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A Component-Based Power System
Model-Driven Architecture
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Abstract—This letter describes an approach of applying the model-
driven development in power systems. A component-based model-driven
architecture, that gives full flexibility of the automation in source code
generation, is introduced. A design pattern to code generation is described.

Index Terms—Code generation, component based approach, model-
driven development, symbolic computation.

1. INTRODUCTION

The commercial use of electricity began in late 1970s of the 19th
century [1]. Since then, power systems around the world undergone
technical changes that mostly can be attributed to the advances
achieved in applied mathematics, software engineering, computer
science, telecommunications, etc. More than 100 years of experience
in planning, operating, and controlling power systems resulted in
tremendous expert knowledge in the field. Unfortunately, there is
often unjustified gap between advances in the mentioned fields and
their applications in power systems. This letter addresses the issue
within the context of recent advances in software engineering and
introduces a component-based model-driven architecture (MDA)
for power system steady-state analysis and optimization software
applications development. The architecture is built in the spirit of
the object management group’s (OMG) recently announced MDA
initiative, which offers conceptual framework for defining a set of
standards in support of model-driven development (MDD) [2], [3].
The main idea of this letter is to connect expert knowledge in power
systems with the ongoing software development initiatives and make
this later available to power system experts that usually lack software
development knowledge.

II. MDD ESSENTIALS

The MDD essentials include: automation, standardization, source
code efficiency, and scalability.

Automation is by far the most effective technological means for
boosting productivity and reliability. The MDD potentials for automa-
tion include: automatically verifying models on a computer (e.g., by
executing them) and automatically generating complete programs
from models (as opposed to just code skeletons and fragments).

Standardization provides a significant encouragement for further
progress because it codifies best practices, enables and encourages
reuse, and facilitates internal working between complementary tools.

Efficiency. One of the very important issues about MDD is how the
automatically generated code’s efficiency compares with the handmade
code. Code efficiency can be decomposed into two separate areas: per-
formance and memory utilization.

Scalability. MDD is intended for large-scale applications. An impor-
tant metric of concern here is compilation time that can be divided into
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Fig. 1. The main components of the power system MDA.

two separate parts: full system generation time and turnaround time for
small incremental changes. The later is much more important because
of its greater impact on productivity. Namely, small changes are far
more frequent during development than full system recompiles.

III. A POWER SYSTEM MDA

The architecture, illustrated in Fig. 1, consists of a GUI part for
power system modeling [4] (models are kept in model repository), a
set of model converter components, and a set of components [5] that
utilize symbolic models, test them, and auto-generate the code.

All user efforts are focused to the system modeling through the GUI
part and model validation through extensive experimentation with a
symbolic model (the symbolic component has embedded user-friendly
editor that allows description of a formal model in natural form). For
each specific problem of interest there must be at least one model con-
verter implemented. Converters encapsulate initial guesses for vari-
ables and put initial information together with the model. Converters
transform graphical model into symbolic one that is further converted
to the source code by specially designed set of components.

As is shown in Fig. 2, the code generator is implemented as ob-
ject-oriented parser with embedded symbolic differentiation capabil-
ities. The Reverse Polish Notation Parser class (RPNParser) and the
EvaluatorSparseMatrix class have SerializeCode method that is used
to generate code in a pre-selected location. Class NRSolver is used to
verify models. It actually interprets commands created by the RPN-
Parser. Auto-generated source code consists of two parts [6]: applica-
tion framework code and code needed for Jacobian and model evalua-
tion inside the Newton-Raphson (N-R) solver.

The N-R code is implemented as a C++ class. This class has two
virtual member functions EvaluateJacobian and EvaluteModel. Auto-
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Fig. 2. Class diagram of symbolic code generator.
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Fig. 3. Simplified class diagram of the auto-generated code.

generated code needs to generate constructors for the CNewtonRaph-
sonSolver and CPSApplication classes and source code for Evaluate-
Jacobian and EvaluteModel. CDataExchange contains methods used
in communication with underlying SCADA. Taking advantage of ob-
ject-oriented programming, the main part of the power system appli-
cation code can be compiled into a library. Thus, the generated source
code is more compact and easier to maintain. Fig. 3 shows simplified
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TABLE 1
TIMING RESULTS OBTAINED ON AMD XP 2500+, 512 MB, WINDOWS XP

Average Solution Time .
Case MDD UWPFLOW Difference
IEEE118 7 ms 8 ms 14.3 %
IEEE300 43 ms 52 ms 20.9 %

class diagram of the object-oriented structure of auto-generated code. It
is worth noticing that the auto-generated source code is implemented
with loops unrolling technique and with reduced reference (address)
pointing. As a result of this implementation, created source code is al-
ways slightly faster than the same carefully handcrafted code. Also, as
Fig. 3 shows, design pattern of the auto-generated code enables very
low time overhead in case of model changes. In this case only few
auto-generated files should be recompiled. Since all class methods are
referenced through the underlying abstract interfaces, there is no need
to recompile other parts of the code. Thus, the efficiency and scala-
bility are achieved. Memory efficiency is achieved through the usage
of a sparse matrix library.

IV. RESULTS

Execution time of auto-generated code has been compared with that
of handcrafted C/C++ code for power flow analysis—UWPFLOW
[7]. The results obtained using two standard test systems are given
in Table 1. Execution times do not include time needed for routines
initialization.

Auto-generated code, for particular cases considered, is approxi-
mately 15%—20% faster than similar handcrafted code.

V. CONCLUSIONS AND FUTURE WORK

A component-based MDA, for power system software applications
development, is presented. The work is underway to standardize some
segments of the architecture according to the OMG’s MDA specifica-
tion. Components of the test architecture can be obtained upon request
to the authors, without any charge.
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