Imprinting superconducting vortex footsteps in a magnetic layer

Jérémy Brisbois

Experimental Physics of Nanostructured Materials, ULg

LABORATORY OF PHYSICS OF NANOSTRUCTURED MATERIALS

Flux penetration in superconductors observed by magneto-optical imaging (MOI) dissipation in normal core *H* increased vortex motion efficient heat removal T raises locally Smooth **Flux avalanches** flux penetration

Why study flux avalanches?

The system undergoes a dramatic transition to a state of lower energy.

Avalanches are harmful to superconductivity and practical applications.

→ observe, control and avoid flux avalanches.

Imprinting magnetic fields

Idea: use a magnetic layer to record the vortex trajectories.

Avalanches reach the Py at full speed and at different angles.

Magnetic field of the Py layer

The direction of magnetization is easily controlled...

In-plane saturation field $\sim 2 \text{ mT}$

... and easily reversed!

Vortex footprints in the Py layer

The reversal of the in-plane magnetization leaves a head-to-head domain wall with out-of-plane field.

J. Brisbois et al., Sci. Rep. 6, 27159 (2016).

L. Uspenskaya *et al., JAP* **113**, 163907 (2013).

Imprinting flux avalanches

Guiding along the direction of magnetization

Printings are stable, even up to room temperature!

Room temperature printings

Imprinting works also at room temperature \rightarrow tune the magnetic landscape at will

Conclusions

- \checkmark Flux is guided by the Py layer.
- ✓ Flux penetration (smooth and avalanches) can be imprinted in a magnetic layer.
- \checkmark The printings are stable and can even be observed at room temperature.

Perspectives:

- ✓ Improve the magnetic recording of flux penetration
- ✓ Tune the magnetic landscape at will to guide flux/avalanches

C. Stahl et al., EPL 106, 27002 (2014).

R. F. Lopes et al., J. Appl. Phys. 121, 13905 (2017).

Additional information: J. Brisbois *et al.*, *Sci. Rep.* **6**, 27159 (2016). EPNM website: www.mate.ulg.ac.be

Thank you for your attention!

LABORATORY OF PHYSICS OF NANOSTRUCTURED MATERIALS

