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Abstract: A range of experimental techniques have been used to characterize melt-processed YBa2Cu3O7-δ 
samples containing single-grain boundaries. Both natural high-angle boundaries, which sometimes appear during 
the grain growth process, and artificial low-angle boundaries, obtained by joining two single domains, have been 
investigated. Electrical resistivity, current-voltage characteristics, magnetic moment measurements and Hall 
probe mapping techniques have been employed to investigate the boundaries. Results are compared with the 
properties of single domain material (i.e., containing no grain boundary) for which Tc ≈ 89 K and Jc||ab (77 K, 1 
T) > 104 A/cm2. Resistance measurements across all the grain boundaries show a stronger dependence on current 
and magnetic field than that measured within the grains and exhibit a pronounced resistive 'tail'. The I-V curves 
obtained for the high-angle natural grain boundary are sharp and differ from the rounded I-V curves which are 
characteristic of single-grains. Field mapping measurements used to evaluate the critical current anisotropy are in 
agreement with magnetisation measurements. The limitations of this technique for investigating boundaries are 
discussed. It was found that current anisotropy can conceal a weak link between two grains, leading to a false 
indication of single-grain behaviour. Artificially engineered boundaries are shown to have significant potential 
for applications in high fields at 77 K.  
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1. Introduction 

Quasi single-crystalline monolithic melt-textured YBa2Cu3O7 (YBCO) has been shown to be able to trap 
significant magnetic inductions ( > 2 T) at liquid nitrogen temperature [1]. As a result these materials have clear 
potential for permanent magnet engineering applications such as superconducting motors, magnetic bearings and 
flywheels [2]. The maximum induction which can be achieved in bulk superconductors is determined by the 
product of the critical current and the radius over which it flows. It is, therefore, limited by any weak links which 
connect regions of otherwise strongly superconducting material, and also by solid state chemical considerations 
which make it very time consuming to grow samples larger than 3-5 cm in diameter. 

The microstructure of melt-processed YBCO monoliths [3] generally consists of a pseudo-crystalline 
YBa2Cu3O7 (Y-123) matrix containing secondary phases, mostly Y2BaCuO5 (Y-211), and other defects such as 
cracks, twins and stacking faults. These defects can provide strong pinning centers which are essential for high Jc 
material although they frequently also restrict the uniform flow of current within the specimen. The Y-123 
matrix itself is composed, characteristically, of large parallel platelets with parallel c-axes but which may be 
rotated in the ab-plane. 

Regions of large single domains in melt-processed YBCO are known to be separated by domain (or grain) 
boundaries. In general, applying an external magnetic field to a ceramic superconductor induces intragranular 
shielding currents which circulate within the grains and intergranular currents which flow through grain 
boundaries. However, the undesirable natural grain boundaries which may form during growth of the YBCO 
pellet often have high-angle misorientation ( > 10°). In this case the intergranular critical current density is 
usually considerably less that of the grain and, in addition, decreases by several orders of magnitude in the 
presence of small magnetic fields ( ≈ 10 mT) [4]. The average trapped magnetic induction generated by a multi-
grain pellet is therefore due mainly to intragranular currents. 

On the other hand, although large YBCO single domains up to 7 cm diameter have been successfully synthesised 
by a top seeding technique [5], it is known that the intragranular Jc degrades with the increasing distance from 
the seed [3]. On this basis it would appear to be technologically important to produce larger samples by joining 
single domains. This requires the creation of artificial low-angle grain boundaries to ensure good connectivity 
between two adjacent single domains, i.e., with a high intergranular critical current density. The processing of 



Published in: Physica C (1998), vol.302, iss.4, pp.257-270 
Status: Postprint (Author’s version) 

samples joined in this way which exhibit good transport carrying properties is a formidable challenge. 

Understanding the transport current and magnetic behaviour of both natural (high-angle) and artificial (virtually 
zero-angle) grain boundaries necessitates reliable characterization. The weak-link behaviour of grain boundaries 
has been studied extensively since the discovery of high-Tc superconductors. Systematic investigations, however, 
have been reported mainly for artificially induced grain boundaries formed by thin films grown on bicrystal 
substrates [6] and intergrown bicrystals [7-9]. It has also been shown that the use of a multiple seeding growth 
technique can provide large and clean boundaries of general tilt and twist misorientation [6]. 

Electrical characterization in most of the studies performed to date involves measuring the transport critical 
current as a function of applied magnetic field and results suggest generally that the Jc(B) behaviour is strongly 
dependent on the misorientation angle. A common feature of high-angle intergranular Jcs is their strong field 
dependence, whereas no significant weak link effects are usually observed for misorientations less than 5°. This 
was confirmed by recent magneto-optical studies performed by Uspenskaya et al. [10]. It should also be 
emphasized that interpretation of I-V characteristics of grain boundaries requires great care since they may be 
sensitive to self-field effects and to inhomogeneity of current transfer between grains which often makes 
determination of critical current density difficult [7]. 

Another possible approach for evaluating the behaviour of grain boundaries in YBCO pellets is to measure the 
trapped flux by scanning a miniature Hall probe over the top surface of the sample [11-15]. Such measurement 
techniques are increasingly popular since they are non-destructive and may be applied to large samples. In some 
cases, the flux profile can reveal a granular microstructure and show the presence of detrimental barriers which 
inhibit the flow of superconducting current [11,12]. However, as will be shown here, this technique needs to be 
applied with considerable caution when evaluating the properties of grain boundaries in large samples. 

The aim of the present work is to investigate the properties of grain boundaries in melt-processed YBCO with 
various measurement techniques including electrical resistivity, I-V curves, Hall probe mapping and 
magnetization. By comparing the properties of grain boundaries with those of single-grains, we are able to 
describe several important features characteristic of the boundaries. 

2. Experimental techniques 

2.1. Synthesis processes 

2.1.1. Melt-processed materials 

The precursor bodies used for melt-processing were prepared by uniaxial pressing and sintering a powder 
containing YBa2Cu3O7-δ + 0.3 Y2BaCuO5 and 0.1 wt.% of Pt [16]. A SmBa2Cu3O7-δ seed was placed on top of 
the sintered precursor body, which was then heated to 1025°C in a thermal gradient box furnace [17] to 
peritectically decompose the Y-123 phase. The sample was then crystallized by slow cooling in air at 0.3°C/h 
between 1000°C and 900°C [3]. YBCO single-grains up to 3 cm diameter can be fabricated routinely by this 
technique. 

2.1.2. Artificial boundaries 

Large YBCO grains were selected from melt-processed YBCO bodies prior to the joining process and cleaved or 
cut along their crystallographic ab-planes. These planes were used as a reference for further processing of the 
grains, such as cutting and polishing. Grains of selected orientations were stacked in a furnace at room 
temperature with their smooth surfaces in contact and a static pressure of 0.5 MPa applied to the top of the stack. 
These grains were then joined by heating the loaded arrangement to a temperature between 920°C and 980°C. 
The detailed mechanism whereby the joining takes place is as follows. Between 920°C and 980°C, Ba-Cu-O, 
trapped in the platelet boundaries during the original fabrication of the samples becomes liquid. Large numbers 
of platelet boundaries (always in the ab-plane) invariably intersect the boundary to be joined, at an angle which 
depends on the choice of angle of the final boundary. Even for artificially prepared 'c-axis' boundaries, which are 
in principle parallel to the platelet boundaries, preparation of the faces to be joined invariably exposes a small 
number of platelet boundaries to the surface because of their small thickness and the difficulty of polishing the 
surface perfectly flat and smooth. Once the Ba-Cu-O phase becomes liquid, it migrates into the surface to be 
joined, no doubt assisted by surface tension effects. Once there, it dissolves 123 phase which later recrystallises 
during cooling, driving the impurity phase out of the boundary and forming a robust join as the sample solidifies. 
Solid state diffusion (the sample is rather close to the melting temperature of 123) under the action of the 
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imposed pressure may also assist in formation of a good boundary. As will be shown below, although we do not 
yet understand the detailed mechanisms of intergrowth across the interface, it is nonetheless clearly able to 
produce boundaries which do not display the usual characteristic features of defected links. 

2.2. Transport measurements 

Bar-shaped samples of typical size 2 × 0.3 × 0.3 mm3 intended for transport measurements were cut from the 
initial melt-processed sample using a wire saw. Each specimen contained either a single-grain or two adjacent 
grains with the boundary approximately perpendicular to the length of the bar. The grain boundary structure 
could be observed in the latter on all four faces of the specimen after polishing. Ohmic contacts were made by 
initially depositing Ag onto the sample by thermal evaporation. Thin gold wires (25 µm diameter) were attached 
to the contacts with silver epoxy and annealed in O2 at 420°C for 5 min. In samples containing grain boundaries, 
voltage contacts were placed both within the grains and across the well-defined grain boundary (see Fig. 1). 

In practice YBCO monoliths are prone to fracture along the ab -planes during cutting due primarily to the 
presence of the platelet boundaries, even when low cutting rates are used (10 µm/h). For this reason, the 
determination of the c-axis resistivity of the single-grain had to be performed on a flat sample (size 1 × 1 × 0.3 
mm3) with the c-axis parallel to the shorter dimension of the specimen. In this case the current and voltage 
electrodes were attached using silver epoxy paste in the configuration depicted in Fig. 1b. By assuming a priori 
that ρc>> ρab, both the large rectangular upper and the lower faces are expected to be effectively equipotential 
with the current inside the specimen flowing almost uniformly over the entire specimen cross-section. This 
configuration is thus a reasonable approximation to the classical four-point technique provided that the resistivity 
anisotropy is sufficiently high. The anisotropy ratio measured in this single-grain sample was found to exceed 80 
(see Section 2.3). However, because a small component of in-plane resistivity cannot be excluded, this value is 
only a lower bound for the true anisotropy ratio. 

Fig. 1: Schematic diagram of experimental arrangements used for transport measurements on samples having 
ab-planes (a) or c-axis (b) current flow and samples containing one grain boundary (c). 

 

Electrical resistance as a function of temperature was measured using the four-point technique described above. 
In addition, the potential differences across the grain and the grain boundary were recorded simultaneously. A 
constant alternating current (ƒ= 73 Hz) was injected through the sample and the resulting voltages amplified 
using a low-noise transformer prior to measurement by an EG&G 5210 Lock-In Amplifier. This method 
eliminates spurious thermoelectric effects and enables sub-nanovolt resolution to be achieved. In addition, I-V 
curves were measured with a programmable Keithley 220 DC current source and a Keithley 182 nanovoltmeter. 
A conventional iron-cored electro-magnet was used to apply low magnetic fields (B < 0.3 T), whereas higher 
magnetic fields up to 7 T were generated with an Oxford Instruments superconducting magnet. 

2.3. Magnetic measurements 

A cubic sample geometry was selected for the magnetic measurements (side length 2 mm) with two faces 
parallel to the ab planes of the single-domain. In this geometry, the demagnetization factor D is strictly the same 
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(approximately 1/3) for H||ab and H||c. This allows us to attribute any flux penetration anisotropy to the material 
microstructure and not to geometric effects. 

A commercial Quantum Design SQUID was used for the measurement of DC magnetic moment loops. The 
applied magnetic field was swept from - 5 T to + 5 T and a small scan length (5 cm) selected to ensure 
reasonable field uniformity. The remnant field of the superconducting magnet was eliminated before each 
measuring sequence by the standard practice of applying a succession of decreasing fields in alternate directions. 

The spatial distribution of trapped magnetic induction was measured by scanning a miniature Hall probe fixed to 
a motor-driven xyz micro-positioning stage over the sample surface. The specimen was initially cooled to 77 K 
in an applied magnetic field of 0.5 T (Field Cooled). This external field was then removed and the Hall probe 
moved across the top surface of the specimen parallel to both x and y with a step size of 0.1 mm in each 
direction. The active area of the Hall probe, sensitive to the component of the local induction parallel to the 
applied field (i.e., perpendicular to the surface), was 0.1 × 0.1 mm2. The probe is nominally in contact with the 
sample. In practice, it is separated from it by a layer of varnish to protect the surface of the Hall probe. 

We estimate the thickness of this layer to be about 0.1 mm. This value is larger than the penetration depth so that 
some 'smearing' of the measured signal is expected. 

3. Characterization of the single domains 

3.1. Transport measurements 

Fig. 2 shows the temperature dependence of the electrical resistivities ρab and ρc for a single-grain with an 
injection current (1 mA) parallel and perpendicular to the ab-planes of the sample respectively. It can be seen 
that both transitions are very sharp (∆T< 1 K). The critical temperatures determined from the ρab(T) and ρc(T) 
plots are 88 K and 89.5 K, respectively; the small difference can be attributed to different oxygenation levels 
within the samples. It can also be seen that the ab-plane resistivity displays a quasi-linear metallic behaviour in 
the normal-state. The residual resistivity obtained by extrapolating the normal-state resistivity down to T = 0 is 
slightly negative and this characteristic has also been reported for Y-123 single crystals [18]. It is supported by 
the fact that ρab(T) is weakly non-linear above Tc. The c-axis resistivity is much larger than ρab and weakly 
metallic in nature. The anisotropy ratio ρc/ρab measured at room temperature is 80, which is well within the range 
that would be expected for a single crystal (30 to 100) [18]. This would suggest, therefore, that platelet 
boundaries and microcracks do not significantly impede the flow of current parallel to the YBCO c-axis. 

Fig. 2: Electrical resistivities ρab and ρc as a function of temperature for single-grain samples. 
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Fig. 3: Magnetization as a function of internal field for single-grain samples with H\\c and H\\ab at a 
temperature of 77 K. 

 

3.2. Magnetic measurements 

Fig. 3 shows M(H) curves measured on a cubic single-grain sample at T= 77 K for H||c and H||ab. The applied 
field has been corrected for the demagnetization factor in this data by using the formula Hcorr = Happ - DM, where 
Hcorr and Happ represent the corrected and the applied magnetic field, respectively. The well-known 'anomalous-
peak' or 'fishtail' is clearly apparent at µ0H ≈ 0.9 T for H||c. This effect has been reported for both Y-123 single 
crystals [19] and melt-processed YBCO [20]. It has been attributed variously to oxygen deficient regions having 
lower Tc and Hc2 and acting as field-induced pinning centres [21] or to dynamic effects [22]. This peak is absent 
when H||ab (Fig. 3), which is to be expected since it is related to currents circulating in the ab-planes [19]. 

The irreversibility field, Hirr, can be determined from the point where the upper and the lower branches of the M-
H loop converge. The value of µ0Hirr for H||c is 3.1 T and greater than 5 T (the maximum field which could be 
applied) for H||ab. 

An anisotropy in Hirr has also been reported for single crystals [23] and is consistent with the much larger Hc2 
value for H||ab compared with H||c. 

The intragranular critical current derived from M(H) measurements using the Bean model [24] is plotted in Fig. 
4. The value of the ratio Jc

ab/Jc
c (inset in Fig. 4) measured at 77 K is close to 3 for small magnetic fields, in 

agreement with results obtained in Ref. [25] and with recent magneto-optical measurements [10] performed on 
large grain melt-processed YBCO. 

Although we have assumed, in the above calculation of Jc, that screening currents flow right across the sample, it 
is important to know if M(H) loops measured on single domains can give any information about the length scale 
over which shielding currents, Is, really flow. To investigate this, magnetization loops were measured at 80 K on 
a rectangular single-grain specimen (4x2x2 mm3). This sample was then cleaved in two identical cubes (2x2x2 
mm3), and M(H) measurements repeated on the two cubes positioned side by side and attached with insulating 
GE varnish. Sample geometries and results are presented in Fig. 5. The small decrease of the total sample 
volume caused during cutting has been taken into account during calculation of the magnetization from the 
measured magnetic moment in this data. 
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Fig. 4: Critical current densities extracted from the magnetization loops shown in Fig. 3. Inset: field variation of 
the ratio Jc

ab/Jc
c at 77 K. 

 

Fig. 5: Comparison of the magnetization as a function of internal field measured for the original single-grain 
(SG) sample and the split double-grain (DG) sample at 77 K. 

 

The induced currents circulate parallel to the cutting plane when the applied magnetic field is directed parallel to 
the c-direction of the lattice and hence, should not be influenced by the cutting and rejoining process. This is 
illustrated in Fig. 5 which shows that the M(H) loops for the original and the GE varnish joined samples 
coincide. When the applied magnetic field is directed parallel to the insulating joint, however, the situation is 
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more complex. Accordingly, we calculate the expected difference in moment after cleaving of the crystal. We 
assume a Bean model and that currents loops flow over a length scale comparable to the sample size. The 
anisotropy ratio of critical currents is denoted by r = Jc

ab/Jc
c. Generally speaking, for a rectangular sample with 

side lengths x and y (x ≤ y), thickness t and for an applied field H\\ y\\ab-plane, the magnetic moment m is given 
by 

 

In our case, the starting single-grain (SG) dimensions are t = s, x = s, y = 2s. As a consequence, we expect the 
magnetic moment m to be given by 

 

while for the cleaved and glued pair (double-grain DG) it should be given by 

 

The anisotropy ratio r characteristic of our single-grain material is found to be close to 3 (cf. insert in Fig. 4). For 
this value of anisotropy, both calculated magnetic moments (for the single and cleaved samples, respectively) 
have a very close value. This is in fairly good agreement with the measured difference which lies between 10% 
and 20% (depending on the applied magnetic field). Note that even if an isotropic current flow was assumed (Jc

ab 
= Jc

c, leading to r = 1), the calculated difference would be 25% only. On the other hand, if the specimen was 
granular and the length scale for current flow was much smaller than the size of the single-grains, both magnetic 
moments should have exactly the same value. This means that the magnetization is only weakly sensitive to the 
current length scale, particularly if the critical current anisotropy ratio is taken into account. In addition, it should 
be emphasized that the above calculations are at best semi-quantitative, since they neglect corner effects. 
Therefore, although magnetization measurements are clearly not the most sensitive method for determining the 
current length scale, the significant difference between magnetization loops in Fig. 5 when H||ab gives us 
indirect but reasonable proof that this current length scale is macroscopic rather than microscopic. This is also 
consistent with independent evidence from the transport measurements (Fig. 2), that supercurrents indeed flow 
right across the sample and self-consistently supports our assumptions in the calculation of Jc in Fig. 4. 

It can be concluded from the above results that the single-grain properties are characteristic of good-quality melt-
processed YBCO material and that defects in the microstructure do not influence significantly the uniform 
current flow. Having established the properties of the bulk YBCO material, the effect of domain boundaries will 
now be discussed. 

4. Characterization of a natural high-angle boundary 

The high-angle naturally occurring grain boundary is illustrated schematically in Fig. 6 together with the 
resistance as a function of temperature measured within the single-grain (G) and across the grain boundary (B) 
for currents from 3 mA to 30 mA. The latter value corresponds to a current density of 15 A/cm2. The resistive 
transition of the grain is observed to be sharp without any intermediate step. The grain boundary R(T) curve, on 
the other hand, decreases sharply at T= Tc before levelling off to form a 'foot-like' structure towards the bottom 
of the transition. The initial decrease is caused by the superconducting transition of the grains whereas the 
broader feature can be attributed to the boundary. The tail shape is very similar to the thermally activated phase 
slippage (TAPS) observed in over-damped Josephson junctions [26,27]. Both grains become superconducting at 
T ≈ Tc but the Josephson coupling energy EJ is smaller than the thermal energy kT. The phase coherence between 
the order parameter of the two neighbouring superconductors is then affected by thermal fluctuations and can 
slip by 2π, which results in a non-zero time-averaged voltage [26-28]. This corresponds in a finite resistance. EJ 
increases as the temperature decreases further and until it exceeds kT. The boundary is then able to carry a 
supercurrent and its resistance vanishes. It is also worth noting that the resistive tail broadens significantly with a 
small increase of injection current (cf. Fig. 6) whereas the grain transition remains largely unaffected by this 
parameter. The above results indicate clearly that these measurements characterise the grain boundary. 
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Fig. 6: Schematic diagram of a naturally occurring grain boundary studied in this paper and comparison of the 
resistance measured across this high-angle grain boundary (B) and within an YBCO grain (G). 

 

Fig. 7: I- V curves measured across the grain boundary at T = 77 K. 

 

The current-voltage characteristics across the natural boundary measured at 77 K and for different applied 
magnetic fields are shown in Fig. 7. The sharp onset of voltage at Ic and the strong dependence on even very 
small magnetic fields are again characteristic of Josephson-like boundaries. This behaviour differs from the more 
rounded I-V curve characteristic of a single-grain. 

The latter two transport measurements (R-T and I-V) are particularly useful for elucidating features 
representative of the weakly-linked (high-angle) natural grain boundary, for which the intergranular current 
density measured at 77 K and zero-field was 2 A/cm2. This value is too low to enable intergranular currents to 
contribute significantly to the trapped induction of melt-processed YBCO, which underlines the importance of 
joining YBCO single-grains by fabricating artificial low-angle grain boundaries. 
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5. Characterization of artificial low-angle grain boundaries 

Two kinds of low-angle artificial grain boundaries were investigated as shown schematically in Fig. 8. The c-
axis of each grain in 'c-axis boundaries' is perpendicular to the boundary plane and hence parallel to the direction 
of current flow (Fig. 8a). On the other hand, the c-axis is parallel to the boundary plane in the case of the 'ab-
plane boundaries' and current transfer occurs along the ab-planes (Fig. 8b). 

5.1. Artificial c-axis grain boundaries 

The electrical resistance of the artificial boundary was measured by electrodes placed within the grain (G) and 
across the boundary (B). An injection current of 1 mA was used in this measurement, corresponding to a current 
density of 0.4 A/cm2. The applied magnetic field was either 0 or 25 mT parallel to the boundary. The resulting 
R(T) curves for the c-axis boundary, normalized at 92 K, are compared in Fig. 9. The grain transition (squares) is 
seen to exhibit two steps, occurring at T ≈ 89 K and T ≈ 83 K. This double-step behaviour could be due to 
inhomogeneous oxygenation of the grains in this particular sample. In a zero applied field the grain and the 
boundary curves coincide. This is no longer true, however, when a 25 mT field is applied parallel to the 
boundary plane, in this case a significant broadening of the boundary transition occurs. This feature suggests a 
strong decrease of the intergranular c-axis critical current with increasing magnetic field. As a consequence, 
these measurements clearly show that the artificial c-axis boundary is incapable of sustaining a current density of 
0.4 A/cm2 at T = 11 K and in a field of 25 mT. 

Fig. 8: Schematic diagram of the artificially joined samples studied in this paper. 
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Fig. 9: Comparison of the resistance measured within an YBCO grain and across an artificial c-axis grain 
boundary. 

 

Fig. 10: Distribution of magnetic induction on the surface of a sample containing an artificial c-axis grain 
boundary. µ0Happ = 10 mT, T = 11 K. 

 

The results of Hall probe mapping carried out close to the surface of the c-axis boundary are shown in Fig. 10. 
The sample edges and the boundary position are indicated in the diagram. Initially, the sample was cooled down 
to 77 K in zero applied field. A magnetic field of 10 mT was then applied and the field distribution within the 
sample measured with a miniature Hall probe. Note that this field is larger than both the first and the full 
penetration fields for this sample orientation. This is essential because at fields smaller than the first penetration 
field, the screening currents would always flow within λ of the surfaces. Consequently, currents flowing on 
adjacent surfaces would completely cancel within the spatial resolution of our Hall probe, making investigation 
of the boundary behaviour impossible. The field map obtained (Fig. 10) using the conditions described above 
shows a unique set of screening ellipses (constant field contours) centered in the middle of the sample. The 
figure thus suggests that the two neighbouring grains are connected by shielding currents flowing across the 
boundary. In what follows we shall show that this is not correct, and that this and other features in the Hall scan 
in Fig. 10 arise from the particular experimental conditions. Note that if we simply assume the shielding currents 
to be intergranular, and evaluate the corresponding critical current density using the Bean model [24], we find a 
value of 25 A/cm2 at 77 K and 10 mT. By assuming Jc ~ 1/B, this critical current density would be 10 A/cm2 at 
25 mT, which is 25 times larger than the value measured by transport measurements (< 0.4 A/cm2). This 
discrepancy is less surprising, because of a number of other features in the field map (Fig. 10). Firstly, we are 
unable to clearly resolve the effects of the edges of the sample and indeed the flux profiles do not reflect the 
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samples aspect ratio. Further, while flux is expected to enter at the edges, the field is apparently larger at the 
corners than in these regions. Certainly, the finite spatial resolution and size of the Hall probe, as well as its 
distance from the surface of the specimen, are expected to smear out the sample response and are consistent with 
most of the coarse features described above. However, before we return to a discussion of the possible pitfalls of 
a Hall scan in this configuration, we first address other possible sources of the observed discrepancy. In fact, 
many reasons may account for the difference between the transport and magnetic Jc measurements: 

(i) The presence of pores reduces the effective cross-section of the samples used for R(T) measurements and 
consequently underestimates the transport Jc. However, it is unlikely that this could account for a factor greater 
than 2. 

(ii) The use of a simple Bean model, which strictly holds only for an infinite cylinder or slab, can result in a 
miscalculation of the magnetic Jc. However, the sample is fully penetrated when µ0H = 10 mT and the induction 
B is very close to µ0H. Consequently, demagnetization effects under these conditions are negligible and the error 
associated with the Bean model subsequently small. 

(iii) The induction is mapped on the top surface of the specimen and not in the interior. Since B ≈ µ0H, however, 
the induction within the sample is probably close to that at the surface. 

(iv) Finally, intragranular currents flowing sufficiently close to the grain surface may effectively cancel at the 
grain boundary, due to the limited spatial Hall probe resolution and its finite distance from the sample surface. 

In order to further investigate hypothesis (iv), we conducted an 'experimental simulation' to elucidate what we 
really observe in Fig. 10 and how we might interpret this. A 'zero intergranular critical current' boundary was 
prepared artificially by gluing 2 identical single-grain cubes (2x2x2 mm3) together with insulating GE varnish. In 
this case, field shielding can only result from currents flowing separately in each cube and the resultant flux 
profile can be interpreted clearly. A Hall probe mapping of the flux trapped by this specimen was performed for 
3 different grain orientations with respect to the boundary plane. In all configurations, the c-axis of both grains 
are parallel to each other and the magnetic field H used to magnetize the sample was always parallel to the 
boundary plane. Results of these measurements are summarized in Fig. 11. 

The first notable feature is that all the trapped flux profiles are slightly asymmetric with respect to the joined face 
(located at x = 0). This is probably due to a slightly larger value of Jc for the right-hand grain than for the left-
hand grain and will not be considered further in the present study. When the common c-axis of the grains is 
perpendicular to the boundary (configuration 1), only one peak is apparent in the flux profile. This is the same 
situation as that in Fig. 10, and allows us to elucidate why we see a single peak even when the connectivity is 
poor, and discussed in more detail below. For a c-axis aligned parallel to the joined plane and H parallel to c 
(configuration 2), the induction profile displays a plateau with its centre at the position of the resulting grain 
boundary. Two smooth peaks centred over each cube clearly emerge when H is perpendicular to c (configuration 
3). 

The behaviour illustrated in Fig. 11 can be explained qualitatively by considering the critical current density 
anisotropy in these specimens. According to SQUID measurements carried out on the same single-grain cubes 
(Section 3.2), the ratio Jc

ab/Jc
c lies between 3 and 4 at T = 77 K in the presence of small magnetic fields. Current 

loops flowing over the sample cross-section, and reflecting this anisotropy, are illustrated schematically in Fig. 
11. In configuration 1, the portion of current sheet adjacent to the insulating junction is quite narrow. This 
suggests that currents flowing in two opposite directions in the vicinity of the central plane may effectively 
cancel each other within the resolution of the Hall probe and, in consequence, only one peak is visible in the 
trapped flux profile. Configuration 2 is characterized by two sets of quasi-square current loops which reflect the 
lack of asymmetry in the ab-planes. This is an intermediate case between configuration 1 discussed above and 
configuration 3 for which the current sheets parallel to the boundary are relatively broad. In this case, current 
cancellation in the vicinity of the junction is less significant and the trapped flux exhibits two peaks, as 
illustrated by the experimental data. This simple model, based on the anisotropy in Jc, is then able to explain the 
different flux profiles observed by the mapping technique. 
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Fig. 11: Distribution of trapped magnetic induction on the surface of two joined single-grain cubes and 
schematic diagram illustrating anisotropy of current flow in each case. 

 

In considering the maximum value of the trapped induction, it is clear that configuration 2 (H||c and Jc||ab) gives 
the highest induction (Bmax = 13.5 mT). 

Configurations 1 and 3, for which H||ab and Jc partially circulates along the c-axis, are characterized by Bmax = 
3.2 mT and 3.5 mT, respectively. The value of the ratio Bmax(||ab):Bmax(||c) is found to be 4 which is in excellent 
agreement with the anisotropy ratio determined by the hysteresis measurements (Section 3.2). 

It may be concluded from this experiment that the flux profile measured on the top surface of two neighbouring 
grains having their c-axis perpendicular to the grain boundary may display a single peak, even if the grains are 
fully decoupled, i.e., even if the intergranular critical current density is zero. This observation suggests that Hall 
probe flux mapping at the top surface of an YBCO pellet is not always sensitive to the presence of weak links in 
the sample microstructure. Consequently, great care is required when interpreting flux profiles obtained by this 
measurement technique. 

In the particular case of the artificial c-axis boundary, the shielding profile measured at B = 10 mT does not 
enable a reliable extraction of the intergranular Jc, although a small (unknown) part of the current could cross the 
boundary. The calculation of Jc using Hall probe mapping results is then overestimated considerably and the real 
intergranular critical current density is probably closer to the value determined by transport measurements. 

5.2. Artificial ab-plane boundaries 

The electrical resistance was measured for electrodes placed within the grain (G) and across the ab-plane 
artificial boundary (B) fabricated by high temperature joining for an injection current of 1 mA (corresponding to 
a current density of 5 A/cm2). Different magnetic fields from 0 to 7 T were applied perpendicular to the ab-
planes in this measurement and the resulting R(T) data normalized at 92 K are plotted in Fig. 12. The resistive 
transitions for the grain are sharp and linear for all values of applied magnetic fields. The resistance measured 
across the grain boundary, on the other hand, displays a drop at T = Tc followed by a clear 'foot-like' structure. 
The initial decrease in R(T) arises from the superconducting transition of both grains adjacent to the boundary 
while the foot is a characteristic of the boundary itself. In addition, a broadening of the transition of the grain 
occurs with increasing magnetic fields; this is also visible on the upper part of the grain boundary curves. 
Remarkably, however, the tail width remains almost unaffected (∆T<2.5 K) by magnetic fields up to 7 T, 
suggesting that the irreversibility field of the grain boundary is comparable to that of the grains. This, in turn, 
implies a good grain connectivity. It should also be noted that the onset of the tail appears for a normalized 
resistance approximately equal to 0.005 and would therefore be very difficult to see if a linear scale was used. 
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Fig. 12: Comparison of the resistance measured within an YBCO grain and across an artificial ab-planes grain 
boundary for applied magnetic fields from 0 to 7 T, parallel to the c-axis. 

 

Fig. 13: Resistance across an artificial ab-plane grain boundary measured for different currents. A 1 T magnetic 
field is applied parallel to the c-axis. 

 

The current-dependence of the resistance curve measured at 1 T across the artificial boundary is shown in Fig. 13 
for injection currents between 0.1 and 20 mA (corresponding to current densities J from 0.5 to 100 A/cm2). The 
resistive tail is slightly broadened with increasing currents. The temperatures below which the boundary is able 
to carry a supercurrent have been determined at the point where the R(T) curves emerge from the typical noise 
level of the instrumentation (at a voltage criterion of 1 nV). This occurs at a temperature of 77 K when I = 10 
mA (J =50 A/cm2), in which case the artificial boundary may be characterized by an intergranular critical current 
density Jc(T= 77 K,B= 1 T||c) equal to 50 A/cm2. Although this value is two orders of magnitude lower than the 
intragranular current density, it remains high compared to typical naturally occurring grain boundaries which can 
appear during melt processing. Therefore, we can conclude that this artificial joining process appears promising. 

6. Conclusions 

Magnetic and transport experiments have been performed in order to characterize the superconducting properties 
of melt-textured YBCO samples containing single-grain boundaries. Results have been compared with 
measurements carried out on single domains. 

The single-grain properties are similar to those of YBCO single crystals. The electrical resistivities ρab and ρc 
display metallic behaviour above Tc and a sharp superconducting transition. M-H loops at T = 77 K exhibit a 
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fishtail visible when induced currents circulate in the ab-planes. The current density anisotropy measured at T = 
77 K in small magnetic fields is close to the ratio 3:1. 

Careful examination of the resistance curves plotted on a logarithmic scale has proved effective in investigating 
weak link behaviour. In our measurements, the resistive transition across a single boundary has been shown 
typically to exhibit an initial decrease arising from the grain transition followed by a foot-like tail, even for low-
angle grain boundaries. The width of the tail is sensitive to both the injection current and the applied magnetic 
field. 

Hall-probe mapping experiments carried out on two single-grain cubes joined by insulating varnish have been 
used to investigate cancelling effects between intragranular currents circulating in two decoupled neighbouring 
grains. The anisotropy ratio has been shown to be the relevant parameter if the grains have the same size. An 
important implication of these experiments is that Hall probe mapping at the surface of YBCO pellets should be 
used with care when estimating the intergranular Jc. 

Finally, artificial boundaries engineered by joining two YBCO single domains display a remarkably weak field 
dependence. These boundaries therefore have great potential for applications in high fields at 77 K. 
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