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Abstract

This paper explores an idea to extend Newton–Raphson power flow problem to handle power system transmission line
flow limits, by means of generation redispatch and phase shifters. We extend and reformulate the power flow so that it
includes a variety of flow limits (thermal, small-signal stability, voltage difference), generation redispatch, and phase shift-
ers. The novelty of the approach is three step procedure (in case any limit violations exist in the system): run ordinary
power flow (and identify flow limits violated), solve a set of linear equations using extended power flow Jacobian by adding
a new column and a new raw that characterize particular limit, and resolve ordinary power flow with initial solution
obtained after the correction made by solution of linear equations. The use of ordinary power flow Jacobian and minimal
extensions to it in the case of limits identified makes this approach an attractive alternative for practical use. A simple
numerical example and the examples using an approximate model of real-life European Interconnected Power System
are included in the paper to illustrate the concept.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The steady-state conditions of a power system are typically modeled, from Kirchoff laws and power con-
servation, by a system of non-linear algebraic equations [1–3]:
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fðxÞ ¼ 0; ð1Þ
where x2 Rn is the vector of state variables (bus voltage magnitudes and phase angles), and f : Rn ! R is suf-
ficiently smooth function. Ordinary power flow problem [1,2] for a system with N buses (out of which Ng are
generation buses) consists of the solution of n = N + (N � Ng + 1) simultaneous non-linear equations with n

unknowns. The equations that are solved simultaneously include: an active power balance equation DPi for
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Nomenclature

h bus voltage phase angle (rad)
V bus voltage magnitude (V)
P active power (MW)
Q reactive power (MVAr)
S apparent power (MVA)
I current magnitude (A)
Y admittance (X)
G real part of Y (X)
B imaginary part of Y (X)
J Jacobian matrix
Jf flow Jacobian matrix
Sm sensitivity matrix
Pr redispatch amount (MW)
a phase shift angle (rad)
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every bus except one bus that is designated as the ‘‘slack’’ bus (the bus so designated is always one of the
generation buses), and a reactive power balance equation DQi for every load bus (buses where both P and
Q injections are specified). There are many extensions of the ordinary power flow problem aiming either to
ease computational burden or to include some realistic limits such as power generation (both active and reac-
tive power) or bus voltage magnitude limits [1,2]. Consideration of realistic physical power system limits is of
paramount importance in order to ensure physical feasibility of the solution.

The factors that influence the limiting values of transmission line flows are [4]: thermal limit (I2
f limit, I

stands for current while f stands for flow), small-signal stability limit (Pf limit), and voltage difference limit
(Sf limit, S stands for apparent power). Both generation redispatch and phase shifters have been recognized
as useful means to handle line flow limits. For some early considerations interested readers are referred to [5–9]
and for recent ones to [10–13]. All these considerations could be roughly classified as optimization [8,13] and
non-optimization (direct) based [5–7,9–12]. Optimization based methods (particularly optimal power flow) are
arguably more accurate but computationally expensive and time consuming [11]. Direct methods emerged as
the need for an efficient and fast method that trade optimality for effectiveness, so that power system operators
can make quick yet efficient decisions under stressed conditions of the power system. The method developed in
this paper belong to direct methods and differs from previous similar considerations in the way how ordinary
power flow is extended and reformulated in order to include a variety of flow limits, generation redispatch and
phase shifters. The novelty of the approach is three step procedure (in case any limit violations exist in the
system): run ordinary power flow (and identify flow limits violated), solve a set of linear equations using
extended power flow Jacobian by adding a new column and a new raw that characterize particular limit,
and resolve ordinary power flow with initial solution obtained after the correction made by solution of linear
equations. The use of ordinary power flow Jacobian and minimal extensions to it in the case of limits identified
makes this approach an attractive alternative for practical use. To facilitate the presentation throughout of the
paper we focus on active power flow limits and in the appendix provide generic derivations for all three types
of line flow limits. We extend the fast vectorized version of ordinary power flow, implemented in MATLAB�

environment [2,3].
The paper is organized as follows. In Section 2 ordinary power flow problem is reviewed and possible

extensions discussed, Section 3 describes how flow limits can be relieved by generation redispatch and pro-
vides some analytical results on the reformulation of ordinary power flow problem. Possibilities of using
phase-shifting transformers for the same purpose are presented in Section 4. Section 5 provides the results
obtained with help of real-life European Interconnected power system, while Section 6 offers some
conclusions.
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2. Ordinary power flow and approaches to handle flow limits

The power flow equations are given by [1–3]
fðxÞ ¼
DPðxÞ
DQðxÞ

� �
¼ 0; ð2Þ
where x ¼ ðhT; V TÞT 2 Rn is the state vector representing the bus voltage angle (h) and magnitude (V).
The Newton–Raphson is usually the method of choice to solve this system of non-linear equations. Starting

from a good initial guess (x0) this method determines the solution through iterative scheme,
DPk

DQk

� �
¼ Hk Nk

Mk Lk

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

J

� Dhk

DVk

� �
; ð3Þ

hkþ1 ¼ hk þ Dhk;

Vkþ1 ¼ Vk þ DVk;
ð4Þ
where h0 = h0, V0 = V0, and J is the Jacobian matrix. Newton–Raphson method will converge quadratically
from a sufficiently good initial guess, provided that the Jacobian is non-singular at the solution [1,2]. After the
initial solution (the phase angle at every bus in the system except one that is designated as the ‘‘reference’’ bus
and the voltage magnitude at every load bus in the system) is performed, one then can solve for every other,
derived, quantity of interest in the system. Having calculated all derived quantities, one can then verify
whether they are within their acceptable range of values. The power flow problem becomes somewhat more
complicated when one is interested in either adding or removing degrees of freedom (or variables) to the basic
problem. There are many reasons for adding and/or removing one or more degrees of freedom, but for pur-
pose of this paper we are interested in one when the flow on a particular line or corridor exceeds its designated
capability.

Resolution of the flow limits problem can be done in many ways, including (a) ignoring and reporting the
problem, (b) adjusting the injections of the generators to resolve the problem, (c) adjusting the setting of some
transformer, (d) phase shifter or phase angle regulator) to control the flow, (e) adjust the reactive injections to
reduce the current or the MVAs (Mega-Volt-Amperes) on the offending circuit without necessarily adjusting
the active power injections, or (f) simply tripping or removing the line from the service. Method (f) is surpris-
ingly effective in many situations, particularly when the offending line is a low-voltage or low-capacity line.
For purpose of this paper, however, we will consider the use of methods (b) and (c) and will examine the
impact on the power flow formulation and solution techniques of using these methods.

3. Relieving flow limits by generation rescheduling

The problem at hand is stated quite simply: extend the formulation and solutions method of the power flow
so that when the flow on a given line (or on any line or set of lines, for that matter) exceeds some specified
limit, generation is redispatched just until the point where the limit is no longer violated. The selection of
the redispatch unit or units can be done in many ways. We specifically consider four ways in which this
can be done:

• The user (the power system operator) has predesignated which generators are to be redispatched, either for
all constraints or, better yet, for every possible constraint the user has specified the corresponding genera-
tion pair (yes, it mast be a pair) of generators that are to be redispatched. If only one generator is designated
for redispatch, it is implicitly assumed that the slack bus is the other generator in the pair. We call this type
of redispatch ‘‘User (operator) specified’’.

• The program is to determine the generator pair using a ‘‘most effective’’ criterion. That is, the generator
pair that will have the maximum impact on limiting the flow with the minimum amount of redispatch
(at least in a linearized sense) is designated as the generator pair of interest. This type of redispatch is
referred to as ‘‘Most effective’’.
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• The program is to determine the generator pair using a ‘‘maximum margin’’ criterion. That is, the gener-
ators that are capable of doing the redispatch with a minimum percentage impact to their available limits
are used for the purpose. We call this type of redispatch ‘‘Sufficient’’.

• The program determines the generator pair based on a ‘‘minimum redispatch cost criterion (this assumes
that marginal costs are known). This type of redispatch is termed as ‘‘Cheapest’’.

All of these redispatch versions can be implemented with or without penalty factors (that is, active power
system losses can either be considered or be ignored during these calculations). For the sake of simplicity, only
lossless case is actually illustrated.

Further we consider two options for the ‘‘operator-specified’’ redispatch: ‘‘Chunk’’ and ‘‘Continuous’’.
In ‘‘Chunk’’ option the operator simply specifies a generator pair and the amount of active power to be
redispatched. In ‘‘Continuous’’ redispatch the operator specifies a generator pair, but not the amount of
active power to be redispatched which is to be solved. ‘‘Most effective’’ redispatch is eminently technical.
The choice of a proper generator pair is based on sensitivities of the line flow in relation to each system
generator.

‘‘Sufficient’’ and ‘‘Cheapest’’ redispatch also rely on sensitivity approach and a proper generator pair for
‘‘sufficient’’ and ‘‘cheapest’’ redispatch is chosen according to the next formulation,
\Sufficient" ¼ \Mosteffective"� ðP max � P actualÞ for ‘INC’;

\Sufficient" ¼ \Mosteffective"� ðP actual � P minÞ for ‘DEC’;

\Cheapest" ¼ \Sufficient"�MU for both;‘INC’ and ‘DEC’;
where ‘‘INC’’ stands for increase, ‘‘DEC’’ for decrease, and MU represents the cost of generation in terms of a
monetary unit.
3.1. Finding the most effective generator pair

The problem at hand is to find the generator pair that has the greatest impact on a particular line flow. In a
linearized sense, the impact of a generator pair redispatch on a given flow can be computed as the impact of
two separate changes: the impact of an injection at one bus (the bus that will increase its generation) and the
impact of a decrease of power injection at another bus (the bus that will decrease its generation). In either of
these cases the changes are absorbed by the slack bus. Handling of losses can be done either by ensuring that
the changes have no impact on the injection at the slack bus (this requires the use of penalty factors) or by
letting the slack bus absorb any changes in losses. To avoid introducing additional issues, we elect the latter
option here.

The equations for the determining of sensitivities of flows are best defined by expressing the flows on all
lines of interest in terms of the fundamental variables V and h. We first consider only ‘‘sending end’’ flows,
but it would be equally simple to consider ‘‘receiving end’’ flows (sending and receiving ends are two sides of
a transmission line). We assume that the limits of interest are expressed in terms of active power. It is rel-
atively straightforward to consider a current or a MVA limit (for details see Appendix A). To facilitate the
expression of flow equations, we introduce the concept of a flow admittance matrix, Yf . Typically, this
matrix has only two nonzero entries per row, one at the sending end and one at the receiving end of each
branch. However, it can be generalized to express the sum of flows across any set of branches. In this case, it
will have additional entries. This is a matrix that, when multiplied by the vector of complex voltages V,
yields the vector of sending end current If for all branches of interest in the system. It is possible to create
such a matrix even in cases where p-equivalents of lines are used or when we are dealing with tap-changing
phase-shifting transformers. The vector of complex sending end voltages is denoted by Vfrom. Thus, in com-
plex form
Sf ¼ diag Vfrom
� �

conj YfV
from

� �
: ð5Þ
Let Vk denote the voltage magnitude at the from end of branch k, and hki denote hk � hi. From here, the
expression for any flow k on a branch can be determined from
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Sfrom
k ¼

X
i2fijY ki

f
6¼0g

V kV i\hkiðGki � jBkiÞ; ð6Þ
where Gki and Bki are the real and imaginary parts of the admittance between the buses k and i.
The summation generally has just two terms. To find the real part of this expression we use
P from
k ¼

X
i2fijY ki

f
6¼0g

ðV kV iGki cos hki þ V kV iBki sin hkiÞ: ð7Þ
This summation also generally has only two terms, one for each end of the branch in question.
In order to find the sensitivity of a branch flow P from

k to a change in any bus injection, we first determine the
sensitivity of the branch flow with respect to changes in voltages and angles, and separately we determine the
sensitivity of the voltages and angles to change in injection. This last calculation is done using an ordinary
power flow Jacobian matrix. That is, we determine
DPf ¼ Jf

Dh

DV

� �
; ð8Þ
where
J
Dh

DV

� �
¼

DP

DQ

� �
: ð9Þ
Here DP is a vector with a single nonzero, at the location of the desired injection or extraction. Every location
in the system can, of course, be considered a candidate location, which requires one computation per candidate
location. Although in practice only generator locations may be of interest, the calculation above requires the
use of the complete power flow Jacobian, however. The right hand side DQ is zero in this transformation, since
we are considering only changes in active power injections. J is the ordinary power flow Jacobian. Jf is the
Jacobian of the flow equations with respect to the voltages and angles (details below). Thus, obtaining the sen-
sitivity of flows with respect to individual injections according to this explanation performs one repeat solution
per location, and a single matrix vector multiplication yields all the sensitivities for all the lines of interest. The
flow Jacobian matrix Jf can be organized into its derivatives with respect to voltage angles (denoted by a subm-
atrix Hf) and its derivatives with respect to voltage magnitudes (denoted by a submatrix Nf). Only sensitivities
with of active power flows are considered here. The expressions for the entries of these submatrices are
H ki
f ¼

0 if Y ki
f ¼ 0;

�V kV iGki sin hki þ V kV i cos hki if k 6¼ i;

2V kGki if k ¼ i:

8><
>: ð10Þ

N ki
f ¼

0 if Y ki
f ¼ 0;

V kGki cos hki þ V k sin hki if k 6¼ i;

2V kGki if k ¼ i:

8><
>: ð11Þ
From these expressions, one can then compute the sensitivity matrix Sm. The dimension of this matrix is ini-
tially the number of line flows of interest m by the number of degrees of freedom in the power flow. This ma-
trix can be expanded to include explicitly all n active power injections and all n reactive power injections. This
is done simply by padding the matrix with zero-valued columns for all such locations. This is so because an
injection of power at the slack location produces no flow changes in the system, since it is absorbed by a cor-
responding injection at the same bus. Likewise for reactive power injections at all generation buses that are
actively controlling the voltage.

Of interest to us is the use of a single row of Sm, the row that corresponds to the location of a line that happens
to be limiting (at or above its flow limit). We assume that there is only one such line. If the matrix has been
expanded to include the reference location as indicated above, let s denote the first n entries of the desired
row of Sm. The meaning of these entries is the impact on the flow on the limiting line of an injection at every
point in the system. Only the subset of entries of s that correspond to generation locations is of actual interest,
according to our rules. Denote this subvector by sg. The largest-valued entry in sg identifies the system generator
where a generator would have the greatest positive impact on the line flow of interest. The smallest-valued entry
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(most negative) in sg identifies the system generator where a generator would have the greatest adverse impact on
the flow (that is, where a decrease in generation would have the greatest value in reducing the flow). It is quite
possible that no generator has a negative or a positive value. In this case, the best generator in either direction is
the reference generator. The determination of the best generator pair for redispatch purposes is thus very simple:

• Determine the vector sg of sensitivity of flows to injections for all generators in the system (or at least the
eligible subset).

• Sort this vector.
• Select the largest-valued location M.
• Select the smallest-valued location m.

3.2. Power flow with flow limit and generation redispatch

Having determined a location of the pair of generators to redispatch m, M, next step is to formulate a mod-
ified ordinary power flow problem. The modifications required are as follows:

• Add an additional degree of freedom (or variable) called the ‘‘redispatch amount’’ Pr.
• The equation for active power balance for node m gets modified by the addition of Pr.
• The equation for active power balance for node M gets modified by the subtraction of Pr.
• A new equation is added to the equation set. This equation specifies precisely the flow at the from end of the

constrained line.
• The Jacobian gets modified by the inclusion of one additional column of all zeros except for one +1 in the

active power row corresponding to m and one �1 in the active power row corresponding to M (if either m

or M corresponds to the slack bus, there is no entry added to the new Jacobian column).
• The Jacobian gets further modified by the inclusion of the Jacobian row for the added power flow restric-

tion equation. This row has no more than four nonzero elements.

In the end, a single row and a single column get added to the Jacobian and a new slightly larger problem
ð12Þ
is to be solved (rhs stands for right-hand side). If two limits are identified one more column and a raw are to be
added
ð13Þ
Every new limit adds a new column and a new raw. In practice, the number of transmission lines that are limited
at the same time is not big (otherwise, huge number of limits indicate heavily stressed power system conditions
for which the model of the system in form of differential-algebraic equations is appropriate mathematical
description of the system). Moreover, the proposed extension fits well into problem of maximum system loa-
dability determination either by repetitive solution of the power flow problem or by using a continuation power
flow formulation in which the extension could be used in corrector step. Incremental increase of the system load
during maximum loadability determination usually results in one limit violation at the time [4,12].

The new entries in the Jacobian matrix will not create any fill-ins in the matrix factorization (sparsity of the
Jacobian matrix is preserved what is of paramount importance for realistically sized power systems that might
include thousands of buses).



Fig. 1. One-line diagram of 6-bus system [1].
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3.3. A simple numerical example

All these concepts are best explained by means of a simple numerical example. Because additional degrees
of freedom are essential to make the problem non-trivial, we will consider for this example the 6-bus system
illustrated in Fig. 1. This system is a slight variant of the example in [1]. Active power flow limit is considered
in this example.

The ‘‘flow Jacobian’’ relating the active power flow on the limited line (line between buses 3 and 6, shown in
bold in Fig. 1, the excess of the overload is 3.5 MW, MegaWatts) to all six bus angles and six voltage mag-
nitudes is given by
dP 36

dh
¼ 0 0 10:3261 0 0 �10:3261½ �;

dP 36

dV
¼ 0 0 2:4639 0 0 �1:7698½ �:
The sensitivity of flow on the limited line with respect to active and reactive power injections is given by
DP 2

DP 3

DP 4

DP 5

DP 6

DQ4

DQ5

DQ6

2
66666666664

3
77777777775
¼

�0:0342
0:3360
�0:0198
0:0010
�0:3437
�0:0099
�0:0736
�0:2748

2
66666666664

3
77777777775
:

The sensitivity with respect to DP1 is zero. Thus, in terms of the three generator buses, we see that the most
effective generator pair to redispatch is given by generators at bus 3 (the largest value) and 2 (the smallest va-
lue, most negative). Thus, the redispatch problem is formulated exactly as the power flow problem, except that
additional variables are added for injections at buses 3 and 2. The resulting equation structure is therefore the
same as previously, except that now we have an additional column to the Jacobian. In addition, a new equa-
tion specifying the active power flow has been added to the problem. During the first iteration of the new
reformulated problem, the Jacobian matrix looks like
H N

M L

� �
�1
1
0
0
0
0
0
0

2
66666666664

3
77777777775

0 10:326 0 0 �10:326 0 0 �1:77½ � 0

2
6666666666664

3
7777777777775
�

Dh2

Dh3

Dh4

Dh5

Dh6

DV 4

DV 5

DV 6

P r

2
6666666666664

3
7777777777775
¼

0
0
0
0
0
0
0
0

3:5

2
6666666666664

3
7777777777775
:
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At this point, this linearized one iteration solution using this expanded Jacobian yields a new approximate
solution to the original problem. In particular, the proposed redispatch value is equal to �9.44. If a new power
flow is solved with these new redispatch generation values, the solution for the new flow becomes 39.97 MW
within any additional iterations needed.

4. Relieving flow limits by phase shifter adjustments

The phase-shifting transformer is a power system device that permits changes of complex transformation
ratio (the ratio between primary and secondary complex voltages) and thus allowing the changes in voltage
magnitudes as well as phase angles. By changing voltage magnitudes and phase angles it also changes flows
over transmission lines (not only on the line where the device is installed). The problem here is to determine
phase-shifting transformer most appropriate to handle limiting flow on a particular transmission line. As in
the proceeding case, there are several options for the use of flow limit relief by means of phase shifters and
these options include:

• The user designates the phase shifter (if any) to be used to relieve a particular flow limit.
• The phase shifter used to relieve the flow limit is selected as the ‘‘most effective’’ on a per-degree basis.
• The phase shifter used to relieve the flow limit is selected as the one with the widest available range of

adjustment capability.

4.1. Finding the most effective phase shifter

Determining the effect of a phase shifter angle on a flow requires that the phase shifter angles a be included
as explicit variables in the power flow formulation. In order to do this, it is better to use a polar formulation
for the admittance matrix when considering taps. Thus, a slightly different but equivalent set of equations to
those used so far can be used to characterize the power flow problem:
P i ¼ V i

Xn

j¼1

V jY ij cosðhij � cijÞ;

Qi ¼ V i

Xn

j¼1

V jY ij sinðhij � cijÞ:
ð14Þ
Here Yij denotes the magnitude of the corresponding entry of the nodal admittance matrix (which itself could
incorporate the tap magnitude position as a variable, but this is not considered here), and cij denotes the phase
angle of the corresponding entry of the nodal admittance matrix. Specifically, now, the phase angle of a phase
shifting transformer becomes simply an adder to the angle of entry i, j of the nodal admittance matrix, can
becomes subtracted form entry j, i of the same matrix. No other entries or values are affected.

To determine the impact of a phase shift on a flow (assuming all power injections remain constant), it is first
necessary to determine the impact of a phase shifter adjustment on the angles and magnitudes of the voltages
(assuming all injections remain constant, except of course for the slack bus active power injections). This can
be accomplished by solving the following set of equations:
J
Dh

DV

� �
¼ �JaDa: ð15Þ
Here J is the ordinary power flow Jacobian, and Ja is the Jacobian with respect to phase shifter angles. That is,
it is the derivative of every bus power balance equation with respect to all the adjustable phase shifter angles.
Only those buses that are directly connected to an active phase shifter are considered. For purpose of the anal-
ysis in this section, the phase shifters are considered one at the time. That is, the corresponding matrix Ja is
actually a vector, and the vector Da is a scaler for each case of interest. The combined vector JaDa is generally
quite sparse.
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The determination of the nonzero entries for Ja is as follows. Only the from node i and the to node j of the
phase shifter are affected, thus we only give the formulas for these nonzero entries, both for H terms and M

terms:
H a
i ¼ V iV jY ij sinðhij � cijÞ;

N a
j ¼ �V iV jY ij sinðhij � cijÞ;

Ma
i ¼ �V iV jY ij cosðhij � cijÞ;

La
j ¼ V iV jY ij cosðhij � cijÞ:

ð16Þ
The differences in sign are quite important, and so is the fact that there is no ‘‘diagonal entry’’ to either term.
These equations can be restated back in a rectangular formulation as follows:
H a
i ¼ V iV jGij sin hij � V iV jBij cos hij;

N a
j ¼ �V iV jGij sin hij þ V iV jBij cos hij;

Ma
i ¼ V iV jGij sin hij � V iV jBij cos hij;

La
j ¼ �V iV jGij sin hij þ V iV jBij cos hij:

ð17Þ
Once the effect on Dh and DV are obtained for every phase shifter in the system, their impact on every flow can
be determined from
DPf ¼ HfDhþNfDVþ AfDa; ð18Þ

where Af is the Jacobian (derivative) of the desired flow equation with respect to changes in its phase angle
setting. Only those elements that have a phase shifter embedded have to worry about a nonzero entry in this
term. For all other elements, the effect of the phase shifter adjustment is captured entirely by the Dh and DV
vectors.

For phase-shifting transformers, we consider the case of the tap-side (the side where the shifting device is
installed) and the non-tap side of the phase shifter separately. For the case of the non-tap side of the phase
shifter, the corresponding equations for the flow on the transformer are
P ji ¼ V 2
j Gij � aGijV iV j cosðhij þ aÞ þ aBijV iV j sinðhij þ aÞ: ð19Þ
And thus the Jacobian entries for Af are given by (for the effect of the phase angle alone)
oP ji

oa
¼ �GijV iV j cosðhij þ aÞ þ aGijV iV j sinðhij þ aÞ þ BijV iV j sinðhij þ aÞ þ aBijV iV j cosðhij þ aÞ: ð20Þ
For the case of the tap-side of the phase shifter, the corresponding equations for the flow on the transformer
are
P ij ¼ a2V 2
i Gij � aGijV iV j cosðhij þ aÞ � aBijV iV j sinðhij þ aÞ: ð21Þ
And thus the Jacobian entries for Af are given by (for the effect of the phase angle alone)
oP ij

oa
¼ 2aV 2

i Gij � GijV iV j cosðhij þ aÞ þ aGijV iV j sinðhij þ aÞ

� BijV iV j sinðhij þ aÞ � aBijV iV j cosðhij þ aÞ: ð22Þ
Once the impact of every phase shifter angle change on every flow of interest is determined, a sort procedure
similar to the one above can be done. In this case, however, if we assume an unlimited control range in either
direction, the best phase shifter choice is the one that shows the largest absolute value to its sensitivity. Once
this has been determined the next step can be undertaken.

4.2. Power flow with flow limit and phase shifter adjustment

The power flow with a phase shifter adjusted to control a desired limiting flow can be solved by formulating an
ordinary power flow problem, but adding to it one degree of freedom (one variable), the angle at the designated
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phase shifter. At the same time one additional equation is included, the equation that specifies the flow in the
desired controlled line. The Jacobian that is used in the solution is the same as before except that it has a new
column corresponding to the derivatives of the injections with respect to angle adjustments in the phase shifter.
In addition, there is one additional equation that specifies the flow on the constrained element, and its Jacobian
entries for its row are those for the flow Jacobian Jf. Whether this extra row also has a nonzero entry in the col-
umn that corresponds to the phase shifter angle control or not depends entirely on whether the flow is being con-
trolled on the element itself or on some other element. The fundamentals are the same either way.

4.3. A simple numerical example with phase shifters

We again use the system described in Section 3.3 with same limits on transmission lines, but this time try to
resolve limits by means of phase shifters installed in the lines as illustrated in Fig. 1. Sensitivities of the active
power flow on the limited line to the angles of all three phase shifting transformers are
dP 36

da1�4

¼ 0:1;

dP 36

da2�3

¼ �2:8;

dP 36

da5�6

¼ 1:9:
We see that the most effective phase-shifting transformer in alleviation of the limit is the one installed in the
line between the buses 2 and 3. Derivatives of the injections with respect to angle adjustment in the phase shif-
ter are
oP 3

oa2–3

¼ oP 36

oa2–3

¼ 1:6;

oP 6

oa2–3

¼ oP 63

oa2–3

¼ �1:6;

oQ6

oa2–3

¼ oQ63

oa2–3

¼ �0:05:
Thus, the problem to determine the size of phase shift is formulated exactly as the power flow problem, except
that an additional variable is added. The resulting equation structure is therefore the same as previously, ex-
cept that now we have an additional column to the Jacobian. In addition, a new equation specifying the active
power flow has been added to the problem. During the first iteration of the new reformulated problem, the
Jacobian matrix looks like
H N

M L

� �

0

�1:6

0

0

1:6

0

0

�0:05

2
66666666666664

3
77777777777775

0 10:326 0 0 �10:326 0 0 �1:77½ � �1:6

2
66666666666666664

3
77777777777777775

�

Dh2

Dh3

Dh4

Dh5

Dh6

DV 4

DV 5

DV 6

a2�3

2
66666666666666664

3
77777777777777775

¼

0

0

0

0

0

0

0

0

3:5

2
66666666666666664

3
77777777777777775

:

This linearized one iteration solution yields a new approximate solution to the original problem and the value
of phase angle of the phase shifting transformer in the line between buses 2 and 3 is �0.105 rad (�6�). If a new
power flow is solved, the solution for the new flow on the line becomes 39.89 MW within any additional iter-
ations needed.
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5. Examples using a real power system

We take advantage of the availability of the IEEE Common Data Format (CDF) [14] for recently intro-
duced approximate model of the European interconnected system [14]. The model is tuned to study effects
of cross-border trades and indeed additional work was needed to make this model of the European intercon-
nection suitable to test the methodology developed in this paper (most notably in putting appropriate trans-
mission line limits). We use ‘‘Winter 2002’’ system loading conditions (higher load values and expected limit
violations) CDF data from [14]. The whole network is shown in Fig. 2. The network includes 1254 buses (out
of which 378 are generation buses) and 1944 lines.

We focus on two parts of this huge interconnection: Belgian and Netherlands system, and Eastern part of
Italian system (toward Austria and Slovenia). This choice is based on the fact that there are some initiatives in
placing or activating phase-shifting transformers in these systems (primarily to facilitate cross-border trans-
missions, but in this paper we asses their capabilities within proposed methodology and do not focus on
cross-border trades) [15,16].

The results are summarized in Table 1.
We also borrow the names of buses from [14]. Observe that the limits we considered in Belgium–Nether-

lands system were not solved by phase shifters only (in fact we found for the limited lines that only one
phase-shifting transformer is truly effective) and the problem is solved by combining phase shifter adjustment
and generation redispatch (with priority on phase shifters to minimize the size of redispatch). Two redispatch
options were used: most effective and cheapest. Two limits considered in Eastern part of Italian system were
Fig. 2. European interconnected power system [14].

Table 1
The results using an approximate model of European interconnection

Line MW (base case) MW limit Correction

PST Gen. Resch.

B_Zandvl-NL_Geert 498.45 400 B_Zandvl-B-2 ‘‘Most effective’’
�4� ‘‘INC’’ = 29.98 MW at B-2

‘‘DEC’’ = �29.98 MW at NL_Borrs
B_Zandvl-NL_Borrs 439.93 400 ‘‘Cheapest’’

‘‘INC’’ = 31.56 MW at B-2
‘‘DEC’’ = �31.56 MW at NL_17

Fadalto–Vellai 555.49 400 Fedalto–Caglian –
�7�

Monfalc–Padricia 151.67 120 Monfalc–Mantevia
3�
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solved by the use of phase shifters only (as already indicated in [15] these transformers should solve line over-
loads in this part of the system).

6. Conclusions

Explicit specification of generation redispatch strategies and phase shifting transformer adjustments possi-
ble for flow limit enforcement have been presented in this paper. Sparse vectorized Newton–Raphson imple-
mentation power flow has been easily extended by explicit consideration of a flow limit equation in the set of
system model equations. This new feature rendering the tool as a powerful and accurate helper for operating a
power system within its security constraints. As for the line flow limits problem the operator is allowed to iden-
tify effective generator pair according to four different options, based on topology analysis, sensitivity studies,
generator margins, or cost considerations as well as most effective phase-shifting transformers. Only active
power line flow limit has been considered in the paper and including other two limits is straightforward.
The presented features provide important new insights in the area focused in the paper. The results carried
out with the help of a simple 6-bus test system and an approximate model of real-life European Interconnected
Power System indicate that the methodology is effective.

Appendix A. Line flow Jacobian matrix and extended power flow Jacobian

In Section 3.1 the line flow Jacobian matrix Jf has been introduced. The matrix has the form
Jf ¼
olL

oh
;
olL

oV

� �
; ðA:1Þ
where l denotes generic line flow equation, and L denotes the number of two terminal lines in the system.
Depending of the limit considered, l becomes I2

f , Pf, or Sf. To calculate the elements of the matrix we introduce
the next notation:

VL vector of line voltages ðVL ¼ ATVÞ
IL vector of injected current of line ðIL ¼ Yf VLÞ
An·2L an associate relationship matrix
Yf(2L·2L) the primary admittance matrix in which the diagonal elements are small admittance matrix (2-port

representation of branch and transformer)
• multiplication of two vectors in point wise
N number of buses
L number of two terminal lines in the system

The elements of the flow Jacobian matrix are calculated as follows:
oVL

oV
¼ AT oV

oV
¼ ATdiagðejhÞ; ðA:2Þ

oVL

oh
¼ AT oV

oh
¼ ATdiagðjVÞ; ðA:3Þ

oIL

oV
¼ Y

oVL

oV
¼ YfA

TdiagðejhÞ; ðA:4Þ

oIL

oh
¼ Yf

oVL

oh
¼ YfA

TdiagðjVÞ; ðA:5Þ

oðconjðILÞÞ
oV

¼ conjðYfÞATdiagðe�jhÞ; ðA:6Þ

oðconjðILÞÞ
oh

¼ conjðYfÞATdiagð�jVÞ; ðA:7Þ

oI2
L

oh
¼ diagðconjðILÞÞ

oIL

oh
þ diagðILÞ

oðconjðILÞÞ
oh

; ðA:8Þ
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oI2
L

oV
¼ diagðconjðILÞÞ

oIL

oV
þ diagðILÞ

oðconjðILÞÞ
oV

; ðA:9Þ

oSL

oh
¼ o

oh
ðconjðYfÞconjðVLÞ � VLÞ ¼ conjðYfÞ diagðVLÞ

oVL

oh
þ diagðconjðVLÞ

oðconjðVLÞÞ
oh

� �
; ðA:10Þ

oSL

oV
¼ o

oV
ðconjðYfÞconjðVLÞ � VLÞ ¼ conjðYfÞ diagðVLÞ

oVL

oV
þ diagðconjðVLÞ

oðconjðVLÞÞ
oV

� �
; ðA:11Þ
where: ejh ¼ V
V

point wisely.
FF1 ¼ eT
1 Jf ; ðA:12Þ
where e1 is the vector with all entries equal to zero but one corresponding to the limited line equal to 1
sg ¼ ðFF1 � FF1TÞ�1
J � FF1T: ðA:13Þ
Let M generators be assigned to participate in flow limit handling. Vector k1 contains M nonzero elements.
Nonzero value corresponding to ith ‘INC’ generator is calculated by
k1i ¼
FDF iP

j2‘INC’FDF j
ðA:14Þ
and for corresponding ‘DEC’ generator
k1n ¼ �
FDF nP

j2‘DEC’FDF j
: ðA:15Þ
FDFs are sensitivities taken from sg.

References

[1] A.J. Wood, B.F. Wollenberg, Power Generation, Operation and Control, Wiley-Interscience, 1996.
[2] F.L. Alvarado, Solving power flow problems with a Matlab implementation of the power system applications data dictionary,

Decision Support Systems 30 (3) (2001) 243–254.
[3] J. Mahseredijan, F. Alvarado, G. Rogers, W. Long, MATLAB’s power for power systems, IEEE Computer Applications in Power

(2001) 13–19.
[4] M. Glavic, F. Alvarado, Interactions among limits during maximum loadability and transfer capability determination, in: Electric

Power Transfer Capability: Concepts, Applications, Sensitivity, Uncertainty, PSERC Report 01-34, University of Wisconsin,
Madison, USA, 2001. [Online]. Available from: <www.pserc.cornell.edu/tcc>.

[5] T.K.P. Medicherla, R. Billinton, M.S. Sachdev, Generation rescheduling and load shedding to alleviate line overloads – analysis,
IEEE Transactions on PAS 98 (6) (1979) 1876–1883.

[6] Z.X. Han, Phase shifter and power flow control, IEEE Transactions on PAS 101 (10) (1982) 3790–3795.
[7] N. Srinavasan, K.S. Prakasa Rao, C.S. Indulkar, S.S. Venkata, On-line computation of phase shifter distribution factors and lineload

alleviation, IEEE Transactions on PAS 104 (7) (1985) 1656–1662.
[8] P.R. Bijwe, D.P. Kothari, L.D. Arya, Alleviation of line overloads and voltage violations by corrective rescheduling, IEE

Proceedings-C 140 (4) (1993) 249–255.
[9] A. Mohamed, G.B. Jasmon, Realistic power security algorithm, IEE Proceedings-C 135 (2) (1988) 98–106.

[10] C.R. Fuerte-Esquivel, E. Acha, A Newton-type algorithm for the control of power flow in electric power networks, IEEE
Transactions on Power Systems 12 (4) (1997) 1474–1480.

[11] B.K. Talukdar, A.K. Sinha, S. Mukhopadhyay, A. Bose, A computationally simple method for cost-efficient generation rescheduling
and load shedding for congestion management, International Journal of Electric Power and Energy Systems 27 (2005) 379–388.

[12] M. Glavic, I. Dzafic, S. Tesnjak, Handling flow limits during maximum loadability determination, in: Mediterranean Electrotechnical
Conference, MELECON 2004, Dubrovnik, Croatia, Paper 1060, 2004.

[13] J.A. Momoh, J.Z. Zhu, G.D. Boswell, S. Hoffman, Power system security enhancement by OPF with phase shifter, IEEE
Transactions on Power Systems 16 (2) (2001) 287–293.

[14] Q. Zhou, J.W. Bialek, Approximate model of european interconnected power system as a benchmark system to study effects of cross-
border trades, IEEE Transactions on Power Systems 20 (2) (2005) 782–788.

[15] P. Bresesti, M. Sforna, V. Allegranza, D. Canever, R. Vialati, Application of phase shifting transformers for a secure and efficient
operation of the interconnection corridors, in: IEEE-PES General Meeting, Denver, Colorado, 2004, pp. 1192–1197.

[16] J. Verboomen, D. Van Hertem, P. Schavemaker, W. Kling, R. Belmans, Phase shifting transformers: principles and applications, in:
International Conference on Future Power Systems, Amsterdam, The Netherlands, 2005. ISBN 90-78205-01-6.

http://www.pserc.cornell.edu/tcc

	An extension of Newton-Raphson power flow problem
	Introduction
	Ordinary power flow and approaches to handle flow limits
	Relieving flow limits by generation rescheduling
	Finding the most effective generator pair
	Power flow with flow limit and generation redispatch
	A simple numerical example

	Relieving flow limits by phase shifter adjustments
	Finding the most effective phase shifter
	Power flow with flow limit and phase shifter adjustment
	A simple numerical example with phase shifters

	Examples using a real power system
	Conclusions
	Line flow Jacobian matrix and extended power flow Jacobian
	References


