented in the context of its recent use in a research project, with a

comparison with similar models from the CMIP5 framework, and bias affecting the

model results is highlighted. The new bias correction method is implemented to the

NEMO-LIM2 model, respecting particular constraints. Again, a twin experiment

is used to test the stability of the forcing term generation and the efficiency of the

bias correction. A single and monovariate assimilation is performed, showing model

response to the forcing. A second multivariate assimilation shows the improvement

obtained when more observations are used to estimate the bias correction term.

Finally, the method is confronted to a realistic case using real observations from

the CNES-CLS09 global mean dynamic topography. A single assimilation experi-

ment shows the effect of the different choices of the bias correction ensemble gen-

eration. The model response to the forcing term is interpreted in relation to the

general circulation of the ocean. An iterative assimilation is also performed, and

indicates the nonlinear model response to the forcing term.
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Basic concepts
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In this chapter, the basic concepts required for the comprehension of the work

presented in this thesis will be listed and detailed. Most of them are assumed to

be known to the data assimilation community in numerical weather prediction and

oceanography through general use and practice. With the intention to keep this

work as clear as possible, the notation used will respect the unified notation for

data assimilation (Ide et al., 1997) where relevant.

2.1 The model

In numerical modelling, the aim is to describe and reproduce a system through a

set of discrete equations. This set of equations is called a numerical model. When

applied to oceanography (or other geosciences for instance), models are partial, sim-

plified and sometimes inadequate representations of the real world. It is clear that a

model can never describe the whole complexity of the ocean. Choices, assumptions

and hypotheses have to be made in order for the model to be viable in practice. De-

pending on the objective of the model, constraints are applied on the resolution, the

15
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number and type of processes represented, etc. For instance, biological processes

are not necessary for a physical ocean model of the long term Antarctic sea ice

coverage. Still, numerical modelling is an essential and powerful tool for scientific

inquiry. Controlled experiments (Lyard et al., 2006), the influence of the variation of

a parameter (Baker et al., 2013), or ”what if” scenarios (Dufresne et al., 2013), can

help to understand which processes are important, and which assumptions are valid.

A numerical model forwards its model state in time using prognostic variables.

Prognostic variables such as temperature, velocity or salinity, are necessary for the

model calculations. They are regrouped into the state vector which uniquely de-

scribes the state of the system at a particular point in time. The model forwards

prognostic variables from the model state at the previous time step. They can

be compared to diagnostic variables, which help to interpret the model state, but

can always be reconstructed from prognostic variables. An example of prognostic

variable is the horizontal velocity, which depends on the horizontal velocity of the

previous time step. However, the vertical velocity does not require the previous time

step, but can be directly derived from the model state at the required time, making

it a diagnostic variable. One must be able to distinguish between a complex reality,

which can not be truthfully represented by a set of numbers, and the best way to

represent reality as a state vector of a numerical model.

Formally, based on the state vector xm−1 at a time tm−1, with the subscript

m = 1, ..., mmax being the time index, the model allows to compute the state vector

xm at the following time step tm. With M being the forward model operator, one

can write that

xm = M(xm−1). (2.1.1)

The successive model states defined by equation (2.1.1) can be referred to as the

model trajectory. The model trajectory describes the path of the different model

variables, hence the model state, during the time period over which the model is

run. The trajectory can be written as follow (van Leeuwen, 2001; Hunt et al., 2004)
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x′ =




x1

x2

...

xmmax



. (2.1.2)

2.2 State vector augmentation

A common procedure in numerical modelling is the state vector augmentation. In-

deed, whereas the prognostic variables of the model are sufficient to fully describe

the state of the model, it can be necessary to include other variables in the state

vector, such as additional forcing (which will be extensively used in this thesis),

scalar parameters, or diagnostic variables. In practice, one can algorithmically ex-

tend the state vector by appending the additional variables to the state vector. One

can rewrite equation (2.1.2) by augmenting the state vector with one or multiple

variables e as

x′ =




x1

x2

...

xmmax

e



. (2.2.1)

State vector augmentation is commonly used in parameter estimation (Barth

et al., 2010; Sakov et al., 2010), for the parameter to be estimated needs to be

present in the description of the model through the state vector. A key advantage,

in particular for Kalman filters, is that the incremental cost of an augmented-state

vector is relatively small compared to the cost of the state vector alone (Kondrashov

et al., 2008).

2.3 Parameter estimation

In numerical modelling, one needs to configure the numerical model through a series

of well-defined parameters. Those parameters can contain errors, and contribute to

some part of the model error. Parameter estimation inherently considers that the
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parameters should be treated as variables of the model. One can include parame-

ters in the state vector through state vector augmentation (equation (2.2.1)). Those

parameters can be either fixed, or have a spatial and/or temporal evolution. For

example, Bryan (1987) carries out a series of experiments on a low resolution, prim-

itive equation ocean general circulation model to study the processes controlling

important aspects of the circulation, and in particular the sensitivity of the model

to the magnitude of vertical diffusivity. In Bergman and Hendon (2015), monthly

radiative fluxes and heating rates are determined from monthly observations of cloud

properties from the International Satellite Cloud Climatology Project and temper-

ature and humidity from ECMWF analysis.

It is common for parameters to be strictly positive or constrained, such as the

albedo of the ocean. Parameters are often also difficult, if not impossible, to measure

directly (Losa et al., 2004). Optimally estimated parameter can attain nonphysical

values due to either overfitting of data, or lack of identifiability with the available

data. The complex and often nonlinear feedback between parameters is a particu-

lar issue if one wants to increase the number of parameters estimated at the same

time, hence the dimension of the estimation problem (Navon, 1998). Parameters

can also be updated locally, independently of their properties. In particular, if a

global parameter is updated differently in a local assimilation scheme, one can use

the different analysed values of said parameter to estimate the optimal global value.

One of the earliest applications of direct parameter estimation in oceanogra-

phy using contemporary techniques was the estimation of the Cressman term of a

barotropic model used for the parametrisation of the divergence associated with long

waves (Rinne and Järvinen, 1993). Good parameter tuning is crucial in numerical

modelling. In Zhu and Navon (1999) for instance, a complex global spectral model

with its adjoint were used to tune both parameters and initial conditions. They

concluded that even though the initial conditions dominated in the early stages

of assimilation, the optimality of model parameters had a greater importance and

persisted much longer than optimal initial conditions. Different approaches for pa-

rameter estimation have been tested and explored in the past literature.

For instance, adjoint methods borrowed from the optimal control theory can

adjust model parameters through the use of available data. However, the model

is supposed to be perfectly known and without error, which is never the case for

practical applications in oceanography. One can choose to account for the errors of
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the parameter estimation problem, but this greatly increases the dimension of the

control space (Ten Brummelhuis et al., 1993). In some cases, extending the dynami-

cal model equation (equation (2.1.1)) with the parameter to be estimated can cause

the system to become nonlinear, even if the original system were linear (Kivman,

2003). Gong et al. (1998) is another example of adjoint method application, where a

simple linear model was used as equivalent to a barotropic vorticity equation for the

stream function on a latitude circle. It concluded that physical parameters to which

the analysis is sensitive can be tuned along with one or two weighting parameters,

and a smoothing parameter. Nevertheless, adjoint models are not always available,

and demand considerable efforts to be developed.

Batch calibration techniques assume the time-invariance of the parameters and

rely on statistical measures to minimise the long-term prediction error over some

period of calibration and validation data (Kuczera, 1983; Vrugt et al., 2003). They

require a set of historical data to be stored and processed, which can be a com-

putational burden. Sequential data assimilation techniques have also been used for

parameter estimation in oceanic systems. They present the advantage of overcoming

this drawback and being able to explicitly take into account both the uncertainties

on the model parameter, and the uncertainties of the model structure, its input,

and its output (Moradkhani et al., 2005). The Kalman filter is a classic example of

recursive data-processing algorithm, but it is limited to linear dynamic models with

Gaussian error statistics. The extension to nonlinear systems with the EKF using

first order linearisation can be used, but leads to instabilities when the nonlinearities

are too strong (Miller et al., 1994).

Ensemble Kalman filters are also used for parameters estimation. In the EnKF

framework, those parameters can be an unabridged part of the analysis and be up-

dated along other model variables (Annan et al., 2005a). One of the first uses of the

EnKF for parameter estimation occurs in Anderson (2001), where a demonstration

is performed on a Lorenz ’96 model by developing an ensemble adjustment Kalman

filter. As suggested by Derber and Rosati (1989), the state vector is augmented

with the parameters to be estimated. The analysis then contains both the updated

conventional state variables, and the newly estimated parameters. In Aksoy et al.

(2006), the performance of an EnKF is investigated through a simultaneous state

and parameter estimation, where the source of the model error is contained in the

uncertainty of the model parameters. The large scale applicability of the EnKF has

also been highlighted by Annan et al. (2005a) in an earth model of intermediate
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complexity. In Kondrashov et al. (2008), a coupled ocean-atmosphere system is in-

vestigated and shows that the simultaneous estimation of two erroneous parameters

and the model state allows the improvement of the model state and of unobserved

variables.

Kivman (2003) highlights a severe drawback of any Kalman filtering scheme:

due to utilizing only first two statistical moments in the analysis step, it is unable to

deal with probability density functions that are badly approximated by the normal

distribution. In that study, an extension of the sequential importance resampling

filter is proposed in order to deal with strongly non-Gaussian distributions. It also

highlighted the benefits of specifically developed nonlinear methods like particle fil-

ters for non-Gaussian framework. Particle filters can be seen as variance minimizing

schemes for any probability function (Simon and Bertino, 2012), which allows them

to much better handle nonlinear parameters estimation. However, one must be care-

ful when using them for large scale systems, as the size of the ensemble required is

too large for realistic applications.

For large scale applications, the EnKF remains a practical and high-performance

choice for parameter estimation. It scales much better than variational methods to

large models. Additionally, it does not require the use of a linear tangent and ad-

joint model, making it straightforward to implement. Bertino et al. (2003) suggested

an extended framework in which a nonlinear change of variables is applied in or-

der to solve the obstacles posed by the non-Gaussian distribution of the variables.

This procedure is called anamorphosis and allows the analysis step to be performed

with transformed Gaussian distributed variables. Simon and Bertino (2009) demon-

strated the feasibility of this technique in realistic configurations. In Simon and

Bertino (2012), an improvement of the deterministic EnKF is proposed through

such a Gaussian anamorphosis extension and solves in particular the inability of the

EnKF to estimate negative parameters. This technique is also confirmed in Doron

et al. (2013), where a combined state-parameter estimation in a twin experiment of

a 3D ocean-coupled physical and biogeochemical model is successfully performed.

2.4 The observation operator

The model state at time m can be described by a vector xm. Each element of xm

is attributed a value on a grid, which can represent temperatures, winds compo-
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nents, coefficients, etc. One can also make use of observations ym, which represent

a specific measurement of a quantity at time m. The difference between the model

state xm and the observations ym resides in the fact that there is not necessarily a

one-to-one correspondence between the two quantities, and of course, only a small

fraction of the state vector is observed (directly or indirectly). The observations are,

in fact, rarely located exactly on the model grid points. Some interpolation might

be necessary to obtain observation values on the model grid. Additionally, observa-

tions are not always exact measurements of any variable of the model. An example

is the sea surface temperature, where most recent SST global fields are not direct

measurements of the ocean with a thermometer, but rather reconstructed satellite

measurements of the ocean radiation.

To relate the observations with the model, one can determine a model equivalency

of the observations through the observation operator H (Lorenc, 1986). Hence, one

can express that

ym = Hm(xm) + ǫm, (2.4.1)

where ǫm is the observational error, whose covariance matrix is R, and which

consists of instrumental and representativeness errors with respective covariance ma-

trices Oi and Or. One thus has that R = Oi+Or. The instrumental error is rather

straightforward, and represents the error coming from the instrument making the

measurement of the observed quantity. On the other hand, the representativeness

error is more complex. It represents unresolved processes by the model and is also

called the unresolved scales error. It does not correspond to a problem with the

observations, but is inherent to inadequacies in the dynamical model.

An example of the representativeness error for the sea surface temperature is the

difference between the quantity measured by satellites, which is the skin tempera-

ture, and the model surface temperature. Whereas the skin temperature represents

the thin layer at the surface of the observed fluid, whose thickness is less than 500µ

m, the actual model surface temperature is much thicker, of the order of the meter

(5 m for the NEMO-LIM2 model, section 6.1). The representativeness error is gen-

erally much larger than the instrumental error.

The observation operator can be nonlinear, and can contain an explicit time

dependence in addition to the implicit dependence via the state vector (Ide et al.,
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1997). It contains the approaches required to make the correspondence between an

observed quantity and the model-equivalent variable, through interpolation, complex

transformation of model variables, integration, etc. In equation (2.4.1), one can

interpret the observation operator as a sequence of separated operators transforming

the control variable xm into the equivalent of each observation ym, at the location

of the observations.

2.5 The observations

Observations are at the core of data assimilation. In this work, three different vari-

ables will be used as observations for the purpose of assimilation, interpretation

of the model results, and validation. Those three variables are sea surface height

(SSH), sea surface salinity (SSS) and sea surface temperature (SST). However, SSS

will not be further detailed, as it is only used as control variable in a twin experi-

ment, and not in the realistic scenario.

As presented with the observation operator, one must keep in mind that the use

of observations is not straightforward. It is necessary to specify how those observa-

tions are initially defined, measured, represented on a grid and used for a particular

objective.

2.5.1 Sea surface height

To define a height or a distance, one must first set a reference from which one can

measure said distance. The difficulty to measure the SSH lies in the difficulty to

determine those references.

To approximate the global shape of the earth (or other planetary bodies), geodesy

defines a mathematical surface called the ellipsoid of reference. The level surface

which corresponds to the surface of the ocean, when at rest, is called the geoid. It is

close to the ellipsoid of reference which corresponds to the surface of a fluid under

idealised homogeneous and rotating hypotheses, in a solid-body rotation and with

no internal flow of the fluid (Stewart, 2008). However, the geoid differs from the

ellipsoid due to local variations of the gravitational field. Those differences range up

to 100 m (Lemoine et al., 1998). For example, seamounts are typically three times

more dense than water, and increase the local gravity which causes a plumb line

at the surface of the ocean. On the other hand, trenches in the oceanic floor tend
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to create a deficiency of mass, thus a downward bulge. Finally, one must keep into

account that the ocean is never at rest. Heat content of the water, tides, Rossby

and Kelvin waves, eddies and ocean currents also affect the sea surface height, with

ranges of up to 1 m. The deviation of the sea level from the geoid is defined as the

dynamic topography. Formally, one defines the height of the geoid to the ellipsoid

of reference as N , the sea level above the reference ellipsoid as η, and the sea level

above the geoid as h. One has that: h = η −N (Rio and Hernandez, 2004).

In practice, altimetry measurements are performed by radar on board of a satel-

lite using high frequencies. The signal is reflected by the surface of the ocean. The

time difference between the emission of the pulse and the reception of the echo allows

the satellite to measure its distance to the sea surface. Even though the altitude

of the satellite is determined by its orbit around the earth, which depends on the

gravitational field of the earth, a precise knowledge of the geoid is not available.

Hence, the SSH measurement provided by satellites are made with respect to the

ellipsoid of reference. Parameters affecting those measurements, such as the speed

of light in the atmosphere and interference from the ionosphere have to be taken

into account. To provide a global coverage, the orbit of the satellite is chosen in

order for the ground tracks to form a closed circuit after a predetermined number

of cycles. Many altimetric satellites have flown in space to observe the ellipsoid

of reference and measure the SSH. The most well-known space missions are Seasat

(1978), geosat (1985–1988), ers–1 (1991–1996), ers–2 (1995–2011 ), Topex/Poseidon

(1992–2006), Jason 1 (2002–2013), Envisat(2002), and Jason 2(2008-) (figure 2.1).

In particular, Topex/Poseidon and Jason 1/2 were designed to provide a new level

of precision with an accuracy of ±0.05 m. In a close future (2021), a joint mission of

US NASA and French CNES (Centre national d’études spatiales), called the Surface

Water and Ocean Topography (SWOT), will be launched with a radar interferome-

ter for making high-resolution measurements of the SSH. It will provide an increased

spatial resolution to study ocean surface processes and circulation (Durand et al.,

2010). Other ways to measure the SSH exist, in particular in situ measurements

such as drifters or buoys velocities. The type of coverage required determines which

measurement method is the most adapted.

Ocean models work with a grid which does not take the real geoid into account.

Instead, they use a model geoid for which the sea level has a depth equal to zero

when the ocean is at rest, in a constant gravitational field. The SSH of the model

corresponds therefore to the dynamic topography. Hence, when one compares the



24 Chapter 2. Basic concepts

model SSH with the SSH obtained from altimetry measurements, one can actually

only consider the anomalies to the zero level surface by subtracting the average SSH

level from the data. In essence, the zero level surface is a measure of the total vol-

ume of the ocean. This way, the difficulty of defining the exact geoid is removed.

Ellipsoid, geoid and dynamic topography schematic

Figure 2.1: Schematic of the Jason-2 mission, with the ellipsoid of reference, the
geoid, the dynamic topography (here ocean surface topography) and the sea surface
height. Adapted from https://www.eumetsat.int/jason/print.htm

The data set used in this work comes from the CNES-CLS09 global mean dy-

namic topography (MDT) (Rio et al., 2011). It is a combination of GRACE data

covering 4.5 years of measurements, altimetric measurements, and oceanographic

in situ data. It uses an optimal filtering method to compute the large-scale MDT

first guess. The altimetric data was computed at the CLS (Collecte, localisation,

satellite), for the 1993-2009 period. The in situ measurements comprise drifting

buoys velocities covering the 1993-2008 period, for which an Ekman model allows

the extraction of the geostrophic velocity component. Wind stress data needed to
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estimate the Ekman currents come from the ERA INTERIM reanalysis covering

the 1989-2009 period (Simmons et al., 2007). Hydrological profiles, in particular

temperature and salinity, were measured by Argo floats from 2002 to 2008. The

final product is a global mean dynamic topography of the ocean with a resolution

of 1/4◦ combining multiple different data sources, in particular satellites and in situ

measurements.

2.5.2 Sea surface temperature

The importance of the ocean and its role in heat transport around the globe have

been, in the last decades, the subject of major studies due to their relation to climate

change (Wiens, 2016). The mechanisms with which exchanges take place between

the atmosphere and the ocean are quite complex and include heat, momentum,

moisture and gases. One can consider the SST as a global thermometer coupling

the ocean and the atmosphere, which constrains the upper-ocean circulation and

thermal structure. Similarly to the SSH, the most accurate SST products are pro-

vided by the combination of multiple sources of satellite data, in situ data and the

underlying processes.

The water column extends from the surface to the ocean floor. Its vertical

structure is both complex and variable. For global general circulation models and

long term simulation, the vertical resolution is rather poor and the SST is considered

as the temperature of the first layer of the ocean, with an order or magnitude of 10

m. One can easily realise the difficulty of measuring the SST by simply plunging

one’s arm into the sea, detecting the surface temperature gradient of the water. In

practice, one can classify the vertical structure of the SST from the surface to the

depth as follow (Donlon, 2002):

1. SSTint, the interface SST between the atmosphere and the ocean. It represents

the infinitely thin layer where the ocean and the atmosphere are in contact, at

the top of the SSTskin layer. It can not be measured using current technology.

2. SSTskin, the skin SST is a thin layer of ∼ 500µ m of water, corresponding to

the maximum penetration of infrared waves. It contains the waterside air-sea

interface where the conductive and diffusive heat transfer processes dominate.

Depending on the magnitude of the heat flux, a strong temperature gradient

can be maintained in this thin layer. Radiometers are typically used to measure

the SSTskin. However, since different wavelengths of the emitted radiation have
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different penetration depths, the measured temperature varies depending on

the measured wavelength (figure 2.2).

3. SSTsub, the subskin SST corresponds to the bottom on the SSTskin, at a depth

of∼ 1 mm. The molecular and viscous heat transfers dominate. It is measured

by low-frequency microwave radiometers and has a typical timescale variation

of minutes.

4. SSTbulk, the bulk SST or subsurface SST. This is the region beneath the SSTsub

where turbulent heat transfer processes dominate. It varies with depth, over

timescale of hours and should also be noted with a reference to its depth:

SST5m. Buoys are used to perform in situ measurements of the SSTbulk.

The existence of the surface skin layer has been demonstrated both in theory

(Hinzpeter, 1967) and practice (Schluessel et al., 1990). Its existence is required

to regulate long wave radiation and turbulent heat fluxes across the sea surface.

Indeed, turbulent eddy heat fluxes cannot transport heat across the ocean surface

itself. The processes responsible for the heat transportation are molecular, hence

the relatively thin size of the surface skin layer. Strong winds are able to destroy the

skin layer through waves, but it is rapidly re-established when the waves dissipate.

The vertical temperature profile of the SST is shown on figure 2.3. One can

easily note the difference between the day and night profiles, due to the presence or

absence of the solar radiation.

2.6 Model skill

To assess the forecast skill of the model, one can compare the accuracy of the model

trajectory and the degree of association to observations, expected or estimated val-

ues of the model, persistence forecast (values of the predictand in the previous time

period), or another model on which improvement is expected. This forecast skill,

or just skill, is used both qualitatively and quantitatively. It can relate to localised

or overall forecast performance according to metrics. It is commonly represented in

terms of correlation, root mean square error (RMSE), mean absolute errors, Brier

score, or bias, among others (Landman, 2015). For the skill study to be statistically

robust, the skill score calculations should be made over a large enough sample. The

study of the model output through its skill is in fact the primary target of numerical

modelling. The model skill under all its forms allows the interpretation of the model
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Radiation optical penetration depth in water.

Figure 2.2: Radiation optical penetration depth in water. Adapted from Wieliczka
et al. (1989).

results, and conclusions to be drawn.

Usually, forecast skill is presented as a percentage which is interpreted as a skill

score and improvement over a reference, or a batch of observations. Formally, it is

characterised by a measure of accuracy A with respect to a reference Aref . With

Aperf being the value of the accuracy measure achieved by a perfect forecast, one

can represent the model skill as follow (Wilks, 2011)

SSref =
A−Aref

Aperf − Aref
· 100%. (2.6.1)

If A = Aperf , the maximum value for the skill score SSref attains 100%. A = Aref

indicates no changes compared to the reference accuracy, with a skill score of 0%.

A skill score between 0 and 100% implies an improvement over the reference, while

a negative skill SSref < 0% score denotes a deterioration. Equation (2.6.1) can eas-
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Temperature profile of the sea surface

SSTint

SSTskin

SSTsubskin

SSTdepth

(a) Night (b) Day

~ 5 − 10 m

~ 1 m

~ 1 mm

~ 10 µm

−0.3 0 0 1 2

Figure 2.3: Left hand side: Day profile. Right hand side: Night profile. Adapted
from Donlon (2002).

ily be constructed by using the root mean square error as the underlying accuracy

statistics, and one obtains

RMSE =

√√√√ 1

N

N∑

i=1

(x̂− xi)2, (2.6.2)

where x̂ is the estimator of the estimated variable x from which the RMSE is

calculated.

In the next chapters, the skill score will not be explicitly used, but will be in

some sense represented by the comparison of the RMSE values obtained from the

different experiments.
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3.1 Kalman Filter

As presented in the introduction, numerical modelling and data assimilation re-

late to a long history of developments and advances following practical needs and

constraints. One popular method is the Kalman Filter (Kalman, 1960). Litera-

ture related to Kalman Filtering is large, and dates back to its original expression,

named after Rudolf Emil Kalman (who recently passed away, on the 2nd of July

2016). The first known application of the Kalman filter is to the nonlinear problem

of space trajectory estimation for the Apollo program (Grewal and Andrews, 2010).

The Kalman filter was incorporated to the Apollo navigation computer and used

29
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during the mission. Indeed, estimating the position of an object in space was (and

still is to some extent) a very difficult task. The combination of on-board position

measurements through velocity and time, with the estimated and expected trajec-

tory of the spacecraft with classic celestial mechanics, was the ideal first application

for the Kalman filter.

For applications to oceanography, the Kalman filter was confronted with diffi-

culties related to the size of the encountered systems or nonlinearities of the system.

4D variational techniques avoid some of those implementation problems while, in

practice, providing satisfactory results. In the last decade of the 20th century, sev-

eral variants of the Kalman filter were proposed, in particular the ensemble Kalman

filter (Evensen, 1994; Houtekamer and Mitchell, 1998).

The following sections presenting the Kalman filter and the ensemble Kalman

filter closely follow the development of C. Snyder (Blayo et al., 2014).

3.1.1 Bayesian formulation

Data assimilation can be formulated through a Bayesian perspective of the problem.

One can rewrite equation (2.1.1) by adding the model error ηm, and formulate

observations as

xm = M(xm−1) + ηm, (3.1.1)

ym = H(xm) + ǫm, (3.1.2)

where ym are the observations taken by the observation operator H , with obser-

vational error ǫm. No assumption is currently made about the errors, except that

they are random variables. xm and ym are also supposed to be random variables.

Their evolution in time contains the model and observation errors, and can thus not

be expected to be perfectly known.

The classic way to represent random variables is by using a probability density

function. Formally, it represents the relative likelihood of a random variable to have

a given value. The probability density function expression for everything which

is effectively known about the model state at time m is p(xm|y0, . . . ,ym), where

(y0, . . . ,ym) is a sequence of observations.



3.1. Kalman Filter 31

Using the well known Bayes theorem (Bayes and Price, 1763), one can express

the probability density function of p(xm|y0, . . . ,ym) as

p(xm|y0, . . . ,ym) =
p(xm|y0, . . . ,ym−1) p(ym|xm,y0, . . . ,ym−1)

p(ym|y0, . . . ,ym−1)
. (3.1.3)

For the sake of readability, lets note (y0, . . . ,ym) = (y0,...,m). Hence, one can up-

date the probability density function p(xm|y0,...,m−1) with new observations ym when

they become available. To express the likelihood function, one starts from equation

(3.1.2), assume that the observational error has no time correlation, thus that for

i 6= k, ǫi |= ǫk (where |= stands for independent), and that it is also independent

from the model error, hence ǫi |= ηj for all j. If the distribution of the observational

error is known, for example a Gaussian distribution with zero mean: ǫk ∼ N (0,R),

one can write from equation (3.1.2) that

p(ym|xm) ∝ exp{[ym − h(xm)]
TR−1[ym − h(xm)]}. (3.1.4)

One needs also to know the probability density function of the model state at

time m prior to the observations. This is given by the propagation equation

p(xm|y0,...,m−1) =

∫ ∞

−∞

p(xm|xm−1,y0,...,m−1) p(xm−1|y0,...,m−1) dxm−1. (3.1.5)

One can, using the probability density function of the model state at time m−1,

propagate the observations available at time m − 1 to the time step m. The link

between the propagation rule and the model dynamics is implicit, for that equation

(2.1.1) is equivalent to p(xm|xm−1,y0,...,m−1). If one assumes that the model error

has no time correlation, thus that for i 6= k, ηi |= ηk, and that it is also independent

from the observational error, hence ηi |= ǫj for all j, and one knows the distribution of

the model error, for example a Gaussian distribution with zero mean: ηk ∼ N (0,Q),

one can write from equation (3.1.1) that xm|xm−1 ∼ N (f(xm−1),Q).

Those two relationships, the representation of the probability density function

through the Bayes theorem (equation 3.1.3)) and propagation rule (equation (3.1.5)),

allow the formulation of a sequential and recursive algorithm in which the model is

propagated forward in time, from timem−1 to m. Then, the model state is updated
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by using newly available observations at time m through the Bayes theorem. All is

needed to start is an initial estimate of the model state, or initial conditions, and

the knowledge about the model and observational errors ηm and ǫm.

3.1.2 Gaussian distribution

The original equations for the Kalman filter can be derived from the Bayesian frame-

work (Blayo et al., 2014). Though, while in the Bayesian formulation, no hypotheses

were made concerning the model and observational errors, one needs to assume that

the system is Gaussian and linear. Since a mean and a covariance are sufficient to

completely determine a Gaussian distribution, one can write the probability density

function of a random Gaussian vector x as

p(x) = (2π)−Nx/2|P|−1/2 exp [−1

2
(x− x)TP−1(x− x)], (3.1.6)

where x = E[x] is the mean of the random Gaussian vector x, E the expectation

operator, and its covariance matrix P = E[(x− x)(x− x)T ]. Hence, one can write

that x ∼ N (x,P). Like all covariance matrices, P is symmetric and positive definite.

Now, lets assume that the model dynamics (and operator), and the observations

operator, are both linear. Lets also assume that the model and observational errors

are Gaussian, with zero mean and respective covariance matrices Q and R. This

means, as for most assimilation schemes, that the model and observations are as-

sumed to be unbiased. One can apply those hypotheses to equations (3.1.1) and

(3.1.2), and one obtains

xm = Mmxm−1 + ηm, (3.1.7)

ym = Hmxm + ǫm. (3.1.8)

With the Gaussian, hence unbiased, hypothesis, the model and observation er-

rors are completely defined by their respective covariance matrix

Qm = [ηmη
T
m], (3.1.9)

Rm = [ǫmǫ
T
m]. (3.1.10)
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The covariance matrix is a keystone of the Kalman filter equations. During

the update step of the sequential algorithm, they spread information from the ob-

servations to the unobserved state variables, if and when such a covariance is present.

3.1.3 Original Kalman Filter

A commonly adopted notation is to use the superscripts ”a” and ”f” for the analy-

sis and forecast respectively. The forecast meaning that the variable is propagated

through time to, say, the time step m, but without using the observations available

at said time step. The analysis means that the variable has been updated through

the assimilation of observations from time step m.

In addition, for readability reasons, the temporal subscript m will be dropped

for the observation operator Hm, the Kalman gain Km, the model operator Mm and

the covariance matrix of the observational error Rm. One must keep in mind that

they retain a time dependence. For example, the observation operator depends on

the location of the available observations at time m. If they are differently located

than at time m− 1, Hm will be different from Hm−1.

One can write respectively the mean and variance of the forecast xm|y0,...,m−1

and analysis xm|y0,...,m as follow

xf
m ≡ E(xm|y0,...,m−1), (3.1.11)

Pf
m ≡ cov(xm|y0,...,m−1), (3.1.12)

xa
m ≡ E(xm|y0,...,m), (3.1.13)

Pa
m ≡ cov(xm|y0,...,m). (3.1.14)

Lets suppose that the model state at timem is known: xm|y0,...,m−1 ∼ N (xf
m,P

f
m)

and that the initial conditions or initial state of the model also follows a Gaussian

distribution x0 ∼ N (xf
0 ,P

f
0). Using new observations ym for the analysis, with

ci being constants independent from xm, one can rewrite the right hand side of

equation (3.1.3) by using equation (3.1.6). p(ym|xm,y0,...,m−1) and p(xm|y0,...,m−1)

become respectively
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p(ym|xm,y0,...,m−1) = c1 exp [−
1

2
(ym −Hxm)

TR−1(ym −Hxm)], (3.1.15)

p(xm|y0,...,m−1) = c2 exp [−
1

2
(xm − xf

m)
T (Pf

m)
−1(xm − xf

m)]. (3.1.16)

One can combine equation (3.1.15) and (3.1.16) to obtain the expression for the

left hand side term of equation (3.1.3)

p(xm|y0,...,m) = c3 exp[−
1

2
(ym −Hxm)

TR−1(ym −Hxm)

− 1

2
(xm − xf

m)
T (Pf

m)
−1(xm − xf

m)] (3.1.17)

= c3 exp[−
1

2
J(xm)]. (3.1.18)

One can explicitly rewrite J(xm) and regroup terms together as

J(xm) = (ym −Hxm)
TR−1(ym −Hxm)− (xm − xf

m)
T (Pf

m)
−1(xm − xf

m) (3.1.19)

= yT
mR

−1ym − yT
mR

−1Hxm −HxT
mR

−1ym +HxT
mR

−1Hxm

− xm(P
f
m)

−1xm + xm(P
f
m)

−1xf
m − (xf

m)
T (Pf

m)
−1xm + (xf

m)
T (Pf

m)
−1xf

m

(3.1.20)

= xT
m

[
(Pf

m)
−1 +HTR−1H

]
xm − 2

[
HTR−1ym + (Pf

m)
−1xf

m

]T
xm + c4,

(3.1.21)

where c4 is independent from xm, containing, amongst other, the terms quadratic

in ym and xf
m. As long as the observation operator H is linear, J(xm) is a quadratic

form in xm. Hence, the probability density function p(xm|y0,...,m−1) is also a Gaus-

sian density. One can see that the minimum of this function J(xm) is reached when

xm = xa
m by rewriting equation (3.1.21) as

J(xm) = (xm − xa
m)

T (Pa
m)

−1(xm − xa
m) + c5, (3.1.22)

where, in equation (3.1.21), one replaces
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Pa
m =

[
(Pf

m)
−1 +HTR−1H

]−1
(3.1.23)

= Pf
m −Pf

mH
T (HPf

mH
T +R)−1HPf

m, (3.1.24)

xa
m = Pa

m

[
HTR−1ym + (Pf

m)
−1xf

m

]
. (3.1.25)

The Sherman-Morrison-Woodbury identity was used from equation (3.1.23) to

(3.1.24) (see appendix section 11.1 for demonstration). Those results provide the

update for the forecast mean xf
m and covariance Pf

m with respect to the observations

ym. Finally, using equation (3.1.18), one obtains the expression of the probability

density function after assimilating the observations p(xm|y0,...,m)

p(xm|y0,...,m) = c3 exp[−
1

2
(xm − xa

m)
T (Pa

m)
−1(xm − xa

m)]. (3.1.26)

The mean and covariance of this Gaussian probability density function are re-

spectively xa
m and Pa

m.

An other interesting form of equation (3.1.25) allows to explicitly bring out the

difference between the observations and the forecast, or ”innovation”, ym − Hxf
m.

The matrix multiplying this difference is known as the ”Kalman gain” K, obtained

from

xa
m = Pa

m

[
HTR−1(ym −Hxf

m +Hxf
m) + (Pf

m)
−1xf

m

]
(3.1.27)

= xf
m +Pa

mH
TR−1(ym −Hxf

m) (3.1.28)

= xf
m +K(ym −Hxf

m). (3.1.29)

The Kalman gain can also be expressed fully in terms of the forecast covariance

as

K = Pa
mH

TR−1 (3.1.30)

= Pa
mH

TR−1(HPf
mH

T +R)(HPf
mH

T +R)−1

= Pa
m

(
HTR−1HPf

mH
T +HT

)
(HPf

mH
T +R)−1

=
[
(Pf

m)
−1 +HTR−1H

]−1 [
HTR−1H+ (Pf

m)
−1
]
Pf

mH
T (HPf

mH
T +R)−1

= Pf
mH

T (HPf
mH

T +R)−1. (3.1.31)
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This allows to rewrite equation (3.1.24) as

Pa
m = (I−KH)Pf

m. (3.1.32)

The last step necessary to obtain the original Kalman filter equations is to prop-

agate the probability density function after assimilation with the model. The propa-

gation equation (equation (3.1.5)) requires both integrand factors p(xm|xm−1,y0,...,m−1)

and p(xm−1|y0,...,m−1). One can suppose that p(xm−1|y0,...,m−1) ∼ N (xa
m−1,P

a
m−1).

Knowing that the model and observation errors are assumed to be independent at

each time step m, one can remove the dependence on the observations from the pre-

vious time step: p(xm|xm−1,y0,...,m−1) = p(xm|xm−1). One can finally imply from

equation (3.1.7) that

xm|xm−1 ∼ N (Mxm−1,Q), (3.1.33)

where Q is the model error covariance from equation (3.1.9). Consequently, the

propagation equation (equation (3.1.5)) is the product of two Gaussian probability

density functions, and the product of the two integrand becomes

p(xm|xm−1) p(xm−1|y0,...,m−1) = c exp[−(xm −Mxm−1)
TQ−1(xm −Mxm−1)/2

− (xm − xa
m−1)

T (Pa
m−1)

−1(xm − xa
m−1)/2] (3.1.34)

= c6 exp[−
1

2
J(xm,xm−1)], (3.1.35)

where c6 is a constant independent from xm,xm−1. With a classic addition -

subtraction term with Mxa
m−1, one can rewrite J(xm,xm−1) as

xm −Mxm−1 = (xm −Mxa
m−1)−M(xm − xa

m−1), (3.1.36)

J(xm,xm−1) =

(
xm−1 − xa

m−1

xm −Mxa
m−1

)T

S

(
xm−1 − xa

m−1

xm −Mxa
m−1

)
, (3.1.37)

where

S =

(
(Pa

m−1)
−1 +MTQ−1M −MTQ−1

−Q−1M Q−1

)
. (3.1.38)
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One can conclude that the joint distribution (xm,xm−1)|y0,...,m−1 is Gaussian.

Its mean is (xa
m−1,Mxa

m−1), and its covariance is S−1 and can be written as

S−1 =

(
Pa

m−1 Pa
m−1M

T

MPa
m−1 MPa

m−1M
T +Q

)
, (3.1.39)

where the demonstration for inversion S−1 of the block matrix S can be found

in the appendix section 11.1.

The integrand of (equation (3.1.5)) should be integrated over xm−1 to obtain the

distribution of xm|y0,...,m−1. However, one can avoid this integration by noting that

the mean and covariance corresponding to xm are sufficient, and one has that

xm|y0,...,m−1 ∼ N (Mxa
m−1,MPa

m−1M
T +Q). (3.1.40)

The forecast step of the original Kalman filter equation are formally expressed

by combining the Gaussian distribution of equation (3.1.40) with the definitions of

the forecast mean and covariance from equations (3.1.11) and (3.1.12), as

xf
m = Mxa

m−1, (3.1.41)

Pf
m = MPa

m−1M
T
m +Q. (3.1.42)

To conclude, the Gaussian distribution hypothesis is at the core of the Bayesian

framework derivation of the original Kalman filter. The forecast distribution p(xm|y0,...,m−1)

and the filtering distribution p(xm|y0,...,m) are both Gaussian, since the initial sys-

tem (equation (3.1.9),(3.1.10)) is Gaussian. Hence, the Kalman filter is optimal for

linear Gaussian systems.

The Kalman filter provides a set of recursive equations, allowing a sequential

procedure for propagating (equation (3.1.41), (3.1.42)) and updating the system

mean (equation (3.1.25)) and covariance (equation (3.1.23), (3.1.24)) through time

using available observations.

3.1.4 Best unbiased linear estimator

Another approach to derive the Kalman filter is the best linear unbiased estima-

tor (hereafter BLUE) framework. In this approach, there are no assumptions made
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about the probability density functions of the initial state and the noise of the model.

Instead, linear estimators are used, the objective being to find the one which min-

imises the expected mean squared error. The update step can be interpreted as a

linear combination of the model state and the observations, with a weighting de-

pending on the respective errors. Basically, estimators are a rule that relates a

quantity of interest, here the model state, with its results, here the observations. In

practice, both approaches provide the same results and are equivalent in the linear

Gaussian case.

3.2 Extended Kalman filter

The Kalman filter equations are optimal and designed to work with linear models

and Gaussian distributed random variables. The Gaussianity of the considered sys-

tems is at the source of the Bayesian framework derivation, since the Kalman filter

provides the conditional mean E(xm|y0,...,m) and covariance cov(xm|y0,...,m) of the

model state. The conditional probability density function p(xm|y0,...,m) is completely

determined by its mean and covariance.

However, in practice, nonlinearities and non-Gaussianity often affect the model

and the observations. Unknown model and observation errors can also affect the

performance of the Kalman filter. The underlying error statistics is therefore also

non-Gaussian, leading to a non-Gaussian conditional probability density function.

Hence, the Kalman filter becomes suboptimal.

An important difficulty in implementing the Kalman filter is filter divergence

(Miller et al., 1994). Essentially, if the model forecast contains unknown errors, the

analysis error increases through the assimilation cycles and becomes larger than the

filter estimation of the analysis spread. Too little weight is given to the observa-

tions at each assimilation step. The filter slowly diverges from the observations by

trusting its own forecast over the observations. In the most extreme cases, the filter

divergence leads to a blow-up of the solution, known as catastrophic filter diver-

gence(Gottwald and Majda, 2013). A possibility to counter filter divergence is to

add noise during the forecast step, to artificially increase the forecast variance.

In the Kalman filter update equations (3.1.25), the conditional mean xa
m shows

a linear dependence to the observations ym and the prior mean xf
m. Moreover, the
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updated covariance Pa
m in equation (3.1.23) is independent of the observations, for

one only needs to know which observations are available to know H and R. Pa
m

can be computed before knowing ym, which is useful to target specific observations

to improve a particular aspect of the analysis, or subsequent forecast. Using equa-

tion (3.1.24), one can also show that the analysis variance tr(Pa
m) is smaller than

the forecast variance tr(Pf
m). Indeed, the second term on the right hand side is

the symmetric product of symmetric and positive definite matrices. It is thus also

symmetric and positive-definite, and has a positive trace. Hence, the trace of the

error covariance matrix is reduced: tr(Pa
m) < tr(Pf

m). In case that the state vector

contains elements with different units such as temperature in degrees Celcius, and

sea surface height in m, one can define a normalisation matrix W and still have

that tr(WPa
m) < tr(WPf

m).

For non-Gaussian distributions, one must make a distinction between the con-

ditional mean, E(xm|y0,...,m), and the conditional mode, which is basically the xm

that maximises p(xm|y0,...,m). In the Gaussian case, those were equivalent. This is

no longer true in the non-Gaussian case. A choice needs to be made between both

(mean and mode) when one wants to find the optimal estimate x̂m.

This choice is of utmost importance, since it provides an optimal x̂m with specific

characteristics. For instance, in the conditional mean case, the expected square error

E(tr((x̂m −xm|y0,...,m)(x̂m −xm|y0,...,m)
T ) is minimal. However, this does not auto-

matically guarantees that the estimate x̂ will correspond to the most likely state. In

case of a bimodal probability density function p(xm|y0,...,m), the conditional mean

could lie between to peaks, and the estimate x̂ would be unlikely.

3.2.1 Nonlinear and non-Gaussian correction

One way to overcome those difficulties is to extend the Kalman filter to the nonlinear,

non-Gaussian case (hence, the extended Kalman filter, or EKF). One can generalise

equations (3.1.2) and (3.1.1) to the nonlinear case by considering nonlinear model

and observation operators, respectively M and H . One can suppose that the model

and observational errors ηm and ǫm, as well as xm−1 are approximately Gaussian,

where xm−1 ∼ N (xa
m−1,P

a
m−1). One can suppose M̃m to be the linearisation of M

at xm−1, defined as follow
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M̃m = (
∂M

∂x
)|xa

m−1
. (3.2.1)

One can expand xm = M(xm−1) in a Taylor series using M̃m, and inject it back

into equation (3.1.1) to obtain

M(xm−1) = M(xa
m−1) + M̃m(xm−1 − xa

m−1) +O(|xm−1 − xa
m−1|2), (3.2.2)

xm ≈ M(xa
m−1) + M̃m(xm−1 − xa

m−1) + ηm. (3.2.3)

With the hypothesis that the probability density function of xm−1 can be approx-

imated to a Gaussian distribution, one can then conclude that xm ∼ N (xf
m,P

f
m),

where

xf
m = M(xa

m−1), (3.2.4)

Pf
m = M̃mP

a
m−1M̃

T
m +Q. (3.2.5)

The forecast step, equations (3.2.4) and (3.2.5), is thus similar to the linear

Kalman filter of equations (3.1.41) and (3.1.42). However, in this linear approx-

imation of the nonlinear case, the mean is propagated using the nonlinear model

dynamics M , while the covariances are propagated using the linear approximation

M̃m, which depends on the analysis at the previous time step xa
m−1.

For the linear approximation of M to be valid, one also needs to consider

O(|xm−1 − xa
m−1|2) in equation (3.2.2) to be negligible. This term contains and

depends on E(|xm−1 − xa
m−1|2) = tr(Pa

m−1) and on the second derivative of M .

Hence, one needs to make the assumption that Pa
m−1 must be small in the sense of

its magnitude, when supposing that xm−1 is approximately Gaussian (for equation

(3.2.1)).

One can apply the same procedure to the observation operator H . Its linearisa-

tion at xf
m, and the ym approximation with the expansion with a Taylor series can

be written as
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H̃m = (
∂H

∂x
)|
x
f
m
, (3.2.6)

H(xm) = H(xf
m) + H̃m(xm − xf

m) +O(|xm − xf
m|2). (3.2.7)

Using the linear approximation of H(xm) into equation (3.1.2), one obtains

ym ≈ H(xf
m) + H̃m(xm − xf

m) + ǫm, (3.2.8)

ym −H(xf
m) = H̃m(xm − xf

m) + ǫm. (3.2.9)

When applying the Kalman filter update from equation (3.1.29), with the obser-

vations ym, to x′
m = (xm − xf

m) ∼ N (0,Pf
m), one obtains the linear approximation

of the Kalman filter update and the Kalman gain with

xa
m = xf

m +K(ym −H(xf
m)), (3.2.10)

Pa
m = (I−KH̃m)P

f
m, (3.2.11)

K = Pf
mH̃

T
m(H̃mP

f
mH̃

T
m +R)−1. (3.2.12)

Similarly to the previous reasoning for M , the linear approximation of H respec-

tively in equations (3.2.7) requires O(|xm−1 − xf
m−1|2) to be neglected. This terms

contains and depends on E(|xm − xf
m|2) = tr(Pf

m), and on the second derivative

of M . Using equation (3.2.5), H also depends on Pa
m−1, as does M . Hence, this

confirms the need for Pa
m−1 to be sufficiently small for the Taylor series expansion

of H and M to be accurate.

This set of three equations (3.2.10, 3.2.11, 3.2.12), can be compared to the orig-

inal Kalman filter update step from equations (3.1.25), (3.1.29) and (3.1.32). It

calculates the innovation from a nonlinear observation operator H applied to the

forecast mean xf
m. Its linear approximation H̃m is then used, in the same way as

for M , to compute the gain and covariance update.

To summarise, the extended Kalman filter provides a generalisation of the orig-

inal Kalman filter to nonlinear systems through a linear approximation. It is sub-

optimal in the nonlinear case, and rejoins the original Kalman filter in the linear case.

However, both the Bayesian and BLUE framework approaches to derive the origi-
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nal and extended Kalman filter suffer greatly in high-dimensional systems, which are

common in geophysics and, in particular, oceanography. The computational require-

ment for the Kalman filter prohibit direct calculations. For instance, the covariance

matrices used in equation (3.1.42) for the propagation, and (3.1.32) for the update,

are typically of the size N2
x and N2

y , where it is common to have Nx > Ny > 106.

Such matrices are impossible to store, yet be used in calculations.

In practice, the EKF assumes that everything is known. While this is a reason-

able assumption about the model and observation operatorsM and H , the complete

knowledge of the covariance matrices Pa, Q and R is too optimistic, especially with

the large size of those matrices. Finally, another critical assumption for the EKF is

the linearisation of the model operator in equation (3.2.1). This linearisation is not

straightforward and represents a major difficulty for the EKF implementation.

Other filters derived from the EKF, such as the singular evolutive extended

Kalman filter (SEEK) (Pham et al., 1998) or singular evolutive interpolated ex-

tended Kalman filter (SEIK) (Pham, 1996) offer alternatives and solutions to those

practical problems. In particular, the SEEK reduces the computational cost to an

acceptable level by using a low rank approximation of the error covariance matrix.

The evolution of the error covariance matrix is described by a reduced size basis of

statistical functions which evolve in time.

3.3 Ensemble Kalman filter

The ensemble Kalman filter (EnKF) is another Kalman filter update scheme devel-

oped to handle specific issues of the Kalman filter. This algorithm is particular in

the sense that the update step provides, either deterministically or stochastically,

an ensemble of analyses, and that the forecast step uses this ensemble as initial con-

ditions. When viewed from a Bayesian perspective, those random ensembles can be

seen as a way to represent a probability density function (PDF) using a sample of

said PDF. Algorithms that are used to generate and manipulate such random ensem-

bles and samples are commonly referred to as Monte Carlo algorithms (Metropolis

and Ulam, 1949; Doucet et al., 2001).

Formally, if x is a random variable with density p(x), one can draw a series of

x(i) (where i = 1, . . . , Ne), and call this series a sample of x as long as each member

is drawn randomly and independently from each other. This random sample is then
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equivalent to an ensemble.

In practice, ensemble members are randomly picked with a given distribution.

Information about this given distribution is crucial to assure the representativity of

the ensemble in systems where multiple modes are present. For example, suppose

that a model climatology is strongly bipolar, producing two main modes. One could

design an ensemble distribution representing those two main modes, instead of tak-

ing a Gaussian distribution.

The sample mean and covariance can then be written as

x̂ = (Ne)
−1

Ne∑

i=1

x(i), (3.3.1)

P̂ = (Ne − 1)−1
Ne∑

i=1

(x(i) − x̂)(x(i) − x̂)T , (3.3.2)

where the ”hat” symbol ˆ stands for a sample estimate. In this sense, x̂ and

P̂ are both estimates of the mean E(x) and covariance P = cov(x). The sample

covariance P̂ can be written in terms of a square root. If X is the Nx ×Ne matrix,

which contains the ensemble perturbations in its columns, (x(i) − x̂), with a scaling

factor (Ne−1)−1/2, then the sample estimator of the covariance from equation (3.3.2)

becomes

P̂ = XXT . (3.3.3)

As mentioned before, the ensemble Kalman filter aims at correcting specific is-

sues of the Kalman filter. In particular, the full and continuous probability density

function of the error covariance is first approximated in the original KF with a

Gaussian distribution, through its mean and covariance. In the ensemble KF, this

probability density function is represented through a sample of its distribution. In

some sense, the ensemble Kalman filter is an approximation of the Kalman filter.

Beginning at time m−1 from a sample from the distribution p(xm|y0,...,m−1), and

given at time m the observations ym, the sample can be updated to approximate a

sample from the distribution p(xm|y0,...,m). The aim of the next developments will

be to find an algorithm producing such an update. With the produced updated
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sample, one then wants to propagate said sample in time, to m+ 1, approximating

the forecast distribution p(xm+1|y0,...,m). One must keep in mind that, using the

Bayes theorem from equation (3.1.3), one can write that

p(xm+1,xm|y0,...,m) = p(xm+1|xm)p(xm|y0,...,m). (3.3.4)

Hence, by starting from a sample x
(i)
m from the distribution p(xm|y0,...,m), one can

draw, for each x
(i)
m , a corresponding x

(i)
m+1 from the distribution p(xm+1|x(i)

m ), obtain-

ing a sample (x
(i)
m ,x

(i)
m+1) from the joint distribution p(xm+1,xm|y0,...,m). Discarding

then every x
(i)
m from said sample produces in the end the sought sample x

(i)
m+1 from

the distribution p(xm+1|y0,...,m).

To draw from p(xm+1|x(i)
m ) for a system as equation (3.1.1), one only needs the

forecast model, and one can compute it with

x
(i)
m+1 = f(x(i)

m ) + η
(i)
m+1, (3.3.5)

where η
(i)
m+1 is drawn randomly from the assumed distribution of η. In fact, a

forecast of x
(i)
m simply produces a random draw from p(xm+1|x(i)

m ), resulting in the

forecast step to be the propagation of the ensemble in time, thus an ensemble fore-

cast. No approximations are required in this approach.

In the EnKF, no linearisation is required for the model forward operator, as

opposed to the EKF. Hence, the EnKF is less affected by errors due to the non-

linearities. Indeed, when errors develop, the nonlinear model will fall into another

regime which can contain said error. This cannot happen with a linearised model

operator, such as in the EKF.

3.3.1 The stochastic Ensemble Kalman filter

To derive the stochastic ensemble Kalman filter, one can start from the description

of the system and observations in equations (3.1.7) and (3.1.8). Suppose that, at

time m, one know the distribution xm|y0,...,m−1 ∼ N (xf
m,P

f
m), and one has the

observations ym available. Using the Kalman gain described in equation (3.1.31),

one can consider the following random variable
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ξ = x+K[yo − (Hx+ ǫ)]. (3.3.6)

Here, ξ is a linear function of Gaussian random variables, and is therefore a

Gaussian random variable too. Its mean is then given by

E(ξ) = xa = xf +K[yo −Hxf ]. (3.3.7)

Its covariance, with ξ′ = ξ − ξ and x′ = x− x, becomes

cov(ξ) = E(ξ′ξ′T ) (3.3.8)

= E([x′ −K(Hx′ + ǫ)][x′ −K(Hx′ + ǫ)]T )

= Pf −PfHTKT −KHPf +K(HPfHT +R)KT

= Pf −PfHT (HPfHT +R)−1HPf

= Pa. (3.3.9)

Hence, the Gaussian random variable ξ ∼ N (xa,Pa) has its mean xa and covari-

ance Pa given by the Kalman filter update equations, and has the same distribution

as x|ym. To draw from the analysis distribution, one can start with x(i) drawn from

the forecast distribution N (xf ,Pf), and ǫ(i) fromN (0,R), and update each member

of the sample with

ξ(i) = x(i) +K[yo − (Hx(i) + ǫ(i))]. (3.3.10)

In equation (3.3.5), the system provides a way to build a sample from xm|xm−1

when starting with a sample from the distribution of xm−1. Similarly, equation

(3.3.6) shows the relation between ξ and x, and provides the basis for sampling

from x|ym starting with a sample x(i) from the distribution of x.

The next step in the ensemble Kalman filter is to modify the update equations,

which are required in the sampling, in order to avoid forming explicitly the co-

variances in the Kalman gain K, and replace them by sample estimates from the

forecast ensemble x(i). With the sample mean definition from equation (3.3.1), one

can define the columns X(i) and Y(i) of the matrices X and Y respectively as
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X(i) = (Ne − 1)−1/2(x(i) − x̂f ), (3.3.11)

Y(i) = (Ne − 1)−1/2(Hx(i) + ǫ(i) −Hx̂f − ǫ̂), (3.3.12)

where ǫ is the observation error, where

ǫ̂ = (Ne)
−1

Ne∑

i=1

ǫ(i), (3.3.13)

and ǫ̂ → 0 for i → ∞. Using the expression of the covariance from equation

(3.3.3), one has that XYT is the sample estimate for PfHT , and YYT is the sample

estimate from HPfHT +R. One can then modify the Kalman gain from equation

(3.1.31), and obtain the stochastic form of the ensemble Kalman filter

K̂ = XYT (YYT )−1, (3.3.14)

ξ(i) = x(i) + K̂[yo − (Hx(i) + ǫ(i))], (3.3.15)

= x(i) + K̂[y(i) − (Hx(i))]. (3.3.16)

However, in equation (3.3.14), YYT is not always invertible. Indeed, to invert

YYT , one must decompose it in eigenvectors and eigenvalues so that

YYT = UΣUT , (3.3.17)

(YYT )−1 = UΣ−1UT . (3.3.18)

Here U is the matrix whose ith column is the eigenvector ui, UUT = I, and Σ

the diagonal matrix with the i eigenvalues. In oceanography, there are usually more

observations available than ensemble members. This causes some eigenvalues to be

zero and YYT not to be invertible, in which case one uses the pseudo-inverse of the

matrix YYT , written as (YYT )+. This way, one avoids the inverse of eigenvalues

equal to zero. One can write that

(YYT )+ = UΣ+UT . (3.3.19)

It is common in literature to use perturbed observations y(i) = y + ǫ(i), by
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replacing ǫ(i) with −ǫ(i) in equations (3.3.15) and (3.3.16). Those two equations

are equivalent for the first and second moments of the analysis ensemble when the

observation error ǫ distribution is symmetric, since the updated sample mean and

covariances of the x(i) ensemble remain the same in both cases.

Additionally, by adjusting the observation perturbations such as to have a zero

ensemble mean, one can make sure that the ensemble mean is the same as for un-

perturbed observations, and reduce the sampling error.

Each member of the sample must undergo a separate analysis using the esti-

mated Kalman gain K̂, with a realization of the observation error ǫ. This update

step produces an ensemble of analyses which approximates a random sample from

the distribution p(xm|ym). The sample mean corresponds to the form of equation

(3.1.25) of the original Kalman filter, where sample means replace the expected

values, and sample covariances are used to approximate the gain as follow

x̂a ≡ ξ̂ = x̂f + K̂[yo − (Hx̂f + ǫ̂)]. (3.3.20)

Again, if one defines the deviations from the sample mean update as the column

matrix Xa as (Ne − 1)−1/2(ξ(i) − x̂a), and replaces covariance matrices with sample

estimates from the ensemble, one can rewrite the sample covariance to have a similar

expression as equation (3.1.24)

Xa = X− K̂Y, (3.3.21)

P̂a = Xa(Xa)T

= XXT −XYTK̂T − K̂YXT + K̂YYTK̂T

= XXT −XYT (YYT )+YXT . (3.3.22)

When the number of ensemble members tends to infinity, the sample estimates

converges to the correct values. The mean and covariance of the ensemble Kalman

filter will also converge to the Kalman filter as the ensemble size grows larger. The

practical gain of the ensemble Kalman filter is, in the end, to reduce the compu-

tational requirements while having approximated values that tend to the expected

values. The objective is attained for the covariance matrices, since Pf , PfHT and

HPfHT are never explicitly stored or used in calculations. Instead, the EnKF

algorithm uses the column matrices X and Y, which are square roots of the co-
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variance matrices. Their size are equivalent to the number of ensemble members

Ne for the ensemble perturbations and the predicted observation vectors for those

perturbations. However, the approximated Kalman gain K̂ however still uses the

pseudo-inverse (YYT )+ in equation (3.3.22), which size is Ne ×Ne.

Finally, another interesting notion is the analysis increment a. It is defined for

each member, from equation (3.3.15), as

ξ(i) − x(i) = K̂[yo − (Hx(i) + ǫ(i))], (3.3.23)

= XYT (YYT )+[yo − (Hx(i) + ǫ(i))]

= Xa. (3.3.24)

a has a size of Ne, and represents the coefficients of the ensemble perturbations

x(i) − x̂f when one considers ξ(i) − x(i) as a linear combination of those ensemble

perturbations. This interpretation of the analysis increment in the context of the

ensemble Kalman filter is crucial to understand how this algorithm diminishes the

computational cost.

The major improvement of the EnKF compared to the EKF is the nonlinearisa-

tion of the model. In the EKF, this linearisation is necessary, but arises difficulties

in particular circumstances. The EnKF directly uses the nonlinear model to propa-

gate the ensemble states and represents therefore a significant improvement over the

EKF. However, the main obstacle for the EnKF resides in the necessary objective

to retain a small ensemble size, which can be a problem in cases of high dimensional

systems. Indeed, a too small ensemble does not allow to fully reconstruct, via linear

combination, the distribution p(xm|ym).

3.3.2 Local assimilation

Techniques exist to overcome the issue of having a too small ensemble, such as local

assimilation. Basically, with a small ensemble with Ne members, the global analysis

will only allow adjustments and correction in the sub-space described by those Ne

members. In the common case of chaotic systems, this ensemble is not sufficient

to fully describe the background covariance matrix (Hunt et al., 2007). However,

if one allows the analysis to perform locally different linear combinations of the en-

semble members in different regions, one effectively allows the analysis to explore a

much larger sub-space than previously. Two main form of localisation approaches
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exist. They are classified into domain and covariance localisation (Janjić et al., 2011;

Nerger et al., 2012a).

For domain localisation, one can reduce the global assimilation to localised re-

gions, where the system is driven by the dynamics of the neighbouring regions. Sub-

domains (e.g., single grid point or vertical column) are created from the state vector,

allowing independent assimilation to be performed. This is particularly interesting,

as one can decompose the entire assimilation algorithm into smaller processes, for

parallel computing (Nerger and Hiller, 2013). However, discontinuities can appear

in the analysis field. One avoids them by combining domain localisation with ob-

servation localisation, by decreasing the weight of distant observations through the

increase of the error variance R (Kalnay and Toth, 1994; Brankart et al., 2003).

In the case of covariance localisation, the algorithm sequentially assimilates every

observations through a localisation function used as filter. Whereas the observation

localisation acts on R, the covariance localisation operates on the error covariance

matrix P. The sequential algorithm however prevents parallelisation, which can be

a significant hinder for large models.

3.3.3 The deterministic Ensemble Kalman filter

The stochastic EnKF aims at generating an ensemble of members that approximate

a particular PDF through a random sample of that same PDF. On the contrary, the

deterministic EnKF aims at producing an analysis with a mean and covariance that

correspond to the KF update for the observations, and with a mean and covariance

from the forecast ensemble. If the system is linear and Gaussian, the deterministic

EnKF also converges to the classic KF if the ensemble becomes large enough. The

term ”deterministic” is used in contrast to the random sampling of the stochastic

EnKF.

Similarly to the previous section, suppose that a forecast ensemble x(i), i =

1, . . . , Ne is available. One can use the definition of the sample mean and covariance

from equation (3.3.1,3.3.3) respectively. Then, the sample mean x̂ = xf can be

updated with the Kalman filter by construction is given by

x̂a = x̂+ K̂(yo −Hx̂). (3.3.25)
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With Xa being the Nx × Ne matrix that contains the ensemble perturbations

(x(i) − x̂) in its columns, with a scaling factor (Ne − 1)−1/2, the sample covariance

Pf = XXT can be updated with

(Ne − 1)−1
Ne∑

i=1

(ξ(i) − x̂a)(ξ(i) − x̂a)T = Xa(Xa)T , (3.3.26)

where ξ(i) are the members of the analysis ensemble. One can rewrite the analysis

covariance of the Kalman filter with the updated sample covariance, and obtains

Xa(Xa)T = Pf −PfHT (HPfHT +R)−1HPf (3.3.27)

= XXT −XXTHT (HXXTHT +R)−1HXXT (3.3.28)

= X[I−XTHT (HXXTHT +R)−1HX]XT (3.3.29)

= XTTTXT . (3.3.30)

Equation (3.3.29) is satisfied if Xa = XT, where

TTT = I−XTHT (HXXTHT +R)−1HX (3.3.31)

= I− ST (SST +R)−1S (3.3.32)

= I− ST (F)−1S. (3.3.33)

Here S = HX is the ensemble observation matrix and F is the innovation co-

variance. The columns of the matrix T are the coefficients of the linear combination

of the forecast ensemble perturbations. One can see the resemblance with equation

(3.3.24), where the a are the coefficients for the linear combination. T is called the

transform matrix that transforms X into Xa.

Different ways exist to compute it for large-dimensional systems, each corre-

sponding to a particular derivation of the ensemble Kalman filter. Examples are the

ensemble square root filter (EnSRF) (Tippett et al., 2003), the ensemble adjustment

Kalman filter (EAKF) (Anderson, 2001), the singular evolutive interpolated Kalman

filter (SEIK) (Pham, 1996), the error-subspace transform Kalman filter (ESTKF)

(Nerger et al., 2012b) and the ensemble transform Kalman filter (ETKF) (Bishop

et al., 2001).
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3.3.4 The Ensemble Transform Kalman Filter

For the ETKF, one must start from equation (3.3.28) and apply the Sherman-

Morrison-Woodbury formula to compute the second term of the right hand side (see

appendix section 11.1 for demonstration) (Golub and Van Loan, 1996) to obtain

that

Xa(Xa)T = XXT −XXTHT (HXXTHT +R)−1HXXT (3.3.34)

= XXT −X(HX)T [HX(HX)T +R]−1HXXT (3.3.35)

= XXT −X[I+ (HX)TR−1HX]−1(HX)TR−1HXXT (3.3.36)

= X[I− (I+ (HX)TR−1HX︸ ︷︷ ︸
A

)−1(HX)TR−1HX]XT . (3.3.37)

The aim is to find an expression for the analysis covariance Pa = Xa(Xa)T . The

inverse of the observation error covariance matrix R−1 is supposed to be known.

Then, the bracket A (present twice) in equation (3.3.37) can undergo an eigenvalue

decomposition

(HX)TR−1HX = UΛUT , (3.3.38)

where UUT = I and Λ is diagonal and both are Ne × Ne matrices. Equation

(3.3.37) then becomes

Xa(Xa)T = X[I− (I+UΛUT )−1UΛUT ]XT (3.3.39)

= X[I− (I+UΛUT )−1(UΛUT + I− I)]XT

= X[I− (I+UΛUT )−1(UΛUT + I) + (I+UΛUT )−1]XT

= X[I− I+ (I+UΛUT )−1]XT

= X(I+UΛUT )−1XT

= X(UUT +UΛUT )−1XT

= XU(I+Λ)UTXT

= XU(I+Λ)−1/2(I+Λ)−1/2UTXT

= XU(I+Λ)−1/2UTU(I+Λ)−1/2UTXT . (3.3.40)

We obtain a square root decomposition of Pa in terms of XU(I+Λ)−1/2UT . The

addition of the product with UT allows the ensemble composed of the columns of
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Xa = XU(I+Λ)−1/2UT to have a mean set to zero, without modifying Pa (Sakov

and Oke, 2008).

The sum of all columns of HX is zero, if H is a linear observation operator, and

HX = 1Ne×1, (3.3.41)

(HX)TR−1HX1Ne×1 = 01Ne×1. (3.3.42)

Hence, 1Ne×1 is an unnormalised eigenvector of (HX)TR−1HX with eigenvalue

0. If one sorts all the eigenvalues in Λ, then 1Ne
is the smallest and last of the N

eigenvalue, since they all must be positive. With eNe
being a zero vector with only

the last element equal to one, one has

UeNe
=

1√
N
1Ne×1, (3.3.43)

ΛN,N = 0, (3.3.44)

U(I+Λ)−1/2UT1Ne×1 = 1Ne×1. (3.3.45)

Hence, the mean of all the columns of Xa is zero. One can also rewrite the

Kalman gain K using the decomposition from equation (3.3.38), where K is com-

prised in the right-hand-side term of equation (3.3.36), as

K = X[I+ (HX)TR−1HX]−1(HX)TR−1 (3.3.46)

= X[UUT +UΛUT ]−1(HX)TR−1 (3.3.47)

= XU(I+Λ)−1UT (HX)TR−1. (3.3.48)

Finally, the analysed ensemble mean is given by

xa = xf +K(yo −Hxf). (3.3.49)

One can reconstruct the ensemble from the columns of Xa and the ensemble

mean xa to obtain

xa(i) = xa +
√
Ne − 1Xa(i). (3.3.50)
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3.4 Conclusion

In this chapter, the theoretical framework of the Kalman filter, from the original

formulation to the ensemble transform Kalman filter, has been detailed. The as-

sumptions on which each successive formulation relies, and the different hypotheses

and constraints, have been presented. The different drawbacks and specific issues

have been discussed, with the possible solutions when applicable. In the next part

of this thesis, the ensemble transform Kalman filter is the data assimilation scheme

which is used.
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4.1 Theoretical formulation

The aim is to develop a new method of bias correction for numerical modelling us-

ing an ensemble method. While most previously developed and existing methods

correct bias in the model results, the objective here is to come closer to the origin

of the bias and correct it by applying a stochastic forcing into the model equation.

4.1.1 Bias definition

Bias is a term which regroups numerous different definitions coming from different

domains. In social sciences one can be confronted to confirmation bias, cultural

bias, media bias or publication bias. Bias can also be defined in mathematics and

engineering. However, the general idea of bias remains identical. It represents an

inclination, predisposition or preference, towards a particular result, opinion, or ten-

dency.

55



56 Chapter 4. Bias correction

Bias as it is referred to in numerical modelling is more commonly known as

statistical bias. Given a random variable corresponding to observed data x, with

a probability distribution p(x|θ), where θ is a parameter indexing that probability

distribution, one can define bias in the Bayesian framework for a statistic θ̂ which

serves as an estimator for θ (Lehmann, 1951; Noorbaloochi and Meeden, 2000). This

estimator is thus a function of the observed data: θ̂(x). It is said to be biased when

the expected value of the estimator is different from the real value of that parameter.

In other words, with E being the expected value, one has that

E[θ̂(x)]− θ = E[θ̂(x)− θ] 6= 0. (4.1.1)

Hence, one must keep in mind that the definition of bias depends of the notion

of expected value. Indeed, the expectation value is to be determined over a period

of time. In particular, in numerical modelling, this period of time has to be related

in some sense to the time scale of the model, whether it represents a couple of hours,

days, or even years.

4.1.2 Numerical model bias

Consider the following nonlinear stochastic discrete-time dynamical system, such as

described by equation (2.1.1)

xm = Mm (xm−1) , (4.1.2)

where m = 1, ..., mmax is the time index, xm the n dimensional model state and

Mm the forward model operator. One can assume that the model error is additive,

as presented in Evensen (2007) and describe the real dynamical system by

xt
m = M t

m

(
xt
m−1

)
+ βm, (4.1.3)

where xt
m is the n dimensional true state, M t

m the true model forward operator,

and βm the stochastic error. This model error can be split into two parts, namely

a random part which average is zero: < β̃m >= 0, and a systematic error, or bias,

b (Dee, 2005), as



4.1. Theoretical formulation 57

βm = β̃m + b. (4.1.4)

One considers here the bias b to be constant in time. This assumption on the

properties of the bias can be removed, to handle time-varying bias such as seasonal

biases. Although finding an adequate correction would prove more difficult and

computationally more costly, the principle of the method would remain identical.

4.1.3 Bias estimation and correction

The method for bias correction presented in this work relies on data assimilation.

The principle is rather straightforward. One aims at estimating a stochastic forcing

term b̂ which will be used to modify the model forward operator Mm from equation

(4.1.2) and correct the model bias. To provide said estimation, an ensemble trans-

form Kalman filter is used (presented in section 3.3.4).

Using the definition of the model trajectory (equation (2.1.2)) and state vector

augmentation (equation (2.2.1)), one can augment the state vector with an estimator

of the bias correction term b̂(i), where b̂(i) can be seen as a parameter to be estimated

(Barth et al., 2010; Sakov et al., 2010), by writing that

x′(i) =




x
(i)
1

x
(i)
2
...

x
(i)
mmax

b̂(i)



, (4.1.5)

where x′(i) is a member of the ensemble of trajectories with i = 1, . . . , Ne and

Ne is the size of the ensemble. To each ensemble member x′(i) corresponds a bias

correction estimation b̂(i). The average of the ensemble is then written as

x′ =
1

Ne

Ne∑

i=1

x′(i). (4.1.6)

Hence, the ensemble after assimilation with the ensemble transform Kalman filter

(equation (3.3.25)) is provided by
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K′ = P′fH′T (H′P′fH′T +R)−1, (4.1.7)

x′a = x′f +K′
(
yo −H′x′f

)
, (4.1.8)

where yo are the time average of the observations. The observation operator H′

applied on the trajectory x′ also includes a time average and an extraction operator

H of the observed part of the model state, with

H′x′ =
1

mmax

mmax∑

m=1

Hxm = Hx, (4.1.9)

x =
1

mmax

mmax∑

m=1

xm, (4.1.10)

where x is the time average of the model state vector. This method assumes

that the bias represents a large part of the model error. Taking the time aver-

age of the model allows to concentrate on the bias, or the systematic error, with

regards to the time scale of the model, and not on the random error contained in βm.

In addition, since one only requires the climatology of the model and the bias

correction, the complete model trajectory is not needed. The average state of the

model is sufficient, computationally much more interesting and justified by the def-

inition of bias. One can use the state vector including only the model mean state

and the bias correction term with

x′′ =

[
x

b̂

]
, (4.1.11)

and an observation operator defined as

H′′x′′ = Hx. (4.1.12)

One can show that the analysis using the average model state (equation (4.1.13))

provides the same analysed bias correction b̂a as when the full trajectory is included

in the estimation vector (equation (4.1.8)) with
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x′′a = x′′f +K′′
(
yo −H′′x′′f

)
. (4.1.13)

The mathematical proof is shown in the appendix section 11.2. In practice, the

assimilation of observations on the climatology of the model x allows the update

and tuning of the estimator b̂a through the Kalman equations. The model is then

rerun with the bias correction term, providing one with a bias corrected model run

xr
m as follow

xr
m = Mm

(
xr
m−1

)
− b̂a. (4.1.14)

The interest of this method is that when the model is rerun, it provides a new

model trajectory xr
m. This new trajectory, hence its average xr are different from

the analysis x′′a, since the model is nonlinear. Indeed, the former results from a new

run by the model corrected equation (equation (4.1.14)), whereas the latter results

directly from the analysis (equation (4.1.13)).

If the model were linear, the rerun would be equivalent to the assimilation re-

sult, and one would have xr = x′′a. In addition, the rerun allows to perform a first

validation of the estimation of the bias correction term b̂a.

4.1.4 Discussion

It is common for bias correction methods to estimate the bias during the model run

(whether online or offline) with a dynamic model for the bias. The bias estimation

can then either be subtracted before the data assimilation, or be taken into account

during the assimilation. However, it is not the case here. In this method, there is

no dynamical model for the bias, and it is never directly estimated. Instead, the

focus is turned towards the statistical estimation of a bias correction term, similarly

to parameter estimation techniques (section 2.3).

The bias correction estimation performed by the analysis uses all available infor-

mation, and not only the past information. Hence, one can consider this method as

a smoother, a term commonly used in data assimilation literature to refer to meth-

ods propagating information both forward and backwards in time. However, here

observations and forcing terms are chosen to be time averages. Thus, the notion of
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propagating information in time is no longer relevant. This method provides one

with a bias correction term b̂a aimed at correcting the model. It can be used to run

a corrected model, either in forecast or reanalysis mode.

In practice, the computational cost of this bias correction method is nearly iden-

tical to a classic ETKF scheme. One needs to construct an ensemble of runs, as-

similate the observations, and only perform one additional model run with the bias

correction. However, a major difference with the classic use of ensembles in data

assimilation is that it is not necessary to keep the full trajectory of the analysis en-

semble. The point of the assimilation is only to provide an updated bias correction

forcing term, and not to provide an ensemble of analysed model states to rerun. As

a consequence, the method is not affected by covariance inflation and filter diver-

gence. However, one could consider the use of this method in a dual state-parameter

estimation by making the adapted adjustments.

4.2 Practical formulation

A practical description of the different steps can greatly help to clarify the full

procedure and its application in practice. The description is generic and valid for

any numerical model. The different and successive steps are as follow:

1. Produce an initial model run xm.

2. Estimate the model bias b and its possible source through study of the model

results. In particular, one can look at the model climatology to determine the

bias.

3. Identify in the model equations this error source and determine how it can be

modelled in statistical terms.

4. Modify the model equation to add an additional forcing term. This forcing

needs to act on the bias source to counteract its effect, and dissipate the bias.

5. Create an ensemble of random parametrised bias correction estimates b̂(i). The

characteristics of those estimates can be specified. In particular, the shape,

magnitude or correlation length can be estimated. The distribution of the

ensemble can also be determined through assumptions on the bias source.

6. Run the ensemble of parametrised bias estimates to produce an ensemble of

corresponding model trajectories x
(i)
1,...,mmax

.
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7. Extend the state vector of the model trajectories with the corresponding bias

estimates. To diminish the computational cost, one can take the time average

of the model x′′f , instead of the full trajectories x′f , as the observations depend

only on the time averaged model solution.

8. Assimilate adequate observations yo in order to produce an analysed ensemble

of state vectors x′′a(i).

9. Extract the ensemble mean of the analysed bias after assimilation b̂a.

10. Rerun the model with the bias correction term to obtain a bias corrected model

run xr
m.

11. Validate the bias correction term with external and independent data, by

comparing the uncorrected model run xm with the corrected model run xr
m.

This procedure is summarised as a schematic on figure 4.1.

Schematic of the method

Create ensemble of 

parametrised bias
Run ensemble of 

trajectories

Assimilate 

observations

Extract analysed bias
Rerun model with 

correction term

Validate correction term 

with external data

Figure 4.1: General schematic of the bias correction method, from the initial model
run xm to the corrected model run xr

m.

4.3 Experiment set up

In the next chapters of this work, the terminology used must be defined and linked to

the notation introduced in this chapter. The reference run or true run corresponds

to xt (equation (4.1.3)), and the free run to the trajectory of xm (equation (4.1.2)).
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The ensemble run, when run with an ensemble of guessed estimators b̂(i) before

assimilation will be x′′f , and after assimilation x′′a (equation (4.1.13)). Finally, the

corrected run, or rerun will correspond to the trajectory of xr
m (equation (4.1.14))

with the bias correction b̂a provided by the analysis (equation (4.1.13)).
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5.1 Model description

The first test for the new method developed in chapter 4.1 is its application on a

fully controlled mathematical model. In 1963, Edward Lorenz developed a simplified

mathematical model aimed at reproducing atmospheric convection. It is notable for

having chaotic solutions for certain parameter values and initial conditions. Origi-

nally, it consists of a system of three differential equations (Lorenz, 1963). In 1996,

it was updated in its 40-variables form, known as the Lorenz ’96 model (Lorenz,

1996; Lorenz and Emanuel, 1998). It consists of a circular closed boundaries system

with advection and diffusion properties.
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This model has been widely used to test and improve data assimilation methods,

ensemble filters or parameter estimation. In Li et al. (2009), a method for estimat-

ing the inflation factor and observational error simultaneously with an EnKF is pre-

sented, and first investigated on a low-order Lorenz 96’ model. Terasaki and Miyoshi

(2014) investigates the impact of observation error correlations and nonorthogonal

observation operators on analysis accuracy using, again, the Lorenz 96’ chaotic dy-

namical model. In Yang et al. (2012a), an outer loop is proposed for an EnKF to

solve its weakness for Gaussian and linear models, and improve its ability to handle

nonlinear dynamics. In particular, a 3-variable version of the Lorenz model is used.

Indeed, developing new methodologies relies on multiple specific procedures

which need to be tested. This preparation work is better done beforehand on a

small model which, even if it does not stand comparison with the complexity of re-

alistic models, still enables to address the multiple issues one will be facing later on.

Even if the Lorenz ’96 model is not particularly complex, it still shows similarities

with the ocean, in particular, the chaotic behaviour which makes forecasting a real

issue.

In this work, the model is used in a different way than the one originally intended.

Many of the previous works based on this model concentrate on the value of each

variable during the model run. In particular for data assimilation benchmarks, the

ability of the assimilation scheme to effectively catch and pull the model towards the

observations is evaluated. The chaotic behaviour of the model renders this objective

difficult to attain, since a small error in the variables inevitably grows over time.

However, since the aim here is not to correct the specific value of the variables, but

rather correct the bias that affects those variables, the focus is directed at the mean

value of those variables over a period of time. This choice is motivated by the fact

that, in some sense, bias is defined as a systematic error over a period of time. The

next sections will cover more thoroughly the characteristics of the Lorenz ’96 model

and its responsiveness to some specific modifications.

5.2 Model characteristics

The system is described by the set of the K = 40 following equations
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dXk

dt
= −Xk−2Xk−1 +Xk−1Xk+1 −Xk + F, (5.2.1)

where k = 1, . . . , K, and F is a constant variable independent from k. In

this particular form, one can look at the periodic boundary conditions of the one-

dimensional system as a circle around the Earth, in which the variables repre-

sent some atmospheric quantity in K different sectors of a latitude circle. Hence,

Xk−K = Xk = Xk+K . External forcing and internal dissipation of the system, such

as mechanical or thermal damping, are represented by the constant and linear terms,

while the quadratic terms simulate advection. The coefficients before the quadratic

and linear terms have been reduced and are equal to unity, through variable scaling

(Lorenz, 1996). Together, they conserve the system total energy E (not strictly, but

on the long term), where

E =
1

2

K∑

k=1

X2
k (5.2.2)

=
K

2
s2. (5.2.3)

If one notes the averages of the linear Xk and quadratic X2
k terms respectively

as r and s2, one has that total energy becomes s2/2 (Lorenz, 2005). The evolution

in time of the total energy is written as

d(s2/2)

dt
=

d

dt

(
1

2K

K∑

k=1

X2
k

)
(5.2.4)

=
1

2K

K∑

k=1

dX2
k

dt
(5.2.5)

=
1

K

K∑

k=1

Xk
dXk

dt
(5.2.6)

=
1

K

K∑

k=1

Xk(−Xk−2Xk−1 +Xk−1Xk+1 −Xk + F ) (5.2.7)

=
1

K

K∑

k=1

(−X2
k +XkF −Xk−2Xk−1Xk +Xk−1XkXk+1) (5.2.8)

= −s2 + Fr. (5.2.9)
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The quadratic terms of equation (5.2.1) cancel out in equation (5.2.8) due to

the periodic boundary conditions of the system, and do not affect the total energy

balance of the system, similarly to advection in a realistic system. equation (5.2.9)

also constrains the values of the system. One can show that the right-hand-side of

this equation is negative for values of Xk that make s > F , for that s ≥ r using the

Cauchy–Schwarz inequality (proof in the appendix section 11.3), causing s2 > Fr.

In other words, s2 will decrease until r < s < F , hence s and r are always pulled

back to values smaller than F .

One can also look at the long-term behaviour of this model. If R and S2 are

respectively the long term averages of r and s2, in the sense that time derivatives

become negligible, then one can write the variance of the model as

σ2 = S2 − R2. (5.2.10)

With the left-hand-side of equation (5.2.9) equal to zero for long-term averages,

one has that S2 = FR, hence σ2 = R(F −R). Variances are always positive, which

causes the model average to be constrained by 0 < R < F (Lorenz, 2005). In partic-

ular, for very small values of F , the model solutions all decay to a steady solution,

where Xk = F = R = S and σ = 0. Lorenz and Emanuel (1998) already noted that

if F < 4, the waves can extract energy fast enough to offset the effect of the external

forcing. When F > 4, the model becomes completely chaotic over time and shows

spatially irregular patterns. Even more, when F > 15, the model becomes totally

unstable and diverges.

5.3 Model modification

For the intent of this work and as will be justified later, the Lorenz ’96 model

used here also needs to be tweaked. The method presented in chapter 4.1 needs

to be confronted to a spatially variable bias. Hence, the forcing parameter F from

equation (5.2.1) is modified to have a spatial structure depending on k as follow

dXk

dt
= −Xk−2Xk−1 +Xk−1Xk+1 −Xk + Fk. (5.3.1)
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5.3.1 Model average

Specific inquiries are necessary to obtain further information about the model be-

haviour after the modification presented in equation (5.3.1). As detailed in chapter

4.1, the bias correction method developed here relies on the assimilation of observa-

tions representing an average value, in order to highlight the potential bias hidden

in the model state. Hence, one needs to look at the effect of the Xk parameter on

the model average Xk values.

One notes that there is a significant relationship between the variables mean over

time and the forcing parameter Fk. Parameters are set to k = 1, .., 40, and a time

step of 0.05. 30 evenly distributed values are chosen for 0 < Fk < 10. The model is

then run with 450 different initial conditions for each Fk. The 200 first time steps

are discarded, as spin-up time for the model to adjust itself to its parameters. The

mean of the model variables is taken for the last 800 time steps and averaged over

the 40 variables to obtain the model mean state.

Two cases are studied: in the first, the Fk are constant relatively to k for all the

variables: Fk = F (figure 5.1a). In the second, a random spatially correlated noise

is added on the forcing parameter in order to obtain a different Fk for each k (figure

5.1b). That new forcing parameter is described by

F = F1+ SPz, (5.3.2)

Pi,j = 0.3 e
−(i−j)2

15 . (5.3.3)

Here, 1 is a vector of size 40 with all values equal to one, SP is the Cholesky

decomposition of the covariance matrix P (P = SPSP
T , i, j = 1, . . . , 40 are rows

and columns indices), and z is a random vector of 40 variables with a normal dis-

tribution z ∼ N (0, I).

One can clearly see from figures 5.1a and 5.1b that there is a monotonic relation-

ship between the system mean and the forcing parameter, whether the later one is or

is not constant. This encourages the working hypothesis that even a fully nonlinear

system in each of its variable can, under some conditions, be expected to show a

global simple behaviour, as long as the system does not include a regime shift. This

also confirms that even though the model state at a specific point in time depends

on the initial conditions, the time average of the model over the last 800 time steps

only has a minimal dependence on the initial conditions. This is important since the
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Lorenz ’96 model mean state
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Figure 5.1: Lorenz ’96 model mean state compared to: Panel (a) a constant forcing
parameter F , Panel (b) a function of the average of the spatially variable forcing
parameter Fk as defined by equation (5.3.1). The X-axis represents the 30 different
0 < F < 10 tested. For panel (b), only the mean part corresponding to F is plotted
for more readability. The Y-axis represents the model mean state for the 450 initial
conditions as a function of F

aim is not to predict the exact value of the system at a given point in time. Instead,

the aim is only to correct the model forcing parameter and the bias it causes on the

model mean state.

5.3.2 Spatial average

Different set-ups are tested to show the influence of the different parameters on the

behaviour of the model described by equation (5.2.1). The model is initially run

for every set-up for 10000 time-step. Parameters are set to k = 1, .., 40, and a time

step of 0.05, which corresponds to about 6 hours in the atmosphere (Lorenz and

Emanuel, 1998). Results are shown on figure 5.2a to 5.5d. Panels (a) are a 2D plot

of the value of each variable Xk for the first 1000 time-steps, where k = 1, . . . , 40.

Panels (b) are a time plot of the variables Xk, k = 1, 5, 20, to visualise their partic-

ular evolution through time for the first 1000 time-steps. Panels (c) are the values

of Fk, in order to see their influence on the model mean. Panels (d) are the time

average over the first 1000 time steps of Xk for one initial condition (in red), the

time average over for 10000 time-steps for one initial condition (in blue), and for

the first 1000 time-steps for 15 initial conditions (in green), to see how the average

of each variable is influenced by the model forcing parameters Fk, the integration

timescale of the model, and the number of initial conditions.
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Figure 5.2a and (5.2b) show the model output for uniform initial conditions

Xk = 2, Fk = 5, for all k. It is clear that the model rapidly tends to a steady

solution where Xk = Fk = 5. Panels (c) and (d) are absent from this case, since the

values are constant for all k. Figure 5.3a and 5.3b show the influence of uniform

initial conditions on Fk = 5, for all k, with an initial condition Xk = N (2, 1). One

can observe the particular advective pattern on figure 5.3a, where the signal is slowly

propagated towards greater values of k, and the periodic boundary conditions of the

system. Moreover, the system needs some time to adapt from the initial conditions

towards a globally stable state, in the sense of the long-term average of the global en-

ergy, with S2 = FR. This spin-up takes quickly place, and the Xk variables already

attain their long-term variability after the first 100 time steps of the model. Figure

5.3d also shows that with random initial conditions and a chaotic behaviour on Xk,

the variability of the time average of Xk is one order or magnitude smaller than the

variability of Xk. In fact, those fluctuation are only statistical. For a sufficiently

long integration period, the time average of Xk would tend to a constant. This can

be seen by comparing the model average output of the first 1000 time-steps with the

full 10000 time-steps. Moreover, the average over the 10000 time-steps provide the

same lower variance as the average over the first 1000 time-steps and over 15 initial

conditions.
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Figure 5.2: Lorenz ’96 model evolution for 1000 time steps, for uniform Fk = 5, for
all k parameter and uniform Xk = 2, for all k initial conditions. Panel (a) is a 2D
plot of Xk over time and spatial index. Panel (b) is the temporal evolution of Xk

for k = 1, 5, 20.

One can see on figures 5.4a to 5.5d that the spatially variable parameter Fk, as
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Figure 5.3: Lorenz ’96 model evolution for 1000 time steps, for uniform Fk = 5, for
all k parameter and random Xk initial conditions with average X = 2. Panel (a) is
a 2D plot of Xk over time and spatial index. Panel (b) is the temporal evolution
of Xk for k = 1, 5, 20. Panel (c) is the values of Fk. Panel (d) are different time
averages of the model state Xk.

defined by equation (5.3.2), adds more variability and instability to the model. In

particular, the time average of Xk (figures 5.4d and 5.5d), for the same period of

time, show a larger variance, than when Fk is constant. The pseudo-physical pro-

cesses, such as advection and diffusion, are still present. Figures 5.4a and 5.4b show

that with constant initial conditions on Xk, variability is introduced by the forcing

parameter Fk. The spin-up time necessary for perturbations to be introduced to the

system is less than 100 time steps, but is longer than the constant Fk and variable

Xk case.

Finally, one can clearly observe a correlation between figures 5.5c and 5.5d.
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The constraints resulting from equation (5.2.10) are also valid on a local scale

of the model. In particular, the model average is locally constrained by 0 <

R < F . A higher average value on Xk is obtained in the regions of high Fk

values, when k = 15, . . . , 30, and this value drops when Fk becomes smaller, at

k = 1, . . . , 15, 30, . . . , 40. One can this expect to be able to recover the local values

of Fk is one possesses long term observations on Xk.
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Figure 5.4: Lorenz ’96 model evolution for 1000 time steps, for variable Fk parameter
with average F = 5, and uniform Xk = 2, for all k initial conditions. Panel (a) is
a 2D plot of Xk over time and spatial index. Panel (b) is the temporal evolution
of Xk for k = 1, 5, 20. Panel (c) is the values of Fk. Panel (d) are different time
averages of the model state Xk.

Those particular cases have not been considered by Lorenz in his extensive study

of his model in Lorenz (2005). Lorenz first focused on the perturbations introduced

by the variability in the initial conditions on Xk, and in particular the wave length
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Figure 5.5: Lorenz ’96 model evolution for 1000 time steps, for variable Fk parameter
with average F = 5, and randomXk initial conditions with average X = 2. Panel (a)
is a 2D plot of Xk over time and spatial index. Panel (b) is the temporal evolution
of Xk for k = 1, 5, 20. Panel (c) is the values of Fk. Panel (d) are different time
averages of the model state Xk.

of the variability of Xk. Lorenz also investigated a modification of his model by

transmuting the factors in his equation into random numbers i and j as follow

dXk

dt
= −Xk−iXk−j +Xk−i+jXk+j −Xk + F. (5.3.4)

He intended to solve the too abrupt variations in Xk that occurred in the first

form of his model.

Lorenz finally concluded that his model, while not being appropriate for certain

studies, still offered a potential ground for improvement and modifications to suit
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one’s needs. In particular, once chaos is installed when looking at the short-term

evolution of Xk, the long-term variability remains insignificant. This could be an

issue to the investigation of problems where regime shifts over long period of time

are observed. One could produce long-term variability by modifying F in time. This

could be compared to a parameter of a realistic model varying over long period of

time, such as a seasonal variation.

This is to some extent comparable to what has been done here. Instead of having

a variation over time, one can look at the spatial variations of Fk as a parameter

that has a particular spatial structure. Different regimes can appear in different

regions of the model.

5.4 Single assimilation

The bias correction method is implemented and tested with a Lorenz ’96 model

twin experiment. As shown before, the forcing parameter Fk can be considered to

be directly linked with the model mean over a period of time. First, a random,

but spatially correlated F t
k parameter is created following equation (5.3.1), with a

mean F t = 4. The model is then run once over mmax = 1000 time steps, with

lmax = 15 different initial conditions. It is then averaged over the initial conditions

and over time while ignoring the first 200 time steps to avoid the initial conditions

to strongly influence the model mean. This provides the reference (or true) solution

X t
k, obtained from the full model trajectory X t

k,l,m as follow:

X t
k =

1

lmax

lmax∑

l=1

1

mmax − 199

mmax∑

m=200

X t
k,l,m. (5.4.1)

The exact same procedure is used to generate an ensemble of Ne = 100 different

F f
k,N . Each one is also run over 1000 time steps, with 15 initial conditions, and

averaged without the first 200 time steps, producing an ensemble of model solutions

noted Xf
k,N .

In the context of a classic twin experiment, one wants to assimilate observations

yok from the reference run mean X t
k. In order to reproduce the behaviour and diffi-

culties of a realistic experiment, noise is added to the reference run mean X t
k and

observations are created following
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yok = X t
k + βsXt

k
z. (5.4.2)

Here z ∼ N (0, I) is a random vector, sXt
k
is the standard deviation of X t

k, and

β = 0.1.

5.4.1 Bias correction results

Using an ETKF scheme, the state vector, which consists of the ensemble model mean

Xf
k,N , is extended with the ensemble F f

k,N (equation 4.1.11). After the analysis step,

one obtains a new and updated vector of forcing parameter F a
k,N , and the analysed

ensemble model mean Xa
k,N . The model is rerun with those updated forcings, and

one expects the ensemble model mean reruns Xr
k,N to improve and come closer to

the reference run. The results of this procedure are shown in figures 5.6a, 5.6b, 5.7a

and 5.7b.
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Figure 5.6: Lorenz ’96 model Fk value (Y-axis) for each k = 1, .., 40 (X-axis). The
reference run is shown in black: F t

k. The ensemble mean before assimilation, repre-
senting 100 members, is shown in red: F f

k . The ensemble mean after assimilation
is presented in blue: F a

k . The light and darker areas represent then 25% and 50%
percentile of the corresponding colored ensemble before assimilation (a) and after
assimilation (b).

In this experiment, the whole ensemble with assimilated forcings is used for the

final run. Figures 5.6a and 5.6b show the forcing ensemble envelope before (F f
k ) and

after (F a
k ) assimilation respectively. Figures 5.7a and 5.7b show the model mean
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Figure 5.7: Lorenz ’96 model Xk model mean state (Y-axis) for each k = 1, .., 40
(X-axis). The reference run is shown in black: X t

k. The ensemble mean before
assimilation, representing 100 members, is shown in red: Xf

k . The ensemble mean
rerun after assimilation is presented in blue: Xr

k . The light and darker red areas
represent then 25% and 50% percentile of the corresponding colored ensemble before
assimilation (a) and after assimilation (b).

before assimilation (Xf
k ) and after rerun (Xr

k) respectively.

The assimilation of observations on the model mean X t
k allowed the correction

of the bias on F f
k (figure 5.6b). The root mean square error (RMSE) on F f

k before

assimilation was 0.653. After the assimilation, it has been reduced to 0.323 for F a
k ,

and it is already able to reproduce the global shape of the reference run. One also

needs to look at the model mean (figure 5.7b). The RMSE of the ensemble mean

Xf
k is 0.099. However, one can clearly see that the model rerun with the assimilated

F a
k gives much better results. The RMSE of Xr

k is only 0.037, and reproduces much

better the shape of the observations. Thus, not only does the assimilation show an

improvement on the forcing parameter of the model, but its mean climatology is

also improved by effectively correcting the source of its bias.

5.5 Iterative assimilation

The previous classic twin experiment has shown that the method can be applied

to a chaotic system and provide a correction for the biased parameter. Kivman

(2003) pointed out that the EnKF performs poorly when estimating simultaneously

the state of the model and its parameters. However, by taking the average of the

model over time and only estimating the biased parameter, the curse of highly non-
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Gaussian probability distribution which affects chaotic models, and in particular the

Lorenz ’96 model, is diminished.

To obtain further improvement of the bias correction for specifically highly non-

linear systems, one can make use of the work of presented in Evensen and van

Leeuwen (2000). It shows that, under the assumption of absence of correlation be-

tween the observational errors, one can choose to assimilate data sequentially. In

particular, one can artificially create batches of data with a corresponding observa-

tion error covariance matrix. As long as the sequential assimilation of those batches

are equivalent to the original data, one can bypass the curse of nonlinearities by

applying smaller adjustments instead of a single and huge correction (Annan et al.,

2005b).

This approach is similar to the ”running in place” algorithm (RIP) presented in

Kalnay and Yang (2010). Basically, the EnKF needs time to adapt to observations

during a quick regime change. Examples are a storm developing in a weather fore-

cast model, or a model initialised from a global, lower resolution, needing time to

adapt to mesoscale observations. Since this scheme needs to be guided with obser-

vations to the optimal analysis, one can consider the EnKF to be blind in regime

shifting situations. The idea of running in place is to assimilate the same obser-

vation multiple times during the spin up time, in order to extract the maximum

amount of initial information. RIP allows a faster spin up, without loss of accuracy

after the spin up, or requiring prior information such as a good estimation of the

initial background error covariance. RIP uses a no-cost ensemble Kalman smoother

(Kalnay et al., 2007), which is then turned off after the spin up.

The major difference with the iterative assimilation however is that the observa-

tions are assimilated without changing the observation error covariance matrix Yang

et al. (2012b). The assumption is that due to the nonlinearities causing a regime

change, the background may be in an unlikely state, and it may be desirable to

extract more information from the observations. Similarly, during the initialisation,

the ensemble may be started from scratch, and may not be representative of the

most likely state.

Formally, for the iterative assimilation, one starts from the Kalman filter equa-

tions (equation (3.3.40) to (3.3.49)). Using the Sherman-Morrison-Woodbury for-

mula, one can write the equivalent equations for the covariance matrix
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(Pa)−1 = (Pf)−1 +HTR−1H, (5.5.1)

(Pa)−1xa = (Pf)−1xf +HTR−1yo. (5.5.2)

As an illustration, one can split the observations yo into two different batches,

written as

yo
2 =

(
yo

yo

)
, (5.5.3)

R2 =

(
2R 0

0 2R

)
, (5.5.4)

H2 =

(
H

H

)
. (5.5.5)

One can show that the analysis provided by the two batches is equivalent to the

assimilation of all the data in one single batch, since equation (5.5.1) and (5.5.2)

become

(Pa)−1 = (Pf)−1 +HTR−1H = (Pf)−1 +HT
2R

−1
2 H2, (5.5.6)

(Pa)−1xa = (Pf)−1xf +HTR−1yo = (Pf)−1xf +HT
2R

−1
2 yo

2. (5.5.7)

One can duplicate a single data set multiple times, and obtain the more general

expression for the observation covariance matrix

Rγ =




γ1R 0 . . . 0

0 γ2R . . . 0
...

...
. . .

...

0 0 . . . γnR




, (5.5.8)

as long as the sum of the coefficient before the observation covariance matrix R

remains

1 = 1
γ1

+ 1
γ2

+ . . .+ 1
γn
. (5.5.9)

Equation (5.5.6) and (5.5.7) clearly show that in the absence of correlation be-
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tween the different subsets of data, the assimilation in a single batch is equivalent

to an iterated assimilation. Hence, one can easily iterate the assimilation cycle of

one data set yo by adapting the observation covariance matrix following equation

(5.5.9). This result also applies in the context of the ETKF, in particular for the

covariance matrices Pf and Pa described by the ETKF.

In the case of a linear observation operator, there is no advantage to perform an

iterative assimilation, for that the analysis will be identical. However, for a nonlinear

observation operator, differences will appear, and smaller corrections provided by

the analysis will better handle the nonlinearities. It is certainly relevant for the

Lorenz ’96 model, where the observation operator even involves running the model

again between assimilation iterations.

5.5.1 Observations batches creation

For clarity, an important notation is introduced. A difference is made between the

total number of iterations for an entire assimilation experiment, noted nmax
iter , and the

corresponding iteration assimilation niter within that experiment. Hence, niter takes

all the values up to the maximum value nmax
iter : niter = 1, . . . , nmax

iter . The objective

is to compare a single assimilation experiment, nmax
iter = 1, with a double iteration,

nmax
iter = 2, niter = 1, 2, or even more iterations.

Applied to the Lorenz ’96 experiment, one can take the observations on the model

mean yo = X t
k which are assimilated with an error covariance matrix R. A set of

nmax
iter artificial observations y′o = yo is created. Assimilating this set of observation

y′o is equivalent to assimilating only once yo as long as the covariance matrix of y′o

are set to nmax
iter R, that equation (5.5.9) is fulfilled with

∑nmax
iter

i=1
1

nmax
iter

= 1. In practice,

the combination of those sets of observations provides the same posterior estimate.

The model can be integrated again between the assimilation of the different

batches, resulting in smaller corrections, and reducing the apparition of unbalanced

solutions, or even regime shifts. Hence, the nonlinear forward model operator is in-

cluded in the observation operator H. Performing the successive analyses provides

one with a better posterior estimate, when compared to a single assimilation.

In order to avoid the collapse of the ensemble towards a particular solution,

hence reduce the PDF described by the ensemble to a single value, an inflation fac-

tor is used to preserve the ensemble spread. Were the ensemble to collapse toward
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a particular solution, the PDF describing the ensemble would not contain the ob-

servation anymore. The ETKF would then be unable produce a linear combination

of the ensemble members to reconstruct the observations.

In other words, after each assimilation, the ensemble is artificially inflated with a

factor. With F a,n
k,N being an ensemble member after the nth assimilation, F a,n

k being

the ensemble mean after the nth assimilation, every ensemble member before the

n + 1th assimilation, noted F f,n+1
k,N , is corrected with an inflation factor 1 ≤ αP as

follow

F f,n+1
k,N = F a,n

k + αP(F
a,n
k,N − F a,n

k ). (5.5.10)

Hence, one also needs to make sure that, when generating the ensemble, the PDF

described by the ensemble contains the observations. Otherwise, the ETKF would

be confronted to the same issue as with a collapsed ensemble.

5.5.2 Experiment set-up

One needs to remember that since the model is rerun between the assimilation of

each batch of observation, the computational cost of this method is proportional to

nmax
iter , since one needs to rerun the model nmax

iter times for the iterative assimilation

cycles. In the context of a Lorenz ’96 twin experiment, nmax
iter is arbitrarily set to

cover values from nmax
iter = 1, . . . , 4. The objective is to study how the increase in the

number of iterations affects the bias estimation. The inflation factor is first set to

αP = 1. The initial ensemble is created with a similar procedure as for the previous

twin experiment (section 5.4).

However, for practical reasons and in order to investigate different assimilation

parameters, the ensemble size and number of initial conditions have to be reduced.

The model is run over mmax = 1000 time steps with lmax = 10 different initial con-

ditions instead of lmax = 15. The ensemble size is reduced from Ne = 100 members

to Ne = 50 members.

Furthermore, aiming at a clearer difference between a single and iterative as-

similation cycle, the ensemble background estimate is different from the true run:

F f = 6, whereas the true, or reference run, is created with a mean F t = 5. The

ensemble spread is however sufficient for the observations to be contained by the
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ensemble. The observations of the true run X t
k, and of the ensemble model solutions

Xf
k,N , are produced as in the twin experiment from section 5.4. Noise is also added

to the observations, following the same procedure as for the previous twin experi-

ment (equation (5.4.2)).

To make sure that the comparison between different iterative assimilation cycles

is fair, the initial conditions of the ensemble Xf
k,l,m=1 and the initial parameter es-

timates F f
k,N are the same for every 1 ≤ nmax

iter ≤ 4. This allows to show the unique

influence of the number of assimilation cycles performed, while having all the other

initial conditions and parameters to remain identical.

5.5.3 Results

The results of the experiments, for an inflation factor αP = 1, are shown on figures

5.8a to 5.9b. Figure 5.8a represents the forcing parameter of the model for the refer-

ence run F t
k (in black), the ensemble forecast Fk (in red) and the analysed ensemble

Fk (blue). Figure 5.8b represents the average model state Xk over the initial condi-

tions and the integration period, with the same color code as the corresponding Fk

parameter. Both panels are for a single iteration (equivalent to a single assimilation

experiment).

Figure 5.8c represents the forcing parameter Fk of the model for the reference run

(in black), the ensemble forecast (in red) and the multiple iterations of the analysed

ensemble, with nmax
iter = 4. Figure 5.8d represents the average model state Xk over

the initial conditions and the integration period, with the same color code as the

corresponding Fk parameter.

One can see the effect of the iterated assimilation from the comparison between

Figs. 5.8a and 5.8c. For a single assimilation iteration, one has nmax
iter = 1. The

analysis is shown with the blue line on figure 5.8a. With the same background en-

semble and observations, an iterated analysis is performed, with nmax
iter = 4, shown

on figure 5.8c. One can note that the correction to the forcing parameter for the

first iteration (niter = 1) is stronger for the single assimilation than for the iterated

assimilation, by comparing the blue lines on both figures. However, after the end of

the cycle, with niter = 4, the last iteration provides a better estimate of Fk than the

single assimilation. This is represented by the grey line on figure 5.8c. This shows

the difference between one large correction for a single assimilation, and smaller
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successive corrections for the iterative assimilation. Only the results for nmax
iter = 1

and nmax
iter = 4 are shown.
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Figure 5.8: Panel (a): Fk for a single assimilation, nmax
iter = 1. Panel (b): Time

average of the model state corresponding to Fk parameter from panel (a). Panel
(c): Fk for an iterated assimilation, with nmax

iter = 4. Panel (d): Time average of the
model state corresponding to Fk parameter from panel (b).

Figure 5.9a shows the root mean square error (RMSE) between the ensemble of

estimated and analysed Fk, with the reference F t
k. Here, every color corresponds

to the number of iterations nmax
iter performed. Each point hence corresponds to the

RMSE of the iteration niter with respect to the total number of iteration nmax
iter in

that particular cycle. One can see that all simulations start from the same RMSE,

corresponding to the initial ensemble estimate. For the first assimilation iteration,

the RMSE on Fk increases as the maximum number of iterations increases too. This

is due to the lower confidence in the assimilated observations: R < 2R < 3R < 4R.
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Hence, the assimilation scheme applies a smaller correction to the ensemble. How-

ever, the last analysis of every cycle provides a better correction, hence lower RMSE,

than the last analysis of cycles with less iterations. The exact values of the plots of

the Fk parameter corresponding to iterations with 1 ≤ nmax
iter ≤ 4, niter = 1, . . . , nmax

iter

are given on table 5.1.

Figure 5.9b shows the corresponding time average of the model state. One can

note that when the RMSE on Fk decreases, so does the RMSE on Xk. The RMSE

values of the time average of the model state corresponding to iterations with 1 ≤
nmax
iter ≤ 4, niter = 1, . . . , nmax

iter are given on table 5.2.
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Figure 5.9: Panel (a): RMSE on Fk for 1 ≤ nmax
iter ≤ 4, for every niter = 1, . . . , nmax

iter .
Panel (b): RMSE on the time average of the model state with Fk corresponding to
panel (a).

Background RMSE Analysed RMSE

nmax
iter Background niter = 1 niter = 2 niter = 3 niter = 4
1 1.270 0.726
2 1.270 0.915 0.663
3 1.270 1.007 0.799 0.639
4 1.270 1.060 0.887 0.737 0.619

Table 5.1: RMSE on Fk, αP = 1

The variance of the ensembles for every 1 ≤ nmax
iter ≤ 4 are shown on figure 5.10a

for Fk, and on figure 5.10b for the time average of the model state. One can see that,

with no inflation (αP = 1) of the ensemble between every assimilation iteration, the
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Background RMSE Analysed RMSE

nmax
iter Background niter = 1 niter = 2 niter = 3 niter = 4
1 0.304 0.187
2 0.304 0.233 0.170
3 0.304 0.254 0.203 0.163
4 0.304 0.263 0.227 0.195 0.160

Table 5.2: RMSE on the time average of the model state, αP = 1

ensemble slowly converges.
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Figure 5.10: Panel (a): Variance on Fk for 1 ≤ nmax
iter ≤ 4, for every niter =

1, . . . , nmax
iter . Panel (b): Variance on the time average of the model state with Fk

corresponding to panel (a).

Inflation factor increase

The same experiment, with exactly the same initial conditions, is performed with

an inflation factor of αP = 1.2. This helps to counteract the collapse of the en-

semble due to the assimilation. The values of the RMSE on the Fk parameter and

on the the time average of the model state are plotted on Figs. 5.11a and 5.11b

respectively. The results of the corresponding RMSE are shown on tables 5.3 and 5.4.

The reason for the better results obtained with the inflated ensemble lies within

the generation of the ensemble compared to true run. For the assimilation to be

efficient, the PDF described by the ensemble members must include the true run as

much as possible, since the assimilation aims at combining the different ensemble
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Figure 5.11: Experiment with inflation αP = 1.2. Panel (a): RMSE on Fk for
1 ≤ nmax

iter ≤ 4, for every niter = 1, . . . , nmax
iter . Panel (b): RMSE on the time average

of the model state with Fk corresponding to panel (a).

Background RMSE Analysed RMSE

nmax
iter Background niter = 1 niter = 2 niter = 3 niter = 4
1 1.270 0.726
2 1.270 0.915 0.603
3 1.270 1.007 0.739 0.519
4 1.270 1.060 0.834 0.620 0.458

Table 5.3: RMSE on Fk, αP = 1.2

members to reconstruct the true run. If the PDF of the ensemble is too far away

from the true run, artificially inflating the ensemble will help to widen the PDF and

will provide better results. It is the origin of the improved results with αP = 1.2.

In particular, one can understand the importance of having a correct model for

the error on F . Here, the true run has a mean F t = 5, whereas the ensemble is

generated with F f = 6. While in this case, the ensemble spread is wide enough

to contain the observations, one can conceive how this can be problematic in the

context of a more complex model.

5.5.4 Conclusion

In this chapter, the Lorenz ’96 model is adapted to correspond to the requirements

of the experimentation of the bias correction method. The behaviour of the Lorenz

’96 model is thoroughly investigated after its modification. The particular approach

of considering the average model state of a nonlinear system in order to estimate
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Background RMSE Analysed RMSE

nmax
iter Background niter = 1 niter = 2 niter = 3 niter = 4
1 0.304 0.187
2 0.304 0.233 0.159
3 0.304 0.254 0.196 0.137
4 0.304 0.263 0.214 0.165 0.121

Table 5.4: RMSE on the time average of the model state, αP = 1.2
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Figure 5.12: Experiment with inflation αP = 1.2. Panel (a): Variance on Fk for
1 ≤ nmax

iter ≤ 4, for every niter = 1, . . . , nmax
iter . Panel (b): Variance on the time

average of the model state with Fk corresponding to panel (a).

a biased parameter is detailed. A clear relationship between the forcing parameter

and the average model state is highlighted.

The single assimilation twin experiment is presented. The results show that the

bias is effectively reduced with a corrected bias parameter estimation. The partic-

ular spatial structure of the biased parameter is recovered by the ETKF analysis.

The rerun with the corrected parameter clearly shows a significant improvement.

The iteration on the analysis cycle shows that, in the presence of nonlinearities

either in the model or observation operator, one can make smaller adjustments to

obtain a better result. The procedure is relatively simple to apply when one already

has an operational assimilation set-up at hand. The increase in computational

cost is substantial, but improvements are already available for a double iterated

assimilation. However, one should always care for the collapse of the ensemble,

which can be a considerable issue to the efficiency of the assimilation procedure.
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NEMO-LIM2
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6.1 Model presentation

The primitive equations model used in this study is NEMO (Nucleus for European

Modelling of the Ocean, Madec (2008) ), coupled to the LIM2 (Louvain-la-Neuve

Sea Ice Model) sea ice model (Fichefet and Maqueda, 1997; Timmermann et al.,

2005; Bouillon et al., 2009).

87
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6.1.1 Primitive equations

The Navier-Stokes equations (Navier, 1823) describing the motion of fluids through

viscosity and pressure, can be used to describe the ocean. In addition, one also needs

to couple temperature and salinity to velocity through a nonlinear equation of state.

However, for a practical application to ocean modelling, additional assumptions need

to be established in order to obtain a simplified and usable set of equations to be

solved:

• The earth is considered to be a perfect sphere. The geopotential surfaces are

assumed to be spherical. Hence, the local vertical vector defined by gravitation

is always parallel to the earth radius. The aforementioned definition of sea

surface height (section 2.5) is largely simplified.

• The ocean depth is considered to be negligible compared to the earth radius.

This is referred to as the thin-shell approximation.

• Small scale processes have an effect on large-scale behaviour of the model. This

is represented by turbulent fluxes, expressed in terms of large-scale features.

This is referred to as the turbulent closure.

• The Boussinesq hypothesis assumes that one can neglect density variations in

the ocean, except in their contribution to the buoyancy force.

• Convective processes are removed from the Navier-Stokes equations and are

parametrised instead. The vertical momentum equation is thus reduced to the

balance between the buoyancy force and the vertical pressure gradient.

• The ocean is considered to be incompressible. The three dimensional diver-

gence of the velocity vector is assumed to be zero.

The dominant force acting on large-scale motions in the ocean are gravity, the

Coriolis acceleration and the pressure gradient. NEMO uses an orthogonal set of

unit vectors (i, j,k), which are directly linked to gravity. The two vectors (i, j) are

tangent to the geopotential surfaces. The vector (k) is the local upward vector,

defined by gravity on a perfect sphere. Hence, (i, j) are orthogonal to (k) by con-

struction.

One can then define the following set of variables:

• The vector velocity U = U(u, v, w) = Uh+wk, where h is the local horizontal

vector defined by (i, j).
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• The potential temperature T .

• The salinity S.

• The in situ density ρ.

One can then write the vector invariant form of the primitive equations expressed

in the (i, j,k) vector system under the form of a set of six equations. Those are re-

spectively the momentum balance (equation (6.1.1)), the hydrostatic equilibrium

(equation (6.1.2)), the incompressibility equation (equation (6.1.3)), the heat con-

servation (equation (6.1.4)), the salinity conservation (equation (6.1.5)), and finally

an equation of state (equation (6.1.6)), as follow

∂Uh

∂t
= −

[
(∇×U)×U+

1

2
∇(U2)

]
− fk− 1

ρ0
∇hp+DU + FU, (6.1.1)

∂p

∂z
= −ρg, (6.1.2)

∇ ·U = 0, (6.1.3)

∂T

∂t
= −∇ · (TU) +DT + F T , (6.1.4)

∂S

∂t
= −∇ · (SU) +DS + F S, (6.1.5)

ρ = ρ(T, S, p). (6.1.6)

Here, ∇ is the generalised derivative vector operator in (i, j,k), t is the time, z

refers to the vertical coordinate, ρ0 a reference density, p the pressure, f the Coriolis

acceleration, and g the gravitational acceleration.

Small-scale physics is parametrised here by DU, DT and DS for the momentum,

temperature and salinity respectively. Similarly, FU, F T and F S refer to the surface

forcing term of the corresponding quantities.

6.1.2 Boundary conditions

The integration of NEMO-LIM2 over long time periods and on the ORCA2 grid

means that the ocean edges will be contoured by complex coastlines on the sides,

by a bottom topography at the ocean floor, and by a sea-ice and sea-atmosphere

interface at the surface. The depth of the ocean is constant in time and defined

at z = H(x, y), with H being the local depth. However, the surface of the ocean

η = −H(x, y, t) is variable in time. Both H and η are defined with respect to a



90 Chapter 6. NEMO-LIM2

given mean surface z = 0. In particular, η is used to define the model sea surface

height anomaly.

Outwards and inwards exchanges of fluxes of heat, fresh water, salt and momen-

tum of the ocean happen through those interfaces. In NEMO, one can describe the

different boundary conditions choices of the ocean made to run the model as follow:

• Land: The major exchange between continental masses and the ocean hap-

pens through riven runoff, adding fresh water to the water cycle (evaporation,

precipitation, ...)

• Oceanic floor: The exchange of heat and salt with the ocean floor are limited,

and can be neglected by the model. However, momentum exchange is crucial,

as the normal velocity at the interface is zero. In addition, friction also plays

an important role, and must be parametrised in terms of turbulent fluxes.

• Atmosphere: Wind friction with the ocean surface leads to an exchange of

horizontal momentum, which is also called wind stress. The atmosphere also

transfers important fluxes of heat and fresh water with the ocean.

• Sea-ice: Sea-ice has a salinity of ∼ 4 − 6 PSU, whereas the average value

of the ocean is around ∼ 34 PSU. Hence, mass exchanges of water through

freezing and melting must be taken into account by the model. In addition,

the sea-surface temperature is also constrained to be at the freezing point at

the interface.

6.1.3 Subscale processes

The scale of space and time for which the primitive equations describe the ocean are

valid for the order of magnitude of the kilometer (103 m) in the horizontal dimen-

sions, for the meter (100 m) in the vertical dimension, and for a couple of minutes

(102 s) for time. This strong anisotropy is induced between the vertical and hori-

zontal motions by the dominance of gravitational forces on the system.

In particular, the grid used by NEMO in following experiments is the ORCA2

grid, with grid cells of up to 200 km. By construction, small-scale physical processes

can not be explicitly solved, and must be represented in terms of large-scale patterns

in the equation. This representation is called parametrisation.
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For instance, the small-scale motions effects coming from the advective terms in

the Navier-Stokes equations appear in the equations as the divergence of turbulent

fluxes associated with the mean correlation of small-scale perturbations. By assum-

ing the turbulent closure hypothesis to establish the primitive equations, one must

choose a formulation for these fluxes.

In some cases and for short term integration of the model, the subgrid processes

have a weak influence. For example, the river runoff at the land-ocean interface is

the main source of exchange of fresh water. Sea surface salinity is directly impacted,

in particular in the vicinity of river mouths. This can be neglected for short range

integrations, but this process influences the characteristics of water masses which

are formed over long time periods, especially at high latitudes. The water cycle of

the earth climate system greatly depends on its closure through river runoff in the

ocean. Another example is the importance of small scale processes for the balance

of surface input of kinetic energy and heat.

Taking into account the anisotropy of the scales in the system, one can split the

subgrid-scales physics into vertical and lateral motions. One can decompose DU,

DT and DS from equation (6.1.1), (6.1.4) and (6.1.5) respectively into their lateral

part DlU, DlT and DlS and vertical part DvU, DvT and DvS.

6.1.4 ORCA2 grid

The ORCA2 grid has a peculiar structure, whose purpose is to overcome the North

Pole singularity which usually poses problems to ocean models. Indeed, in a tra-

ditional longitude-latitude coordinates system, one creates a singular point in the

Arctic Ocean, precisely at the North Pole. Meridians converge inside the computa-

tional domain, causing a severe restriction on the length of the time step to solve

the model equation. The integration of the model over too long time steps causes

computational stability issues for finite differences schemes. The ORCA2 grid solves

this obstacle by moving the mesh poles to land points, effectively removing the sin-

gularities from the ocean (Madec and Imbard, 1996).

In practice, the ORCA2 grid is a 2-degree resolution grid which consists of the

combination of two adjacent grid tiles. The first tile, located in the southern part

of the globe, is a rectangular grid which extents from latitude 78.190582275 S to

latitude 19.605793 N. In the longitude direction, the spacing of 2 degree is constant.

However, in the latitude direction, the spacing is variable and is proportional to
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∼ cos(lat). The first grid tile is located at (i = 1, j = 1) = (78.190582275S, 102W ).

The second tile, situated in the north of the first tile, has a more complex structure

aimed at avoiding singularities located in the ocean. Hence, it consists of a dipolar

grid in which the grid cells are irregular quadrilaterals. The two poles are located at

(50N, 80E) and (70N, 100W ). Both poles are connected through a great circle arc

which represents the locus of the fold in the grid tile. The upper boundary of the

north tile is folded on itself along this line. Those two tiles are produce a global grid

of index-space dimensions i = 180 and j = 148, which are attached at row j = 92.

Due to the particular structure of the ORCA2 grid, vector quantities evaluated

at the grid midpoints, which are not exactly halfway between the corners. Addition-

ally, cell boundaries are not straightforward curves in the sense that they are neither

great circles nor straight lines in the latitude-longitude space. Hence, the grid con-

tains actually four separate places T, U, V,W located respectively at the midpoint,

on the vertical and horizontal cell sides, and at the corner of the cell. They allow

the different quantities to be represented on the correct part of a grid cell.

6.1.5 Implementation

The global ORCA2 implementation is used, which is based on an orthogonal grid

with a horizontal resolution of the order of 2◦ and 31 z-levels (Mathiot et al., 2011;

Massonnet et al., 2013). The hydrodynamic model is configured to filter free-surface

gravity waves by including a damping term. The leap-frog scheme uses a time step

of 1.6 hours for dynamics and tracers. The model is forced using air temperature

and wind from the NCEP/NCAR reanalysis (Kalnay et al., 1996). Relative humid-

ity, cloud cover, and precipitation are based on a monthly climatological mean. The

sea surface salinity is relaxed towards climatology with a freshwater flux of -27.7

mm/day.

Because of its low resolution of about 2◦, the NEMO-LIM2 model is subject to

strong bias due to poorly located currents in the ocean. This leads to a poorly

represented heat transport around the globe and causes bias on other variables in

the model, such as on the sea surface height and temperature. It is assumed that

these bias are constant in time but may have a spatial structure.



6.2. Mixed layer depth 93

6.2 Mixed layer depth

A characteristic of the ocean, or any sufficiently large water mass for instance, is

stratification. Water masses in different layers exhibit different properties for salin-

ity (halocline), density (pynocline), temperature (thermocline), etc. The layers act

as a barrier to the mixing of the different strata.

One can define the mixed layer depth in the ocean as the surface layer in which

the turbulent mixing processes are active and provide an almost vertically uniform

profile for temperature, salinity and density (de Boyer Montégut et al., 2004). Fluxes

of mass, momentum and energy through the mixed layer, and its thickness, deter-

mine the direct interactions between the ocean and the atmosphere.

The mixed layer depth is arbitrarily defined and based on different parameters

such as temperature or density gradients. Its spatial variability can range from 20 m

to 500 m, and its temporal variability includes diurnal, seasonal and intraseasonal

variability (Kara et al., 2003).

In de Boyer Montégut et al. (2004), a 0.2-degree resolution global climatology of

the mixed layer depth is constructed based on individual profiles. The selected cri-

terion is a threshold value of the temperature (∆T = 0.2◦C) or density (∆σθ = 0.03

kg m−3) from a 10 m depth value. The NEMO-LIM2 model adopts this definition

of the mixed layer depth.

The use of both temperature and density is encouraged by the appearance of

vertically density-compensated layers in the mid- and high-latitude winter hemi-

spheres, effectively creating an isopynical but not mixed layer. A criterion using

both quantities allows a more precise determination of the mixed layer depth.

Since the aim is to provide a single constant forcing term, the mixed layer depth

used to constrain the forcing has been obtained with a yearly average of a NEMO-

LIM2 free run. Clearly, the strong vertical variations of the mixed layer between

seasons, in particular due to ice melting and deep water formation in both hemi-

sphere, is not represented. The average value of the yearly mixed layer depth is

around 25 m, as shown on figure 6.2.
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6.3 Bias in NEMO-LIM2

The NEMO-LIM2 model has been used in the context of the PredAntar project

(Goosse et al., 2015), which consisted in the study of the Antarctic sea-ice cover-

age during the period 1980-2009. Whereas the Arctic sea-ice has been decreasing

drastically (Stroeve et al., 2007; Zeng and Delworth, 2015), the sea-ice extent in

the Southern hemisphere around the Antarctic has been slightly increasing over the

same period. In particular, between November 1978 and December 2012, the in-

crease in ice extent is estimated between 0.13 and 0.2 million km2 (Vaughan et al.,

2013).

The PredAntar project first aimed at expanding the understanding of the com-

plex mechanisms acting on sea-ice in the Southern hemisphere and in particular the

processes involved in the Southern Ocean, despite the difficulties imposed by im-

perfect models and incomplete observations. The improvement of predictions was

allowed through the development of post-processing tools providing an assessment

of model errors, and through corrections.

Reconstructions of the Antarctic sea ice cover were obtained through data as-

similation techniques. They proved to be a valuable compensation for the lack of

observations over the considered time period. The correction of the Antarctic Cir-

cumpolar Current allowed a better estimate of its position and strength.

It is in this context that the bias correction method presented in chapter 4.1 is an

appropriate tool. The following study aims at highlighting the presence of bias of the

NEMO-LIM2 model regarding the Antarctic sea-ice coverage. The modification of

the NEMO-LIM2 model in this particular case was considered and served as initial

motivation, though the project was finished before the development of a stable

NEMO-LIM2 bias correction term.

6.3.1 CMIP5

A series of comparisons were performed between the free and analysed runs of

NEMO-LIM2 in the PredAntar project context (called PredAntar free and analysed

runs), and the model results provided through the 5th Coupled Model Intercom-

parison Project (CMIP5). Systematic biases in the mean state and in the internal

variability of the Antarctic sea ice cover were highlighted (Goosse et al., 2015).
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The sea ice coverage data from the PredAntar free and analysed runs are com-

pared with two CMIP5 projects, namely the Centro Euro-Mediterraneo sui Cam-

biamenti Climatici - Climate Model without a resolved stratosphere (CMCC-CM),

and the same model with a resolved stratosphere (CMCC-CMS) (Scoccimarro et al.,

2011). Observations are obtained from the Operational SST and Sea Ice Analysis

(OSTIA) system. Those particular models were chosen for that they operate on the

same ORCA2 grid, similarly to NEMO-LIM2. In addition, the atmospheric part of

NEMO-LIM2 consists of a reanalysis of the atmosphere. Hence, it is already influ-

enced by the observations. On the other hand, both CMCC-CM and CMCC-CMS

models have a running model for the atmosphere and for the ice coverage.

CMCC-CM(S)

The CMCC-CM(S) models has as ocean component the OPA 8.2 (Madec et al.,

1998). It also includes the Louvain-La-Neuve (LIM) model for the dynamics and

thermodynamics of the sea ice (Fichefet and Maqueda, 1999). Ocean physics in-

cludes a free-surface parametrisation (Roullet and Madec, 2000) and the Gent and

McWilliams (1990) scheme for isopynical mixing. The atmospheric model compo-

nent is ECHAM5 (Roeckner et al., 2003) with a T159 horizontal resolution, corre-

sponding to a Gaussian grid of about 0.75◦ by 0.75◦. A more detailed description of

the ECHAM model performance can be found in Roeckner et al. (2006).

The communication between the atmospheric model and the ocean models is

carried out with the Ocean Atmosphere Sea Ice Soil version 3 (OASIS3) coupler

(Valcke, 2006). Every 160 min (coupling frequency), heat, mass, and momentum

fluxes are computed and provided to the ocean model by the atmospheric model.

SST and sea surface velocities are provided to the atmospheric model by both ocean

models. The global ocean model also provides sea ice cover and thickness to the

atmospheric model. The relatively high coupling frequency adopted allows an im-

proved representation of the interaction processes occurring at the air–sea interface.

No flux corrections are applied to the coupled model.

OSTIA

Global foundation sea surface temperature from OSTIA (Operational Sea Surface

Temperature and Sea Ice Analysis Stark et al. (2007); Roberts-Jones et al. (2012);

Donlon et al. (2012)) at an original resolution of 0.05◦ was reduced to a resolution

of 2◦ by averaging all temperature values within a 2◦ by 2◦ grid cell.
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Global sea ice fraction from the EUMETSAT Ocean and Sea Ice Satellite applica-

tion Facility (OSI-SAF Roberts-Jones et al. (2012)) was also reduced to a resolution

of 2◦ and assimilated with an error standard deviation of 0.1. The OSI-SAF sea ice

fraction are distributed by MyOcean.

6.3.2 Preparation work

All sea ice coverage data available from the models use the ORCA2 grid. Using the

same procedure, they are then all interpolated on the grid from OSTIA observa-

tions. This grid is constantly spaced with a 2◦ resolution, giving a global coverage

of 180 by 90 cells. The data sets cover a period of 21 years, from January 1985

up to December 2005. Data from CMCC-CM(S) models are already monthly aver-

ages. Consequently, the monthly average for OSTIA observations and data from the

PredAntar free and analysed runs are taken. Also, only the southern hemisphere is

considered for all the following comparisons since the focus of the PredAntar is the

sea ice coverage in the Southern Hemisphere.

Finally, all the sea ice coverage are in fraction of 1. In order to get the sea ice

area in m2, each cell coverage is multiplied by its area

Ai,j = ∆λ ∆ϕ
π2

1802
R2 cos(ϕ), (6.3.1)

where R = 6371000 m is the mean earth radius, λ and ϕ are respectively the

longitude and the latitude in degrees, and i, j spatial indices.

6.3.3 Seasonal Cycle

First, the seasonal cycle of the models is considered (figure 6.3). To obtain this

figure, the monthly sea ice area is calculated from

SIAp,n =
∑

i

∑

y

Ai,j SICp,n,i,j, (6.3.2)

where the indices p, n refer to months and years respectively, and i, j to the spa-

tial dimensions. The monthly sea ice area is then obtained by taking the monthly

average for all the years included in the 1985 - 2005 period. One can clearly see

on figure 6.3 that all models are globally able to reproduce the mean seasonal cycle

of the sea ice area (SIA) over the south pole. All models underestimate the SIA

during the summer period (December-March). Both the CMCC-CM(S) and the

PredAntar free run clearly tend to overestimate the sea ice area during the winter
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(July - September). The PredAntar free run also overestimates the SIA during the

autumn, starting from April, and performs better than the CMCC-CM(S) models

during the winter. One can also note that the CMCC-CMS systematically performs

worse than the CMCC-CM model. Finally, the PredAntar analysed run sticks to

the OSTIA observations, as expected due to the analysis. Interestingly, it slightly

underestimates the SIA throughout the whole year. This might be due to the fact

that because of the assimilation, the data is smoothed through the whole domain.

This tends to slightly reduce the SIC, hence the SIA, of the PredAntar analysed run.

The Root Mean Square Error of the different models with the OSTIA observa-

tions averaged over the 1985-2005 period is shown on figure 6.4. First, the monthly

sea ice area averaged over the 1985-2005 period is calculated by

SIAp,i,j = Ai,j
1

N

∑

n

SICp,n,i,j. (6.3.3)

The RMSE with the OSTIA observation over the domain is obtained with

SIArmse
p =

√∑

i

∑

j

(
SIAp,i,j − SIAobs

p,i,j

)2
. (6.3.4)

Figure 6.4 represents the mean monthly RMSE of the models compared to the

OSTIA observations. The RMSE of the PredAntar analysed run is much lower than

the other models, since it assimilates the data from which the RMSE is calculated.

However, the PredAntar free run performs overall similarly to the CMCC-CM(S)

models. One can note that for all the models, the RMSE is at its lowest during the

summer months, and at its highest during the winter. The main difference between

the PredAntar free run and the CMCC-CM(S) models is the period from February

to May, where the former has a decreasing RMSE, whereas the later ones have an

increasing RMSE. One can note in particular the huge increase in March and April

for the CMCC-CMS.

From figure 6.3, one can think that the CMCC-CM(S) models would at least

perform better during the summer, since they better reproduce the total SIA. How-

ever, this is not the case, and the PredAntar free run has a RMSE similar to the

CMCC-CM(S) models throughout the whole year. This difference could come from

the fact that the PredAntar free run which, though it does not reproduces the cor-

rect total SIA, is able to place the ice at better locations than the CMCC-CM(S)

models, thus producing a smaller RMSE with OSTIA observations.
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This hypothesis is confirmed when looking at the mean spatial RMSE of sea ice

concentration (SIC) of the models with the OSTIA observations. It is obtained by

calculating the RMSE of the SIC of the models with OSTIA observations, but not

averaging over the domain. The monthly mean state is first calculated by averaging

over the whole considered period, then the mean RMSE with OSTIA observations

is computed by averaging over a year, as follow

SICp,i,j =
1

N

∑

n

SICp,n,i,j, (6.3.5)

SICrmse
i,j =

√
1

12

∑

p

(
SICp,i,j − SICobs

p,i,j

)2
. (6.3.6)

Both CMCC-CM(S) models produce more localised, but larger errors in the sea

ice area. Those errors are the strongest around the Lazarev and Riiser-Larsen seas

for CMCC-CM (figure 6.5a), and in the Amundsen sea for CMCC-CMS (figure 6.5b).

As expected, the PredAntar analysed run performs very well, and has a nearly uni-

form RMSE over the whole sea ice domain (figure 6.5c). Finally, the PredAntar

free run seems to perform rather well, with errors mainly located in the Somov and

D’Urville sea, and along the coast of Graham land (figure 6.5d).

6.3.4 Internal Variability

One can also look at the respective internal variability of all the models. While

this is not a direct measurement of the model bias, the behaviour of the model over

different years still results from the representation of the processes in the model. In

particular, biased currents will affect sea-ice formation over different years, hence

the model variability.

First, the mean RMSE of the model is calculated and compared to one particular

reference year. This is performed while considering all the years as reference year,

and averaged, so that the final result is a monthly mean internal variability of the

model, as follow
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SIArmse
p =

√√√√ 1

N

∑

n′ 6=n

[
1

N

∑

n

∑

i

∑

j

Ai,j (SICp,n,i,j − SICp,n′,i,j)
2

]
. (6.3.7)

One notes from figure 6.6 that all the models have the same order of magnitude

for their respective internal variability. The variability of CMCC-CM(S) models is

at its most 20% higher than that of the OSTIA observations. Interestingly, the

PredAntar analysed run has a lower internal variability than the observations, but

reproduces the exact same shape of the observations. Again, this shows the smooth-

ing of the data through the whole domain due to the assimilation.

One can also look at the spatial internal variability of one month in particular.

September is chosen, as is it the month when both the sea ice area, and the RMSE

on the sea ice area are at their highest. One can use equation (6.3.7) and remove

the spatial sum to obtain

SIArmse
p,i,j =

√√√√ 1

N

∑

n′

[
1

N

∑

n

(
SICp,n,i,j − SICref

p,n′,i,j

)2
]
. (6.3.8)

One notes that, for the CMCC-CM(S) models, the area where the internal vari-

ability is the highest tend to correspond with the area where the mean RMSE with

OSTIA observations were the largest (figures 6.5a, 6.5b). This is especially true for

the Lazarev and Riiser-Larsen seas. The PredAntar free and analysed runs seem to

much better reproduce the internal variability of the OSTIA observations.

6.3.5 Conclusion

As expected, the PredAntar analysed run reproduces exactly the behaviour of the

OSTIA observation, since it assimilated those data. When comparing the perfor-

mance of the PredAntar free run and the CMCC-CM(S) models, one can conclude

that though the former one has a worse total sea ice area estimation, it has a better

localisation for the ice. Its mean spatial RMSE is thus lower than the one of the

CMCC-CM(S) models. All models do reproduce the internal variability of the ob-

servations quite correctly. However, all models are clearly affected by bias.

This study highlights the issues of model bias on long-term integrations, and

the importance of accounting for model bias. Model reanalysis through the use of
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independent observations proves to be efficient. Specifically, the PredAntar assimi-

lated run is an example of the general idea of classic methods of data assimilation.

Although the model state and output are corrected over the considered time period,

the model bias source remains unmodified. Classic reanalysis is only possible for

periods of time when observations are available. The estimation of a bias correction

term aimed at correcting the intrinsic model bias would allow one to both correct

model simulations of the past, and the future. One could benefit both methods

simultaneously, by applying the bias correction term during the model run, and

performing reanalyses when possible.

The development of an efficient model bias correction method is an essential step

into improving numerical modelling. It is in this framework that the correction of

the bias on the general circulation in NEMO-LIM2 has been considered.

6.4 Bias correction generation

The aim here is to estimate a forcing term which will correct the oceanic currents

of the model. This forcing will be, in practice, a constant acceleration term directly

injected into the momentum equations of the ocean-dynamics part of the model.

These added constant forces on water masses will create currents correcting the

model bias also for other variables. Although the term ”forcing” usually refers to

external forcings such as atmospheric wind stress, the forcing term here refers thus

to an additional source term in the momentum equations. It does not have an ex-

ternal origin, but rather aims at correcting the model error such as those arising

from poorly represented physical processes.

However, since the NEMO-LIM2 model is a realistic model, specific constraints

need to be imposed to the forcing term in order to maintain a physical and realistic

model behaviour.

6.4.1 Horizontal structure

To create a constrained random forcing term, DIVA-ND proves to be a useful tool.

It is a Data-Interpolating Variational Analysis in N dimensions (Barth et al., 2009,

2014). This tool allows to generate a random, spatially correlated fields Ψ(x, y).
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DIVA-ND defines a cost function J(Ψ), which is expressed as

J(Ψ) =

∫

Ω

L4
h(∇2Ψ)2 + 2L2

h(∇Ψ)2 +Ψdx, (6.4.1)

where Ψ = Ψ(x, y) is the random field and Ω the domain on which it is built. This

cost function penalises abrupt variations over a given length-scale Lh, and decouples

disconnected areas based on topography. The length-scale Lh will be specified in

the experimental set-up with the NEMO-LIM2 model. The Hessian matrix of this

discretised cost function is used to create random fields taking the periodicity in the

model domain into account, with

J(xΨ) = xT
ΨP

−1
Ψ xΨ, (6.4.2)

x
(n)
Ψ = P

1/2
Ψ z(n), (6.4.3)

z(n) ∼ N (0, I). (6.4.4)

Here, xΨ is the discretised random field on the model grid, P−1
Ψ the Hessian ma-

trix, and z(n) a random vector with a normal distribution N (0, I). More extensive

information can be found in Barth et al. (2009).

6.4.2 Stream function

One can use the DIVAN-ND tool to generate a stream function, which describes

the streamlines of a flow under the assumption of incompressibility. One can derive

the velocity components from a stream function and obtain a divergence free flow.

Applied to an ocean model, meridional and zonal forcing fields for the currents can

then be derived from Ψ(x, y).

However, this could produce currents which are perpendicular to the coasts. In

order to avoid such physically impossible currents, an additional constraint is applied

when generating the random field Ψ. The generated stream function is subjected to

the strong constraint ∇Ψ • t = 0 where t is the vector tangent to the coast.

Additional spatial filtering on the obtained field Ψ is needed in order to remove

very small scale signals when calculating the first derivatives of Ψ. This spatial

filtering improves the stability of the NEMO-LIM2 model by a factor of 102 when it

is forced. The variability of the SSH rises from 0.3 cm up to 30 cm. It is obtained
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through a convolution product between Ψ and a 3 by 3 dissipation matrix, effectively

smoothing the field.

6.4.3 Vertical extension

Since the aim is to create currents only in the upper layers of the ocean, but avoid

modifying the global circulation in depths, the forcing is extended vertically as follow

Ψ(x, y, z) =
Ψ(x, y)

1 + exp( z−T (x,y)
Lv

)
, (6.4.5)

where T (x, y) is defined as the yearly average ocean mixed-layer thickness, and

Lv = 1 m is a factor to obtain an adimensional exponential. One obtains T (x, y)

from an average of a NEMO-LIM2 free run over a one year integration period.

Even though the mixed layer does show a seasonal variability, its definition is

arbitrary and based on specific criteria (presented in section 6.2). Additionally, the

objective here is not to completely avoid the perturbation of the mixed layer, but

rather avoid to modify the deep oceanic circulation. Hence, a yearly average of the

mixed layer depth value is sufficient to restrain the ensemble to a specific vertical

structure.

The resulting field is used as a stream function from which zonal and meridional

divergence-free forces are derived as

Fu(x, y, z) = −∂Ψ(x, y, z)′

∂y
, (6.4.6)

Fv(x, y, z) =
∂Ψ(x, y, z)′

∂x
. (6.4.7)

One can directly add this stochastic forcing terms into the momentum equa-

tions of NEMO-LIM2, where Fu(x, y, z) and Fv(x, y, z) are zonal and meridional

components respectively. One then has

du

dt
= −1

ρ

∂p

∂x
+ fv +

1

ρ

∂τx
∂z

+ Fu, (6.4.8)

dv

dt
= −1

ρ

∂p

∂y
− fu+

1

ρ

∂τy
∂z

+ Fv. (6.4.9)

Equation (6.4.8) and (6.4.9) provide a set of bias-corrected ocean-dynamics equa-
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tions governing the NEMO-LIM2 model by applying a forcing term on the ocean

currents while the model is running. The forcing term is a physically coherent cor-

rection that will remove some part of the bias of the model. It has been calibrated

such that the variability of the sea surface height (SSH) caused by the forcing is

about 28 cm, which can be compared to the root mean square error between the

NEMO-LIM2 model and the CNES mean dynamic topography of 20 cm (Rio et al.,

2011).

In terms of magnitude, one can compare the forcing against the Coriolis accelera-

tion on ocean currents. Typically, the average velocity in the ocean has a magnitude

of 0.1 ms−1 (with peaks up to 2 ms−1 in the Gulf Stream). With the Coriolis pa-

rameter having a magnitude of 10−4 rad s−1, the Coriolis acceleration scales around

10−5 ms−2. The maximum magnitude of the forcing obtained from this generation

mechanism peaks at 10−5 ms−2, which is at the most comparable to Coriolis, and

which is in average an order of magnitude smaller.
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ORCA2 grid.

Figure 6.1: ORCA2 grid, adapted from http://www.elic.ucl.ac.be/textbook/glossary g.xml.
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Average mixed layer depth

Figure 6.2: Yearly average of the mixed layer depth from a NEMO-LIM2 free run,
in m.
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Figure 6.3: Mean monthly seasonal cycle of ice coverage (in m2) for period 1985-
2005.
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Ice coverage RMSE
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Figure 6.4: Mean monthly RMSE of the ice coverage (in m2) for period 1985-2005.



6.4. Bias correction generation 107

Antarctic ice coverage RMSE
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Figure 6.5: Mean RMSE of the ice coverage (in m2) for period 1985-2005. Panel (a):
CMCC-CM. Panel (b): CMCC-CMS. Panel (c): PredAntar analysed run. Panel (d):
PredAntar free run.
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Ice coverage internal variability
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Figure 6.6: Mean monthly internal variability of ice coverage (in m2) for period
1985-2005.
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Ice coverage internal variability

 120 o
W

 

  6
0

o W
 

   0o  

  60 o
E  1

20
o E  180oW 

  80oS 

  70oS 

  60oS 

  50oS 

 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(a)

 120 o
W

 

  6
0

o W
 

   0o  

  60 o
E  1

20
o E  180oW 

  80oS 

  70oS 

  60oS 

  50oS 

 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(b)

 120 o
W

 

  6
0

o W
 

   0o  

  60 o
E  1

20
o E  180oW 

  80oS 

  70oS 

  60oS 

  50oS 

 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(c)

 120 o
W

 

  6
0

o W
 

   0o  

  60 o
E  1

20
o E  180oW 

  80oS 

  70oS 

  60oS 

  50oS 

 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(d)

Figure 6.7: Spatial internal variability of ice coverage (in m2) for September, 1985-
2005. Panel (a): CMCC-CM. Panel (b): CMCC-CMS. Panel (c): PredAntar anal-
ysed run. Panel (d): PredAntar free run.
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Ice coverage internal variability
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Figure 6.8: Spatial internal variability of ice coverage (in m2) for September, 1985-
2005.
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7.1 Monovariate assimilation

The next step to test the efficiency of this method is to apply it to the realistic ocean

model NEMO-LIM2. A twin experiment is performed, using a similar procedure to

the one presented in the Lorenz ’96 chapter.

7.1.1 Model variability

First, a random forcing is generated, with a correlation length of 5000 km. It is

afterwards referred to as the truth or the reference forcing. The correlation length

is chosen in order to be sufficiently large enough compared to the ORCA2 grid size

(about 200 km at the equator). Longer correlation length (up to 10000 km) and

shorter (down to 2000 km) were also tested, and provided different forcing structure

111
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(but are not presented here). This reference forcing is then used with the NEMO-

LIM2 model over a one year integration period.

Direct measurements of currents are currently too sparse. Although recently, an

anomaly detected in the predicted signal of the median Doppler shift of radar echoes

from ENVISAT Advanced Synthetic Aperture Radar (ASAR) have been investi-

gated. Converted to surface Doppler velocity, this anomaly contains high-resolution

information on surface currents. The combination of this Doppler signal with sea

surface roughness measurements provides high resolution current fields (Chapron

et al., 2005). Global climatologies are also available for use, such as Sudre et al.

(2013), where sea level and wind stress satellite-derived measurements are combined

to provide an estimate of surface currents.

For the realistic case (see chapter 8), real SSH fields representing time aver-

ages will be used. Due to the geoid problem, SSH altimetry data is represented

as anomalies without any information about the mean state. If one would average

SSH altimetry data, one would simply obtain zero (or a quantity close to zero).

The mean dynamic topography is thus derived by other means, such as drifter and

gravimetric measurements. Hence, the observations already represent an average.

One can thus create the observations for the twin experiment by taking the mean

SSH of the reference run over one year. When the average the model SSH is taken,

the reduction in observational error due to this time averaging is already taken into

account, since every ensemble member is averaged in time, causing short time-scale

variability to be filtered out.

An ensemble of 100 random forcings is created and each of them is run separately.

This produces an ensemble of yearly mean SSH. The Ocean Assimilation Kit (OAK),

which contains an implemented ETKF scheme, is used for the analysis step (Barth

et al., 2015). A local assimilation scheme option is used with an assimilation length

equal to the correlation length of the perturbations (5000 km). The mean SSH

from the reference run (figure 7.1b) are taken as the observations. The state vector

(equation 4.1.11) consists of the ensemble of mean SSH (figure 7.1a), and is extended

with its corresponding forcings
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x′′ =



SSH

F̂u

F̂v


 . (7.1.1)
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Figure 7.1: (a) yearly mean sea surface height (SSH) of the ensemble mean runs
(in m). The correlation length of the perturbation is 5000 km. (b) yearly mean sea
surface height (SSH) of the twin experiment true run (in m).

7.1.2 Error adjustment

Similarly to the Lorenz ’96 case, one aims at finding the true forcing from the refer-

ence run. Noise is added to the observations, with a value representing 10% of the

local SSH variability of the ensemble, in order to have strong noise signal in high

variability areas, and low noise in low variability area. Aiming at this experiment

to be as realistic as possible, the added noise is not taken into account for the ob-

servation error covariance matrix R, which is estimated uniform over the domain.

The assimilation is expected to provide a satisfying analysis if the relationship be-

tween Fu,Fv and the SSH can be captured by a linear covariance. Additionally, the

observations used for the assimilation could contain redundancy. This is expressed

by a redundancy factor α =
√
r. It can be shown (Barth et al., 2007) that the error

variance can be approximated through its multiplication by the number of redun-

dant observations r : R = rµI, where µ is the error variance, and I the identity

matrix. αRMSE is thus the square root of the diagonal of R. Hereafter, αRMSE

is refered to as the adjusted RMSE (ARMSE). Also, all the model errors are not

taken into account, which justifies the increase of the ARMSE.

The choice of the value of the error variance is critical. Indeed, in the case of
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an underestimated error variance or a too small ARMSE, the analysis deteriorates

unobserved variables due to the observations overconstraining the analysis. How-

ever, if overestimated with a too large ARMSE, the information contained in the

observations is not sufficiently transferred into the model. This would not allow the

assimilation scheme to apply a sufficiently large correction.

Therefore, the assimilation is performed with ARMSE values between 10−5m<

ARMSE < 102m, in order to test the sensitivity and efficiency of the assimilation

scheme (figure 7.2a). From figure 7.2a, one sees that ARMSE ≤ 4.6 cm (x-axis)

gives the lowest RMSE on the SSH (y-axis) for the assimilation. The corresponding

analysed ensemble mean of yearly mean SSH is shown in figure 7.2b. When com-

pared to figure 7.1a, one sees that the analysis is satisfactory and is able to retrieve

the pattern of the reference run. The RMSE value of the ensemble mean before

assimilation is 0.220 cm, whereas the analysis ranges from 0.039 cm up to 0.218 cm.
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Figure 7.2: (a) RMSE on SSH from Ensemble Mean before and after analysis, with
True Run (in m). (b) Sea surface height of the ensemble mean after assimilation (in
m).

7.1.3 Forcing field correction

However, this is only the first step of this procedure. The real objective is not

the direct analysis of the ensemble SSH, but rather the analysis of the zonal and

meridional forcings with which the state vector is augmented. Since one considers

not to have any information about the true forcing, the initial background estimate
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(or prior guess) of the forcing is zero. The analysis of the zonal and meridional

currents are shown respectively in figure 7.3a and figure 7.3c, and must be compared

to the true forcing in figure 7.3b and figure 7.3d. One notes that the analysed forcings

are convincingly reproducing the structure of the true forcings that are sought to be

found.
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Figure 7.3: (a) Zonal Forcing ensemble mean after analysis (in ms−2). (b) Zonal
Forcing from the true run (in ms−2). (c) Meridional Forcing ensemble mean after
analysis (in ms−2). (d) Meridional Forcing from the true run (in ms−2).

Using the twin experiment, and the perfect knowledge that one has on the ref-

erence run, one can also look at the RMSE between the analysed forcings and the

reference run. This is shown in figure 7.4a and figure 7.4b for the zonal and merid-

ional forcings respectively, with different ARMSE on the SSH observations. One

can see that the choice of ARMSE = 4.6 cm on the observations, which corresponds

to the small dent, gives the best possible results. Since this choice is made solely

based on the efficiency of the SSH analysis, the relationship between the forcings

and the yearly mean SSH of the model can be considered to be strong enough for

this experiment. Interestingly, one can interpret the small dent in the RMSE of the

the forcings as the overconstraints imposed by the observations on the SSH with

values of ARMSE < 4.6 cm. The exact lowest RMSE values are 6.27× 10−7 ms−2

and 5.81×10−7 ms−2 for the zonal and meridional forcings respectively, whereas the
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RMSE values with the ensemble forecast are 1.66×10−6 ms−2 and 1.24×10−6 ms−2

respectively.
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Figure 7.4: (a) RMSE on Zonal Forcing from Ensemble mean before and after
Analysis, with True Run (in ms−2). (b) RMSE on Meridional Forcing from Ensemble
mean before and after Analysis, with True Run (in ms−2).

One can also obtain the total analysed forcing by combining the zonal and merid-

ional components into a vector form in figure 7.5. One can the compare this with

the geostrophic currents derived from the SSH bias between the twin experiment

reference run and the free model run in figure 7.6. Because of the nongeostrophic

balance near the equator, where the horizontal Coriolis force tends to zero, a 5◦

region around the equator has been removed for this comparison. One can see on

figure 7.6 that the geostrophic current derived from the SSH bias is not directly

linked to the reference forcing from figure 7.5. This stems from the fact that the

forcing affects the model globally, whereas the geostrophic current has a more local

origin.

7.1.4 Model rerun

The last step to take is to rerun the model with the estimated bias correction term.

The forcing from the reference run is considered as the source of the bias acting on

the model, and the analysed forcings from the assimilation as the bias correction

term to apply to the model. The model is rerun a single time with the analysed

ensemble mean forcing, which corresponds to the analysed bias estimator b̂ from
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Figure 7.5: Total forcing ensemble mean after analysis (in ms−2).

equation (4.1.14). Without this correction, the model free run without any forc-

ing would be biased. The result of the model rerun with bias correction is shown

in figure 7.7a, and can be compared with the true run, displayed in figure 7.1b.

Analogously to the Lorenz ’96 case, figure 7.7a is not the result of the assimilation

of observations from the true run. It is the rerun of the model with the analysed

forcing, obtained from the augmented state vector used during the assimilation pro-

cedure. The rerun with bias correction is able to reproduce patterns in the SSH that

are particular to the reference run, produced by the true forcing. The last valida-

tion of the bias correction term forcing the model is shown in figure 7.7b, where the

RMSE on the SSH between the rerun of the model and the true run is compared to

the initial ensemble mean and the analysis. One can note that a significant part of

the model bias has been removed. The lowest RMSE values of the rerun is 0.064 cm.

7.1.5 SST and SSS validation

Further validation of this procedure is done by the comparison of the model forced

rerun with the reference run on independent variables. Sea surface temperature
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Geostrophic current
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Figure 7.6: Geostrophic current derived from the SSH bias between the twin exper-
iment reference run and the model free run (in ms−1).

(SST) and salinity (SSS) are chosen for their relationship to the currents in the

ocean through specific mixing and redistribution of salinity and heat in the ocean.

The bias on the currents that this method aims to correct has a direct effect on

the SST and SSS. The yearly average SST is shown in figure 7.8a for the ensemble

mean, in figure 7.8d for the reference run, and in figure 7.8b for the model rerun

with analysed forcing. Figure 7.9a, figure 7.9d and figure 7.9b show the SSS for the

same runs respectively.

It is clear that typical structures on the SST and SSS fields from the reference

run are reproduced by the rerun, and are completely absent on the ensemble mean.

One can also note from figure 7.8c and figure 7.9c that the RMSE on the SST and

SSS shows a similar behaviour to the RMSE on SSH from figure 7.7b. However,

whereas there is a systematic improvement on the SSH reruns with analysed forc-

ings, the analysed forcings appear to be deteriorating the SST and SSS for a specific

set of parameters, in particular when the ARMSE on the SSH is large. The lowest

RMSE values for the rerun are 0.537 C◦ and 0.155 PSU respectively.
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Figure 7.7: (a) Sea surface height (SSH) of the rerun with analysed forcing (in m).
(b) RMSE on SSH from Ensemble Mean before and after analysis, and Rerun, with
True Run (in m)

7.2 Multivariate assimilation

The monovariate assimilation has proven to be an efficient tool to recover the ref-

erence forcing fields in a classic twin experiment. However, one can consider using

more observations to see if the results can be improved. In particular, the improve-

ment of the SST of the model can be considered as a biproduct and one can also

include observations on the SST to incorporate even more constraints on the assim-

ilation.

Similarly to the previous experiment, the state vector (equation 4.1.11) consists

of the ensemble of mean SSH, mean SST, and is extended with its corresponding

forcings

x′′ =




SSH

SST

F̂u

F̂v


 . (7.2.1)

To see if an improvement can be obtained, the optimal parameters of the previ-

ous experiment for the ARMSE on the SSH observations are taken (ARMSE = 4.6
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Figure 7.8: (a) Yearly mean sea surface temperature (SST) of the ensemble mean
(in C◦). (b) Sea surface temperature (SST) of the rerun with analysed forcing (in
C◦). (c) RMSE on SST from Ensemble Mean after analysis, and Rerun, with True
Run (in C◦). (d) Yearly mean sea surface temperature (SST) of the twin experiment
true run (in C◦).

cm). This will provide an objective to attain and exceed. The ARMSE on the SST

ranges over 10−5 C◦ < ARMSE < 102 C◦. The results of this multivariate assimi-

lation twin experiment are shown on Figs. (7.10a) to (7.10c), and the exact RMSE

values are given on table 7.1. Empty values are not relevant to the experiment. For

instance, the SSH, SST and SSS values are absent from the monovariate analysis,

and only the SSH is analysed in the multivariate experiment.

For the RMSE on the meridional and zonal forcings (Figs. (7.10a) and (7.10b))

respectively, one can note that the analysis results deteriorate with a too low ARMSE

on the SST observations, causing the analysis to be overconstrained. However, when

the ARMSE = 1 C◦, the assimilation is able to provide a better estimation of the

forcing terms. Finally, when the ARMSE grows larger, the assimilation tends to-

wards the monovariate analysis, as expected.
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Figure 7.9: (a) Yearly mean sea surface salinity of the ensemble mean (in PSU).
(b) Sea surface salinity of the rerun with analysed forcing (in PSU). (c) RMSE on
sea surface salinity from Ensemble Mean after analysis, and Rerun, with True Run
(in PSU). (d) Yearly mean sea surface salinity of the twin experiment true run (in
PSU).

Figure 7.10a represents the RMSE on the SSH observations, before and after

analysis for the multivariate assimilation, and the RMSE of the monovariate and

multivariate assimilation reruns. It is interesting to note that, similarly to the previ-

ous experiment, the rerun shows a slightly larger RMSE than the analysis. However,

an improvement is still shown, compared to the monovariate assimilation.

One can also look at the results of this multivariate assimilation experiment on

the SSS and SST RMSE. Those are shown on Figs. (7.11a) and (7.11b) respec-

tively. The behaviour of the RMSE on the SST is similar to that of the meridional

and zonal forcings. A slight improvement is to be noted on the rerun, when one

compares the monovariate assimilation to the multivariate assimilation. However,

the SSS case is much more interesting. Whereas the previous improvements only
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represented a fraction of the initial correction, the SSS shows an RMSE reduction

which is comparable to the initial assimilation correction.

One can conclude that the SST and the meridional and zonal forcings are directly

linked through the mixing of surface waters. The addition of SST observations does

slightly improves the assimilation results and the model corrected rerun. However,

the multivariate assimilation has a much larger impact on the SSS RMSE rerun.

Variable Forecast Monovariate Multivariate
name analysis rerun analysis rerun

Zonal forcing in ms−2 1.66× 10−6 6.27× 10−7 5.96× 10−7

Meridional forcing in ms−2 1.24× 10−6 5.81× 10−7 5.45× 10−7

SSH in m 0.220 0.068 0.0457 0.061
SST in C◦ 0.999 0.539 0.509
SSS in PSU 0.268 0.197 0.150

Table 7.1: RMSE values of the multivariate rerun for a ARMSE = 1 C◦ value,
compared to the monovariate assimilation. Empty values are not relevant.

7.3 Conclusion

The twin experiments performed in this chapter have allowed to effectively imple-

ment and evaluate the effectiveness and feasibility of the bias correction method on

a realistic model. The spatial structure of the reference forcing term is successfully

estimated by the ETKF scheme. The bias corrected model rerun shows a significant

improvement on the average SSH of the model when compared to the reference run.

The multivariate assimilation twin experiment shows that further improvements can

be obtained when more information are available. Specifically, observations on other

variables, such as the SST, allow the estimation of the bias correction term to be

more accurate. The constraints imposed by the SST on the estimation also impacts

other unobserved variables such as the SSS.

Although choices concerning the set up of this twin experiment aim at perform-

ing a realistic trial of the bias correction method, one must keep in mind that twin

experiment are generally too optimistic. Clearly, the generation of the bias correc-

tion term is exactly the same for the ensemble as for the reference run. From this

follows that the PDF described by the ensemble is ensured to contain the reference

perturbation. Moreover, one is sure that all physical processes of the reference model
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run are accurately represented by the ensemble. Nonrepresented physical processes

mentioned as a source of error (hence bias) of numerical models are absent from this

twin experiment. One can only expect a real experiment to be less efficient, though

the method clearly shows that potential improvements are obtainable.
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Figure 7.10: (a) RMSE on Zonal Forcing from Ensemble mean before and after
multivariate analysis, and monovariate analysis, with True Run (in ms−2). (b)
RMSE on Meridional Forcing from Ensemble mean before and after multivariate
analysis, and monovariate analysis, with True Run (in ms−2). (c) RMSE on SSH
from Ensemble Mean before and after multivariate analysis, multivariate analysis
rerun , and monovariate analysis rerun, with True Run (in m).
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Figure 7.11: (a) RMSE on SST from Ensemble Mean before multivariate analysis,
from multivariate analysis rerun, and monovariate analysis rerun, with True Run
(in C◦). (b) RMSE on sea surface salinity from Ensemble Mean before multivariate
analysis, from multivariate analysis rerun, and monovariate analysis rerun, with
True Run (in PSU).
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8.1 Single assimilation

The efficiency of this bias correction method has been successfully tested on a twin

experiment test case in the previous chapter. The following covers the results of this

method in a realistic case experiment.

The same setup as the twin experiment is taken for the NEMO model configura-

tion. Observations are however taken from the mean dynamic topography (MDT)

of CNES (Centre National d’Etudes Spatiales) (Rio et al., 2011). The SSH provided

by the MDT of CNES is interpolated on the ORCA2 grid. Again, an ensemble

of forced model runs is created. The observations are assimilated with a range of

RMSE fields to find the best compromise between the ensemble and the observa-

tions. This procedure provides a forcing which is used to rerun the model. The

127
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same parameters as for the twin experiment are taken: a correlation length of 5000

km and 100 ensemble members.

The different relevant RMSE are shown in figure 8.1. One can notice that the

RMSE between the ensemble mean and ensemble members shows a sufficient enough

variability on the model to cover the RMSE between the model free run and the

CNES-MDT observations. Like in the previous chapter, the RMSE of the analysed

SSH field is significantly reduced compared to the RMSE between the ensemble

mean before analysis and the CNES-MDT observations. Finally, the rerun of the

model with the assimilated forcing shows a significant improvement on the SSH

RMSE when compared to the free run. This means that the analysed forcing ef-

fectively removes a part of the error of the model on the SSH, through the forcing

on the zonal and meridional currents. The lowest RMSE obtained for the rerun is

0.155 cm, for an ARMSE value of ARMSE ≤ 21 cm (x-axis). The relevant corre-

sponding RMSE values are 0.197 cm for the ensemble mean forecast, 0.098 cm for

the analysed ensemble mean, and 0.193 cm for the model free run.
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Figure 8.1: RMSE on SSH from the ensemble mean before and after analysis with
CNES-MDT observations, from the forced rerun with the observations, from the
model free run with the observations, and the internal variability of the ensemble
(in m).

8.1.1 Global SSH

More extensive results are shown in the following figures. Figure 8.2a shows the

interpolated yearly mean SSH of the CNES-MDT observations on the ORCA2 grid.
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Figure 8.2b show the yearly mean SSH of the model free run, for the year 1984-1985.

in figure 8.2c, the yearly mean SSH of the ensemble mean is shown. One can notice

the differences between the model free run and the ensemble mean of forced runs

on the yearly mean SSH. This is due to the fact that, even though the ensemble of

zonal and meridional forcings has a close to zero mean, the presence of those forcings

do increase the currents in the ocean, producing a nonzero mean SSH modification.

Finally, 8.2d shows the yearly mean SSH of the rerun with the analysed forcing.

When comparing figures 8.2a, 8.2b and 8.2d, one can notice the differences on

the SSH between the observations, the free model run and the forced rerun. The

SSH of the model free run appears to be very smooth and does not show the same

variability as the CNES-MDT observations. This property, directly influenced by

strong, localised, currents, shows to be improved in the forced rerun. In particular,

the SSH variations caused by the Gulf Stream are absent from the free run but

present in the forced run. Other similar improvements are present around the Cape

of Good Hope and along the coast of Chili.

Yearly mean SSH

 

 

−2

−1

0

1

2

(a)

 

 

−2

−1

0

1

2

(b)

 

 

−2

−1

0

1

2

(c)

 

 

−2

−1

0

1

2

(d)

Figure 8.2: Yearly mean SSH (in m) of (a) CNES-MDT observations, (b) model free
run, (c) ensemble mean forecast, (d) lowest RMSE model forced rerun.
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Average error

Yearly averaged SSH errors relative to the CNES-MDT observations are shown on

figures 8.3a to 8.3d. They represent the considered data minus the CNES-MDT

observations. The initial model free run SSH average error shown on figure 8.3a

shows specific structures following strong oceanic currents, such as the Gulf Stream,

the Kuroshio current, or the ACC. The forecast ensemble mean logically exhibits

similar patterns on figure 8.3b. The SSH average error of the analysis on figure 8.3c

is clearly reduced compared to the previous figures. One must take into account

that the analysis is the result of a local assimilation producing a linear combination

of ensemble members through the state vector composed by the forcing and yearly

averaged SSH. It is thus to be expected that the analysis is able to significantly

reduce the global SSH average error. After rerunning the model, the SSH average

error of the rerun on figure 8.3d shows smaller average errors structures. This can

be compared to the smaller spatial structures shown on figure 8.2d. In particular,

improvements can be noted in strong oceanic current regions. This stems from the

spatial structure of the forcings, whose correlation length is 5000 km. Hence, the

small scale of the correction results in the introduction of small scale structures in

the model rerun.

It is worth noting that for the lowest RMSE rerun (figure 8.3d), are the two large

errors in the southern hemisphere, located in the south of the Indian and Pacific

Ocean. In particular, the model rerun shows a larger average error in those two lo-

calised regions, reflecting the deterioration of the SSH due to the analysed forcings.

They are caused by the limitations of the yearly averaged mixed layer depth, which

is deeper in those two particular locations as shown on figure 6.2. This causes the

forcing to produce unrealistic corrections causing the two strong abnormal signals.

This pattern was not noted on the twin experiment run, since both the reference

run and the ensemble display this particular pattern.

8.1.2 Analysis confidence

To estimate the confidence of the analysis, one can look at the spread of the ensem-

ble before and after assimilation. One can interpret the analysed ensemble spread

as a measure of confidence of the analysis. In regions where the spread is low, the

higher the confidence in the analysis is. In regions where the spread is large, the

lower the confidence is.
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Yearly mean SSH average error

(a) (b)

(c) (d)

Figure 8.3: Yearly mean SSH average errors with the CNES-MDT observations (in
m) of (a) free model run, (b) ensemble mean forecast, (c) ensemble mean after
analysis, (d) lowest RMSE model forced rerun .

Figures 8.4a to 8.4d show the ensemble standard deviation of the meridional

and zonal forcing fields, before and after the assimilation of the CNES-MDT ob-

servations. As explained in section 6.4.3, the initial forcing term is built in order

to provide a large enough ensemble spread on the SSH to cover the observations in

this realistic experiment. One can note the large ensemble spreads in the forecasts,

aimed at producing the adequate SSH spreads to contain the observations. The

spread is generally larger in wide oceanic regions, in particular in the Pacific. This

is due to the choice of a 5000 km correlation length, which constrains the forcing

term generation.
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The analysed ensemble spread is also interesting. One can compare figures 8.4b

and 8.4d with figure 8.6, which represents the ensemble mean forcing used to rerun

the model. The global structure of the zonal and meridional forcing ensemble spread

are similar. The analysis clearly reduces the ensemble spread over the whole globe.

However the lack of observations on and around the North Pole does not provide

the analysis with enough information to reduce the spread to values similar to other

regions.

The strong currents created by the analysis and represented on figure 8.6 are

mostly located in larger spread areas for both the meridional and zonal forcings

(figures 8.4b and 8.4d). In particular, in areas along the equator, the Antarctic

Circumpolar current, or the Gulf Stream.

The ensemble SSH spreads before and after analysis are shown on figure 8.5a and

8.5b respectively. One can observe that the spread before assimilation is much larger

than after assimilation. In addition, the large spread regions provide information

about how the model react to the stochastic forcing. In particular, in the south of

the Indian and Pacific Ocean, the ensemble spread rises up to 1.2 m. As mentioned

before, this reflects the unrealistic deeper average mixed layer depth, which deteri-

orates the model in those locations.

After assimilation, the spread decreases drastically, with values up to 4 cm. One

can note that, similarly to the zonal and meridional forcings spread, the SSH spread

along the equator is notably low. The initial assumption on the forcing generation

is to avoid artificial surface gravity waves. For large scale perturbations outside the

tropics, the flow is dominated by the geostrophic equilibrium. Hence, the divergence

of the flow must be close to zero. However, the geostrophic equilibrium is not valid

along the equator. This could lead to other forcing generation mechanisms along

the equator.

One can also note a larger spread on the western coasts of land masses. This is

clearly visible over both North and South America, along the coast of Madagascar

and the south of the Arabian Peninsula, and in the Pacific Ocean. This reflects a

general western intensification of boundary currents (Carton et al., 2000a).
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Forcing standard deviations

(a) (b)

(c) (d)

Figure 8.4: Ensemble standard deviations (in ms−2) of: (a) Zonal forcing before
assimilation. (b) Zonal forcing after assimilation. (c) Meridional forcing before
assimilation. (d) Meridional forcing after assimilation.

8.1.3 Final correction

The final forcing field produced by this procedure is shown in figure 8.6, in vector

form. It is the optimal forcing resulting from the analysis with the CNES-MDT SSH

observations, applied to the rerun of the NEMO model, a single time, producing the

rerun SSH field from figure 8.2d. This can be compared to a global map of the real

currents, displayed on figure 8.7. One must remember that even though the initial

perturbations did contain some specific physical constraints, especially regarding

the currents perpendicular to the coasts, the correlation lengths and the depth of

the forcing, no other properties of the oceanic currents was present in the ensem-

ble of forcings. However, figure 8.2a clearly shows some specific real currents, like
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SSH standard deviation

(a) (b)

Figure 8.5: Ensemble standard deviations (in m) of: (a) SSH before assimilation.
(b) SSH after assimilation.

the Gulf Stream in the North Atlantic Ocean, the Humboldt Current, in the South

Pacific Ocean, or the Antarctic Circumpolar current. This result is coherent with

the limitations inherent with the low resolution of the NEMO model, which tends

to underestimate the strength of those strong currents. The forcing reinforces those

currents with a specific correction, effectively accounting for the limitations of the

noncorrected model. This forcing, intended to correct current biases in the NEMO

model, could thus be used in the future as an additional forcing on the currents to

provide a better and more realistic ocean dynamic climatology for NEMO.

8.1.4 SST Validation

In order to validate the final correction field from figure 8.6, the model rerun mean

SST is compared against a mean SST climatology (hence observations) from NODC-

WOA13V2 data provided by the National Oceanic and Atmospheric Administration

(NOAA) (Locarnini et al., 2013), interpolated on the ORCA2 grid. The RMSE of

the model free run, the ensemble mean before assimilation, and the model rerun are

shown on figure 8.8a.

One can see that the optimal forcing from figure 8.6 does deteriorate the SST.

The SST RMSE value corresponding to the final forcing is 1.33 C◦, compared to

0.961 C◦ for the model free run. The origin of this behaviour lies in the origin of the

model bias, and the average of the mixed layer depth. In this work, the bias is only
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Figure 8.6: Analysed forcing from CNES-MDT observations, used to rerun the model
(in ms−2).

corrected for the ocean circulation, whereas in reality multiple other bias sources

also affect the model and the SST. Additionally, the average mixed layer depth con-

straining the forcing does not respect seasonal variations, and is therefore unrealistic.

Figure 8.8c is the corresponding spatial SST bias to the final forcing, while 8.8e is the

spatial SST bias of the free model run. A clear deterioration is present on the SST

around the equator in the Pacific Ocean, where a large scale forcing creates a strong

westward current. Other regions do not react better. Interestingly though is that

in the Antarctic region, the model reacts to the forcing by cooling the surface waters.

However, with other parameters for the bias correction on the ocean currents, in

particular with currents forcing an order of magnitude weaker than the final forcing

presented, and a correlation length of 10000 km, the effect on the SST climatology of

the model rerun shows a very slight improvements, with RMSE as low as 0.954 C◦, as

shown on figure 8.8b. Those results show that a slight improvement can be obtained

on other nonassimilated variables, but the complicated relations between the differ-

ent variables and the model bias renders those improvement particularly difficult to

obtain. Figure 8.8d shows the spatial SST bias of the lowest RMSE from figure 8.8b.

This shows that it is possible to obtain an amelioration of the SST bias of the

model, when an adequate forcing is applied. With the results presented with the
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Real global current map

Figure 8.7: Real global average current map of the oceans. Adapted from
http://www.georgemaps.com/world-map-ocean-currents-geographic-of-my-
nameless-unlabeled-so-far-worldbuilding-warm-current-red-with-circulation/

multivariate assimilation of the twin experiment, one can hope to effectively obtain

an optimal correction for both the SSH and the SST, given that optimal parameters

are chosen for the forcing generation.

8.2 Iterative analysis

The iterative experiment on the Lorenz ’96 model presented in section 5.5 showed

a significant improvement on the estimation of the bias correction term and sub-

sequently the bias corrected model output. This iterative assimilation approach is

particularly interesting in nonlinear situations, where smaller correction steps are

more efficient then a single one.

The NEMO-LIM2 model fulfills the distinct nonlinear behaviour in which the

iterative analysis is expected to provide better results.

8.2.1 Experiment set-up

The experiment with the real SSH CNES-MDT observations provided the final cor-

rection term presented in section 8.1.3. This experiment aims at obtaining an even
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better correction through the iterative assimilation of those same SSH CNES-MDT

observations.

The error covariance matrix is adapted following equation (5.5.4), with two equiv-

alently weighed assimilation steps: R1 = R2 = 2R. The same initial ensemble as for

the single assimilation experiment is used, to make sure that the starting points of

both the single and iterative assimilation are equivalent. After the first assimilation

iteration, the whole analysed ensemble of forcing terms is inflated with an α = 1.1

factor, following equation (5.5.10). This analysed ensemble is rerun over one year,

and is used as basis for the second assimilation iteration.

The iterative assimilation is computationally heavy to perform. Indeed, one must

rerun the whole ensemble for each iteration, and for each ARMSE value on the SSH

observations. In practice, one must also remember that due to the complexity and

nonlinearity of the model, the mean of the model output from the ensemble rerun

is not equivalent to the model output of the ensemble mean rerun. It is the latest

which is presented as final forcing in figure 8.6, and which is plotted on the different

figures of the model output RMSE on the SSH and SST.

8.2.2 Results

The results of the iterative assimilation experiments are shown on figure 8.9. Be-

cause the whole ensemble of forcing has to be rerun through the model for each

ARMSE value on the SSH observations, only the most interesting values have been

investigated. For clarity, the plotted values on the figure represent the model output

of the ensemble mean rerun after the first and second iterations. Furthermore, for

the sake of comparing equivalent experiments, the iterative assimilation steps corre-

sponding to the ARMSE value R1 = R2 = 2R are plotted, on the X-axis, with the

value R corresponding to the equivalent single assimilation (instead of 2R). This

way, one can compare on the same vertical line the difference between the single and

iterative assimilations. This is visible through the slight horizontal offset between

the single assimilation (at value R), and the first iteration (at value 2R, plotted at

value R).

The first iteration performs similarly to the single assimilation experiment, as

visible on figure 8.9. This is due to the fact that a large spectrum of ARMSE val-

ues are surveyed, and that the difference between the error covariance matrix R1
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and R are small (the x-axis being logarithmic). The second iteration exhibits a

systematic improvement over the first iteration, and performs significantly better

than the single assimilation step. The second iteration follows the rise in RMSE

when the ARMSE values grow, indicating that less information is extracted from

the observations, hence less correcting the model.

One can conclude that whereas the initial single assimilation is able to partially

correct the bias present in the model through the assimilation of the SSH obser-

vations, the iterative assimilation performs better. The possibility for the iterative

assimilation scheme to rerun the inflated analysed ensemble and perform a second

analysis helps to tune the bias correction term according to the model response to

the forcing term. The exact values of figure 8.9 are displayed in table 8.1.

ARMSE on SSH (in m) RMSE (in m)
Background Single Assim Iterative Assim

R 2R iter 1 iter 2

0.0215 0.0431 0.1965 0.1604 0.1604 0.1315
0.0464 0.0928 0.1965 0.1592 0.1579 0.1305
0.1000 0.2000 0.1965 0.1571 0.1554 0.1341
0.2154 0.4308 0.1965 0.1554 0.1574 0.1416
0.4642 0.9284 0.1965 0.1589 0.1640 0.1511

Table 8.1: RMSE on SSH from the ensemble mean before analysis with CNES-MDT
observations, from the forced rerun with the observations, and from the first and
second successive iterated assimilations.

8.2.3 SSH average error

The yearly mean SSH average errors of the first and second iteration rerun are shown

on figure 8.10a and 8.10b. They correspond to the best second iteration rerun, with

2R = 0.0928 and a global RMSE on the SSH of 0.1305 m. The SSH average error of

the first iteration rerun is very similar to the optimal rerun of the single assimilation

experiment, shown on figure 8.3d. However, the SSH average error of the second

iteration rerun does show specific improvements. In particular, the two problematic

errors in the southern hemisphere, caused by the too deep perturbations, are clearly

reduced. Globally, one can conclude that the second iteration rerun allows to atten-

uate the large errors caused by the initial ensemble.
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In a perfect case scenario with infinite computational power, one would perform

more iterations, until the improvements on the rerun become negligible, similarly to

the ”running in place” algorithm mentioned in section 5.5.

8.3 Conclusion

In this chapter, the bias correction method is applied to the NEMO-LIM2 model

using realistic observations from CNES-CLS09 global mean dynamic topography. In

the first single assimilation experiment, the method showed a significant reduction

on the SSH bias compared to the model free run. Specifically, the average SSH

affected by strong currents such as the Gulf Stream and the Kuroshio shows an im-

provement on the model corrected rerun. However, due to the limitations imposed

by initial practical choices, the average mixed layer depth limiting the vertical exten-

sion in the forcing term generation caused a degradation in two locations around the

Antarctic. The final forcing resulting from the single assimilation experiment shows

typical realistic currents, though no information about those currents is provided

for the ensemble generation. This reflects the ability of the analysis to correct the

ensemble and extract useful information from the observations. The intensification

of those currents is coherent with the low resolution of the NEMO-LIM2 model,

which tends to underestimate said currents. The validation of this final correction

with independent SST data however shows a degradation of the global average SST

of the ocean. Another set of parameters for the generation of the ensemble, in par-

ticular weaker forcing and longer correlation length, showed however a very slight

improvement on the SST. This indicates that an improvement is possible, depending

on the choices made for the generation of the forcing term.

A second experiment with an iterative assimilation showed that further bias

reduction on the SSH is possible. This improvement stems from the nonlinear be-

haviour of the model. The first rerun of the model allowed the corrected ensemble

to provide a better probability density function for the analysis scheme. The second

iteration of the assimilation provided a better bias correction, which when rerun by

the model, reduced the SSH bias more than any previous obtained reruns.

One can conclude that the bias correction method applied to a realistic model

with realistic observations does provide a bias correction term which significantly

reduces the bias on the observed quantities. However, one needs to be careful to
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the way one generates the ensemble of forcings, for that an incorrect ensemble will

not allow the analysis to produce an adequate correction. Unobserved variables are

deteriorated by the initial analysis, but a more adequate initial ensemble generation

should perform better. A multivariate assimilation should also greatly improve this

realistic assimilation by imposing more constraints on the analysis.
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Figure 8.8: Panel (a,b) are RMSE on SST in C◦ from Ensemble Mean after analysis,
Model Free Run, and Rerun, with Levitus observations. Panel (a) are values for the
optimal SSH correction from figure 8.6, Panel (b) are the best obtained results for
the SST with weaker forcing and a 10000 km correlation length. Panel (c,d,e) are
the spatial SST bias in C◦ corresponding to: Panel (c) the rerun of the final forcing
from figure 8.6, Panel (d) the lowest RMSE value from Panel (b) with weaker forcing
and 10000 km correlation length, Panel (e) the model free run.
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Figure 8.9: RMSE on SSH from the ensemble mean before and after analysis with
CNES observations, from the forced rerun with the observations, from the model
free run with the observations, from the internal variability of the ensemble, and
from the first and second successive iterated assimilations (in m).
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Figure 8.10: Yearly mean SSH average errors with the CNES observations (in m) of
(a) rerun of the first iteration, (b) rerun of the second iteration.
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9.1 Development options

The multiple experiments performed on the NEMO-LIM2 model have pointed out

several opportunities to enhance this bias correction method, and showed that sig-

nificant improvements can be obtained. The twin experiment does show that, in

a perfect case scenario, this method is able to estimate and correct the artificially

introduced bias. However, in that idealised experiment, one knows exactly how the

bias is generated, and how to create a similarly structured bias correction forcing

term.

The realistic experiment however indicated the limitations of the method through

simultaneous improvement of the global SSH of the model, but deterioration of some

other unobserved variables such as the SST. One can only conclude that the model

limitations and unresolved processes are more complex that initially assumed. While

a part of the SSH bias is effectively corrected, the generated forcing term does not

solve all the model bias. This was however to be expected, as the initial assumption

143
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was to focus on the model currents. The forcing term can only correct bias to a

certain extent, and only that which can be reproduced by the forcing term. Several

improvements of the bias correction method can hence be advised for future works.

9.1.1 3D forcing

The forcing term generation has completed a long journey until its current state.

The introduction of the average mixed layer depth and the smoothing of the stream

function prior to the zonal and meridional derivatives have improved the stability of

the forced runs and obtained a large enough spread of the model. The next step of

forcing generation is to replace pseudo-3D vertical extension of the surface forcing

term with a real 3D forcing term.

Equation (6.4.5) describes the vertical extension of a single 2D stream function

Ψ(x, y). However, if instead of extending the same stream function vertically, one

generates a number of stream function corresponding to the number of vertical lay-

ers k = 31, one can instead obtain a real 3D stream function Ψ(x, y, zk).

To make sure however that the successive layers do not create contradictory cur-

rents, one must ensure a vertical coherence of the applied perturbations Ψ(x, y, zk)

with care. In addition, to keep the variance of the vertical structure of the stream

function one can use a coefficient α = [0, 1) to determine the decorrelation of the

successive layers (Evensen, 2003). For α = 0, they will be fully decorrelated, and

α = 1 will only propagate the first layer of Ψ(x, y, zk).

An adequate 3D stream function Ψ′(x, y, zk) is obtained as follow

Ψ′(x, y, zk) = αΨ′(x, y, zk−1) +
√
1− α2Ψ(x, y, zk). (9.1.1)

One initialises Ψ′(x, y, z1) = Ψ(x, y, z1), and one can then attenuate the real 3D

stream function when one reaches the mixed layer depth through

Ψ′′(x, y, z) =
Ψ′(x, y, zk)

1 + exp( z−T (x,y)
L

)
. (9.1.2)

One can expect a real 3D structure for the forcing term to provide a larger

ensemble spread throughout the vertical dimension.
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9.1.2 Time dependent forcing

As shown in section 6.3, the bias affecting a model can have both a spatial and a

temporal dependence. In the framework of the presented experiments, the temporal

dependence has been ignored. The hypothesised bias source was the poor resolution

of the model, and no seasonal currents were closely studied. In addition, adding

more complexity to the forcing term generation would increase the size of the en-

semble, for the number of degrees of freedom would rise proportionally.

For a time-depending forcing, one considers a seasonal bias correction term by

taking seasonal averages, instead of yearly averages. One then slowly replaces one

forcing term by the next through the use of the coefficient α = [0, 1), and obtains a

seasonal correction, for seasonal biases. The observations should then be separated

into the corresponding time frames. Seasonal climatologies of the observations are

available for use.

The mixed layer depth used as a yearly average would also benefit from a time

dependence. Specifically, this would allow the forcing to be active in the polar regions

during ice melting periods, solving the two large SSH errors of the real assimilation

experiment (figure 8.3d).

9.2 Validation

9.2.1 Method comparison and combination

The different experiments performed in the context of this work cover a wide scope of

the problems encountered for the development of the method. They also investigate

the efficiency of this method in a realistic case. However, the initial development

and implementation from scratch did not allow to effectively compare this method

with other bias correction methods.

The most commonly referred to method is described by Dee and Da Silva (1998).

It has been adapted to many different cases, in particular by Leeuwenburgh (2008),

where it is modified for use with the EnKF to estimate and correct surface wind-

stress bias in the Tropical Pacific ocean.

One can always consider combining classic assimilation schemes with a bias cor-

rection term. After first estimating an adequate bias correction term aiming at
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reducing a part of the systematic model error, one can apply a classic assimilation

scheme to further reduce the model error. The combination of both approaches can

prove to be even more effective, since they are not mutually exclusive.

9.2.2 Parametrisation

The forcing presented in section 8.1.3 does show some specific physical properties

which have been discussed. However, one could also aim at parametrising the esti-

mated correction term. Indeed, the best case scenario would allow the forcing term

to lead to a new parametrisation of physical processes in NEMO-LIM2.

In Ferreira and Marshall (2006), a parametrisation of mesoscale eddies in coarse-

resolution ocean general circulation models is formulated and implemented using

a residual-mean formalism. Residual velocity, defined as the sum of the Eulerian

and eddy-induced velocities, advects the mean buoyancy, which is then modified

by a residual flux accounting for the diabatic effects of mesoscale eddies. In that

approach, the residual velocity is obtained by stepping forward a residual-mean mo-

mentum equation in which eddy stresses appear as forcing terms, and are used as

control parameters to fit the model to the observations.

Both approaches, from this bias correction method and from Ferreira and Mar-

shall (2006), act on the ocean circulation in a coarse-resolution model. To see if they

are equivalent in any sense, one can consider the following expressions from section

6.4.2,

du

dt
= −1

ρ

∂p

∂x
+ fv +

1

ρ

∂τx
∂z

− ∂Ψ′

∂y
, (9.2.1)

dv

dt
= −1

ρ

∂p

∂y
− fu+

1

ρ

∂τy
∂z

+
∂Ψ′

∂x
, (9.2.2)

and compare them to the residual momentum balance appropriate to large scales

as describer in Ferreira and Marshall (2006),

∂vres

∂t
+ vres • ∇vres + f ẑ× vres = − 1

ρ0
∇p+

1

ρ0

∂(τw + τ e)

∂z
+ ν∇2vres. (9.2.3)

Here, vres represents the residual velocity, τw the surface wind stress, p the

pressure, f the Coriolis parameter, ρ0 a constant reference density, and τ e an eddy

stress. The objective is to show the equivalency between the forcing term from
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the bias correction method and the parametrisation of mesoscale eddies, of in other

words, that

−∂Ψ′

∂y
=

1

ρ0

∂τ ex
∂z

, (9.2.4)

∂Ψ′

∂x
=

1

ρ0

∂τ ey
∂z

. (9.2.5)

Unfortunately, no significant correspondence has been found between the final

forcing term of figure 8.6, and the parametrisation of mesoscale eddies from Ferreira

and Marshall (2006). Other parametrisations of the final forcing obtained from the

real NEMO-LIM2 experiment could prove to be interesting, but do require a deeper

knowledge of the model and subscale processes.

9.2.3 Localised corrections

Instead of performing a global correction for the whole model, one can consider to

apply the forcing term locally. For instance, the realistic experiment has shown

an improvement of the SSH around the Gulf Stream. Typically, coarse resolution

climate models struggle with the representation of this surface current, causing the

Gulf Stream to exhibit a mean pathway north of the observations (Schoonover et al.,

2016). The correction would then be validated by the position of the Gulf Stream,

and its total heat transport.

One could imagine to retrieve and adapt the bias correction term of the final

forcing locally, similarly to the local assimilation methods to other areas of improve-

ments from the global correction, where the rerun performs better than the free and

biased model run.
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Conclusion

In the general context of bias correction in numerical modelling, Dee and Da Silva

(1998) is commonly seen as a reference. However, like similar methods, the approach

to correct bias in the model output does not remove the source of the bias. Instead,

they account for the bias, through offline or online bias estimation, and attempt to

reduce its effect on the model. More recently, Leeuwenburgh (2008) performed the

estimation of surface wind-stress through an ensemble Kalman filter and corrected

the boundary conditions of the model, effectively reducing the model bias.

The bias correction method presented in details in this thesis has as objective to

come closer to the source of the model bias. One must though understand that only

the bias originating from the source is corrected. If the bias has multiple origins, all

must be corrected separately. Its general theoretical formulation allows its transpo-

sition and implementation to any numerical model for which an ensemble transform

Kalman filter can serve as a practical data assimilation scheme.

The interpretation of the method can be conducted through different angles.

In essence though, the model state vector is augmented with a forcing term. This

forcing term is estimated through the assimilation of observations with an ensemble

transform Kalman filter. The estimated correction is then rerun with the model,

providing one with a bias reduced model trajectory. This rerun allows the bias cor-

rection to be validated with independent data.

To this end and as suggested by Lorenz, a Lorenz ’96 model is modified to suit

to the needs of the hypotheses. The Lorenz model (Lorenz, 1963, 1996; Lorenz and

Emanuel, 1998), in its 3 or 40 variables form, is usually used for its short term

chaotic behaviour, with rapid and unexpected regime changes (Li et al., 2009; Yang
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et al., 2012a; Terasaki and Miyoshi, 2014). Bias being considered and described as

a systematic error of nonzero mean, one can consider the average of model trajec-

tories instead of full trajectories. While in theory both approaches should provide

similar results, in practice, the computational cost is greatly reduced. In addition, a

spatially correlated structure is given to the forcing parameter. Hence, the average

Lorenz model forcing parameter Fk and output Xk are considered. With an initial

biased ensemble of forcing parameters Fk,i, the ensemble transform Kalman filter is

able to reduce the bias. The corrected rerun of the ensemble shows a clear improve-

ment on the value of the forcing parameter.

However, considering the usual complexity of numerical modelling, nonlinear-

ities represent a common obstacle, causing most data assimilation schemes to be

sub-optimal. One way to circumvent such difficulties is to perform an iterative

assimilation (Evensen and van Leeuwen, 2000; Annan et al., 2005b). Instead of per-

forming a single huge correction, one can assimilate the same observation iteratively

by adapting the observation error covariance matrix accordingly. In the context of

the bias correction method presented here, this is particularly interesting, since one

can rerun the model between each assimilation iteration, obtaining a new ensem-

ble, hence a new probability density function to describe and represent the model

solution. It is shown that the iterative assimilation systematically outperforms the

single assimilation procedure. The larger the number of iterations, the better the

parameter estimation becomes. However, due to the rerun of the ensemble, one is

confronted to specific issues such as filter divergence and ensemble collapse. Finally,

the computational cost is directly proportional to the number of iterations. While

this is not an issue for a simple Lorenz ’96 model, this can become challenging for

more complex models.

After the successful implementation of the method on a modified Lorenz ’96

model twin experiment, a realistic model is considered. Initially, the idea of esti-

mating a bias correction forcing term arose during the PredAntar project with the

NEMO-LIM2 model (Goosse et al., 2015). The specific needs of the project required

30 years long ocean simulation of the globe. A comparison of the NEMO-LIM2 re-

sults of sea-ice coverage over the considered period with other similar models from

CMIP5 shows that all models are subject to bias. The classic approach of observa-

tions assimilation provides one with a satisfactory reanalysis when observations are

available. However, forecasts are much less accurate due to the absence of observa-

tions.
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By construction, NEMO-LIM2 (and other similar models) is subject to currents

bias due to the coarse resolution of its ORCA2 grid. Surface currents being directly

connected to sea surface height, the estimation of a forcing term for the currents can

be derived from the assimilation of SSH observations. The average model trajectory

is represented by the average SSH. To construct an initial ensemble of forcing, the

generation of random fields considered as stream functions is performed with the

DIVA tool. Specific constraints are imposed on the current forcing term generation

to avoid unrealistic patterns in the bias correction term and its effect on the model.

The bias correction method applied to a twin experiment with the NEMO-LIM2

model shows that with an adequate forcing term generation, one can successfully

estimate the bias correction to apply. In addition, reducing the bias on the currents

also reduced the bias on other variables, such as sea surface temperature and salin-

ity. The same experiment is also performed while assimilating both SSH and SST

observation, reducing the bias even further.

Finally, real observations obtained from the CNES mean dynamic topography

allow a practical application of this bias correction method. The estimated bias

correction term shows specific structures corresponding to realistic current patterns,

such as the Gulf Stream in the North Atlantic Ocean, the Humboldt Current, in the

South Pacific Ocean, or the Antarctic Circumpolar current. Even though the bias

correction term generation is completely random, realistic structures are obtained

from the analysis. The ensemble mean corrected rerun shows a reduced RMSE on

the average SSH. However, due to physical processes unrepresented in the model, a

significant deterioration is caused by the correction term both on the SST and SSS.

The origin of this deterioration lies in the hypothesis of a constant forcing term

throughout the year, constrained by a constant mixed layer depth. This unrealistic

behaviour does not follow the seasonal deep water formation and sea-ice formation

cycle in the summer and the winter.

Confronted to a realistic model and observations, and their inherent nonlinear

behaviour, the iterative assimilation approach is also experimented. Results clearly

show a significant reduction of the SSH bias between the single assimilation rerun,

and the second iteration rerun. Furthermore, the unrealistic patterns caused by the

initial ensemble generation are partially removed. The computational cost of the re-

run procedure is however significant since the search for the optimal bias correction

generation and assimilation parameters is performed by trial and error.
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This promising bias correction method proved successful, both in fully controlled

mathematical models and realistic experiment with real observations. Specific prob-

lems are pointed out, such as the importance of having an adequate ensemble, and a

good knowledge of the model. Possible developments and perspectives are suggested

to provide improvements on the whole bias correction procedure.



Chapter 11

Appendix

11.1 Inverse of block matrix

One can show that

[
A B

C D

]−1

=

[
A−1 +A−1B(D−CA−1B)−1CA−1 −A−1B(D−CA−1B)−1

−(D−CA−1B)−1CA−1 (D−CA−1B)−1

]
,

(11.1.1)

[
A B

C D

]−1

=

[
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

]
.

(11.1.2)

One can derive equation (11.1.1) by imposing that

[
A B

C D

][
W X

Y Z

]
=

[
I 0

0 I

]
. (11.1.3)

Hence, one has that

AW+BY = I, (11.1.4)

AX+BZ = 0, (11.1.5)

CW +DY = 0, (11.1.6)

CX+DZ = I. (11.1.7)
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From equations (11.1.7) and (11.1.5), one shows respectively that

X = −A−1BZ, (11.1.8)

DZ−CA−1BZ = I. (11.1.9)

From equations (11.1.8) and (11.1.9), one obtains

Z = (D−CA−1B)−1, (11.1.10)

X = −A−1B(D−CA−1B)−1, (11.1.11)

but also

[
W X

Y Z

][
A B

C D

]
=

[
I 0

0 I

]
. (11.1.12)

Thus, one has that

WA+XC = I, (11.1.13)

YA+ ZC = 0. (11.1.14)

(11.1.15)

Combining equations (11.1.12), (11.1.13) provides equation (11.1.16), while equa-

tion (11.1.17) stems from equation (11.1.14) as follow

W = A−1 −XCA−1 = A−1 +A−1B(D−CA−1B)−1CA−1, (11.1.16)

Y = −ZCA−1 = −(D−CA−1B)−1CA−1. (11.1.17)

Following the same reasoning, one can prove equation (11.1.2).

Sherman–Morrison–Woodbury

The Sherman–Morrison–Woodbury is actually a special case of the inverse of block

matrices. In fact, from equation (11.1.4) and (11.1.6), one has that
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Y = −D−1CW, (11.1.18)

(A−BD−1C)W = I, (11.1.19)

W = (A−BD−1C)−1. (11.1.20)

From the two equations for W, thus equations (11.1.16) and (11.1.20), one ob-

tains the Sherman–Morrison–Woodbury formula, with

(A−BD−1C) = A−1 +A−1B(D−CA−1B)−1CA−1. (11.1.21)

In particular, for the Kalman filter:

(
R+HPHT

)−1
= R−1 −R−1H

(
P−1 +HTR−1H

)−1
HTR−1, (11.1.22)

or

A
(
I+ATA

)−1
=
(
I+AAT

)−1
A. (11.1.23)

From the Sherman-Morrison-Woodbury formula, with the inverse done in the

space of matrix C instead of A, one can show that

(A−1 +BTC−1B)−1BTC−1 = ABT (C+BABT )−1. (11.1.24)
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11.2 Equivalency of bias estimator

One can show that the analysis using the average model state (equation (4.1.13))

provides the same analysed bias b̂a as when the full trajectory is included in the

estimation vector (equation (4.1.8)).

Using i = 1, . . . , N to refer to the ensemble members, the forecast of the model

trajectory can be defined as

x′f
i =




x
f(1)
i

x
f(2)
i
...

x
f(mmax)
i

b̂f
i



, x′a

i =




x
a(1)
i

x
a(2)
i
...

x
a(mmax)
i

b̂a
i



. (11.2.1)

The analysis is provided by

x′a = x′f +
1

N − 1
X′f (X′f)TH′T (H′P′fH′T +R)−1(yo −H′x′f )︸ ︷︷ ︸

W′

, (11.2.2)

where

x′f =
1

N

N∑

i=1

x′f
i , x′a =

1

N

N∑

i=1

x′a
i , (11.2.3)

P′f =
1

N − 1

N∑

i=1

(x′f
i − x′f )(x′f

i − x′f)T (11.2.4)

=
1

N − 1
X′f(X′f )T . (11.2.5)

The observation operator H′ applied to the trajectory x′ also includes a time

average and an extraction operator H of the observed part of the model state
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H′x′ =
1

mmax

mmax∑

m=1

Hx(m) = Hx, (11.2.6)

x =
1

mmax

mmax∑

m=1

x(m). (11.2.7)

Hence, the ensemble mean of the analysed bias correction term b̂′a is contained

in the analysed model trajectory x′a. One can also first take the time average of the

trajectory, defined as

x′′f
i =

[
xf
i

b̂f
i

]
, x′′a

i =

[
xa
i

b̂a
i

]
. (11.2.8)

The analysis is then given by

x′′a = x′′f +
1

N − 1
X′′f (X′′f )TH′′T (H′′P′′fH′′T +R)−1(yo −H′′x′′f )︸ ︷︷ ︸

W′′

, (11.2.9)

where

x′′f =
1

N

N∑

i=1

x′′f
i , x′′a =

1

N

N∑

i=1

x′′a
i , (11.2.10)

P′′f =
1

N − 1

N∑

i=1

(x′′f
i − x′′f)(x′′f

i − x′′f)T (11.2.11)

=
1

N − 1
X′′f (X′′f)T . (11.2.12)

The ensemble mean of the analysed bias correction term b̂′′a is contained in the

analysed mean model state x′′a. Given that

H′x′ = H′′x′′, (11.2.13)

it follows that W′ = W′′. Hence, b̂′′a = b̂′a, since they are both constrained by

the same linear combination of b̂f
i .
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11.3 Lorenz long term averages

For a and b being random vectors, one has that

(
n∑

k=1

ab

)2

≤
(

n∑

k=1

a2

)(
n∑

k=1

b2

)
. (11.3.1)

In particular, one can pose b = 1. If one writes expresses the averages of the

linear Xk and quadratic X2
k terms respectively as r and s2 as

s2 =
1

K

K∑

k=1

X2
k , (11.3.2)

r =
1

K

K∑

k=1

Xk, (11.3.3)

(11.3.4)

One then has that

(
K∑

k=1

Xk

)2

≤
(

K∑

k=1

X2
k

)
, (11.3.5)

(r)2 ≤
(
s2
)
, (11.3.6)

r ≤ |r| ≤ s. (11.3.7)

Where the 1
K

factor has been dropped for simplicity.
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11.4 List of variables

Variable Name

ˆ Hat symbol: Estimate
A Model accuracy
a Analysis superscript
a Analysis increment
α Observation redundancy factor
αP Inflation factor
b Bias
β Stochastic error
ci Independent integration constant
DU Small scale momentum parametrisation in NEMO
DT Small scale temperature parametrisation in NEMO
DS Small scale salinity parametrisation in NEMO
E Expectation operator
E Total energy of Lorenz Model
e Additional variable in state vector augmentation
ǫ Observational error
η Sea level height above the reference ellipsoid
η Model error
f Forecast superscript
F Innovation covariance
F Forcing parameter of Lorenz 96 model
Fu Zonal forcing
Fv Meridional forcing
FU Surface momentum forcing in NEMO
F T Surface temperature forcing in NEMO
F S Surface salinity forcing in NEMO
f Coriolis acceleration
g Gravitational acceleration
H Nonlinear observation operator

H̃ Tangent linear observation operator (linearisation of H)
H Linear observation operator
H Local depth of the ocean
h Sea level above the geoid
I Identity matrix
i Ensemble indice

(i, j,k) Orthogonal set of unit vectors in NEMO
J Cost function
K Kalman gain
K Size of Lorenz 96 model
l Number of initial conditions
L NEMO forcing generation correlation length
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Variable Name

λ Longitude
M Nonlinear forward model operator

M̃ Tangent linear forward model operator (linearisation of M)
M Linear forward model operator
m Time index
N Height of the geoid to ellipsoid of reference
N Normal distribution
Ne Ensemble size
niter iteration cycle index
nmax
iter Maximum iteration cycle
O() Superior order truncation
Oi Instrumental error
Or Representativeness error
P Covariance matrix of state vector
p Pressure
φ Latitude
Ψ Stream function
Q Model error covariance matrix
R Observation error covariance matrix
R Long term linear average of Lorenz model
R Mean earth radius
r Linear average of Lorenz model
ρ In situ density
ρ0 Reference density
S S−1 is covariance of the joint distribution (xm,xm−1)|y0,...,m−1

S Ensemble observation matrix
S Salinity
SP Cholesky decomposition of the covariance matrix
S2 Long term quadratic average of Lorenz model
s2 Quadratic average of Lorenz model
σ Variance of Lorenz Model
T Transform matrix
T Average ocean mixed layer depth
T Potential temperature
t Superscript for truth
t Time
t Tangent vector
tr Trace
U Vector velocity
W Normalisation matrix
x State vector
x′ Model trajectory
ξ Linear function of Gaussian random variables
y Observations
z Random vector
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Abbreviation Name

ARMSE Adjusted root mean square error
ACC Antarctic Circumpolar Current

CMCC-CM(S) Centro Euro-Mediterraneo sui Cambiamenti Climatici Climate Model
CNES Centre national d’études spatiales
EKF Extended Kalman Filter
EnKF Ensemble Kalman Filter
ETKF Ensemble transform Kalman Filter
KF Kalman Filter
LIM Louvain-la-Neuve sea Ice Model
MDT Mean dynamic topography
NEMO Nucleus for European Modelling of the Ocean
OAK Ocean assimilation kit
OSTIA Operational Sea Surface Temperature and Sea Ice Analysis
PDF Probability density function
RIP Running in place

RMSE Root mean square error
SIA Sea ice area
SIC Sea ice concentration
SSH Sea surface height
SSS Sea surface salinity
SST Sea surface temperature
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divand-1.0: n-dimensional variational data analysis for ocean observations. Geo-

scientific Model Development 7 (1), 225–241.

URL http://www.geosci-model-dev.net/7/225/2014/

Barth, A., Canter, M., Van Schaeybroeck, B., Vannitsem, S., Massonnet, F., Zunz,
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General Circulation Model, Reference Manual.

Madec, G., Imbard, M., 1996. A global ocean mesh to overcome the North Pole

singularity. Climate Dynamics 12 (6), 381–388.

Massari, C., Brocca, L., Tarpanelli, A., Moramarco, T., 2015. Data assimilation of

satellite soil moisture into rainfall-runoff modelling: A complex recipe? Remote

Sensing 7 (9), 11403–11433.

Massonnet, F., Mathiot, P., Fichefet, T., Goosse, H., Beatty, C. K., Vancoppenolle,

M., Lavergne, T., 2013. A model reconstruction of the Antarctic sea ice thickness

and volume changes over 1980-2008 using data assimilation. Ocean Modelling 64,

67–75.



Bibliography 181

Mathiot, P., Goosse, H., Fichefet, T., Barnier, B., Gallée, H., 2011. Modelling the

seasonal variability of the Antarctic Slope Current. Ocean Science 7 (4), 455–470.

Metropolis, N., Ulam, S., 1949. The monte carlo method. Journal of the American

statistical association 44 (247), 335–341.

Miller, R. N., Ghil, M., Gauthiez, F., 1994. Advanced data assimilation in strongly

nonlinear dynamical systems. Journal of the atmospheric sciences 51 (8), 1037–

1056.

Moradkhani, H., Sorooshian, S., Gupta, H. V., Houser, P. R., 2005. Dual state–

parameter estimation of hydrological models using ensemble kalman filter. Ad-

vances in Water Resources 28 (2), 135–147.

Nakamura, T., Akiyoshi, H., Deushi, M., Miyazaki, K., Kobayashi, C., Shibata,

K., Iwasaki, T., 2013. A multimodel comparison of stratospheric ozone data as-

similation based on an ensemble Kalman filter approach. Journal of Geophysical

Research: Atmospheres 118 (9), 3848–3868.
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2004. Identification of anthropogenic climate change using a second-generation

reanalysis. Journal of Geophysical Research: Atmospheres 109 (D21).

Schluessel, P., Emery, W. J., Grassl, H., Mammen, T., 1990. On the bulk-skin

temperature difference and its impact on satellite remote sensing of sea surface

temperature. Journal of Geophysical Research: Oceans 95 (C8), 13341–13356.

Schoonover, J., Dewar, W. K., Wienders, N., Deremble, B., 2016. Local Sensitivities

of the Gulf Stream Separation. Journal of Physical Oceanography (2016).

Scoccimarro, E., Gualdi, S., Bellucci, A., Sanna, A., Giuseppe Fogli, P., Manzini,

E., Vichi, M., Oddo, P., Navarra, A., 2011. Effects of tropical cyclones on ocean



184 Bibliography

heat transport in a high-resolution coupled general circulation model. Journal of

Climate 24 (16), 4368–4384.

Simmons, A., Uppala, S., Dee, D., Kobayashi, S., 2007. ERA-Interim: New ECMWF

reanalysis products from 1989 onwards. ECMWF newsletter 110 (110), 25–35.

Simon, E., Bertino, L., 2009. Application of the Gaussian anamorphosis to assimi-

lation in a 3-D coupled physical-ecosystem model of the North Atlantic with the

EnKF: a twin experiment. Ocean Science 5 (4), 495–510.

Simon, E., Bertino, L., 2012. Gaussian anamorphosis extension of the DEnKF

for combined state parameter estimation: Application to a 1D ocean ecosystem

model. Journal of Marine Systems 89 (1), 1–18.

Stark, J., Donlon, C., Martin, M., McCulloch, M., june 2007. Ostia : An operational,

high resolution, real time, global sea surface temperature analysis system. In:

OCEANS 2007 - Europe. pp. 1–4.

Stewart, R. H., 2008. Introduction to physical oceanography. Texas A & M Univer-

sity Texas.

Stockdale, T. N., 1997. Coupled ocean-atmosphere forecasts in the presence of cli-

mate drift. Monthly Weather Review 125 (5), 809–818.

Stroeve, J., Holland, M. M., Meier, W., Scambos, T., Serreze, M., 2007. Arctic sea

ice decline: Faster than forecast. Geophysical research letters 34 (9).
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