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Abstract—In this paper, a chance-constrained optimization
(CCO) is presented to handle uncertainty in control of transmis-
sion voltages. A control scheme is proposed using a steady-state
system model to achieve the goal of online voltage control and
preventing long-term voltage instability. In order to model
steady-state system response, the long-term model of governors
and Automatic Voltage Regulators are employed in the control
scheme. The Nordic32 test system is selected to show the simula-
tion results of the proposed technique.
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(CCO),

I. INTRODUCTION

HE goal of voltage control is to keep system voltages

within specified limits while accounting for associated
limits such as generators reactive powers. After a large distur-
bance, power systems might face nonviable or unstable volt-
ages, potentially leading to voltage instability that need to be
corrected [1], [2]. An important issue in this regard is to ensure
that, given anticipated uncertainty in system model, the control
scheme results in control actions that lead to feasible operating
conditions.

Online voltage control schemes, related to corrective actions,
are addressed in several works. In [3], a receding horizon mul-
tistep optimization is proposed to control transmission voltages
based on steady-state power flow equations. A coordinated sec-
ondary voltage control according to sensitivity analysis, oper-
ational in two French control centers, is presented in [4]. The
feasibility of utilizing the French voltage control scheme for
emergency actions, namely load shedding, is presented in [5]. A
model predictive control (MPC) approach is used in [6], where
the coordination of generator voltage settings, tap changers, and
load shedding is presented and solved by the tree search opti-
mization technique. Reference [7] studies a coordinated voltage
control framework based on nonlinear system equations with
Euler state prediction and pseudo gradient evolutionary pro-
gramming.
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The literature dealing with uncertainty in voltage control
is mostly based on preventive actions, performed with offline
analysis. In [8], a framework is proposed to minimize voltage
stability L-index subject to contingencies where uncertainty
in forced outage rate of generations and transmission lines are
incorporated using fuzzy membership function. In [9], reactive
power reserve is maximized based on static system equations
using an improved particle swarm optimization, and then,
given uncertainties in system parameters and variables, the
probability of voltage collapse is estimated by a trained radial
basis function network. In [10], a security constrained optimal
reactive power planning is studied employing fuzzy sets to
model uncertainty in demand. A sampling-based approach is
proposed in [11] to evaluate voltage stability of series-compen-
sated transmission lines taking into account uncertainty in load
parameters. A fuzzy multi-objective algorithm is presented [12]
to control of distribution voltages where uncertainty in active
load power, load power factor, and source-node voltage is
incorporated using membership functions. A stochastic evalua-
tion of distribution voltage profiles with distributed generation
(DG) is studied in [13] considering uncertainty in load, DG
production, and network configuration. A probabilistic voltage
stability analysis is presented in [14] using Monte Carlo simu-
lation and D’ matrix method where uncertainty in demand and
equipment availability exists. In [15], the CCO approach to
optimal power flow problem is demonstrated and the problem
is solved considering individual chance constraints via linear
approximation of power flow equations. In [16], the stochastic
optimal reactive power dispatch is proposed and solved via
CCO approach and genetic algorithm with the aid of a linear
model based on sensitivity analysis.

In addition to CCO, scenario-based techniques and two-stage
recourse models are frequently used in stochastic optimizations.
In the scenario-based technique, the optimization problem is
solved for selected scenarios and then the weighted expected
value of all solutions is normally calculated as the final solution
[17]. In the two-stage recourse model, the solution is divided
into first-stage decisions and second-stage decisions where first-
stage decisions are “here and now” policy (decision variables
are decided before the actual realization of uncertain variables)
and second-stage variables determine which action needs to be
taken against each outcome of uncertain variables [18].

Incorporating uncertainty in online schemes is mainly
studied in the control literature. In [19], an MPC problem
is presented with linear inequality constraints and uncertain
parameters, and solved with CCO. In [20], the real-time op-
timization with nonlinear constraints is studied and solved
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using joint chance constrained and an iterative method. A
chance-constrained-based model predictive control method is
used in [21] where time dependent uncertain variables are in-
volved with corresponding joint distribution functions. In [22],
a probabilistically constrained predictive control considering
joint chanced constraint is proposed and solved by numerical
integration.

In this paper, a CCO approach based on an online voltage-
control scheme is proposed to correct unstable transmission
voltage and mitigate long-term voltage instability considering
uncertainties in the system model. The control actions are
generators voltage reference and load shedding where uncer-
tainty exists in the amount of load available for shedding. A
steady-state nonlinear model is used to determine control ac-
tions needed for voltage correction, and verifying the feasibility
of a derived solution given the existence of uncertainty. To this
purpose, a steady-state model including governor responses,
automatic voltage regulators (AVRs), and power-flow-based
equations are employed in the control scheme. This paper
addresses the shortcoming of single-step optimization (SSO)
presented in [3] in handling model uncertainty. The SSO opti-
mization problem in this paper is reformulated using the CCO
approach where the uncertainty appears in the objective func-
tion and a set of constraints on the amount of load shedding.
The optimization problem is solved using an iterative approach
to satisfy the probability of intersection of probabilistic con-
straints. In [3], uncertainty is not directly considered. The CCO
problem solved in this paper differs from the one presented in
[15] and [16] proposed for optimal-power-flow-based problems
in the sense of using a joint rather than an individual CCO
and solving the nonlinear system model without the need
to linearization. In addition, Latin hypercube sampling with
Cholesky decomposition (LHS-CD) is utilized to generate
efficient samples of the random variables required to derive the
probability of feasibility of computed control actions.

The remainder of this paper is organized as follows. The gen-
eral assumptions and theory behind the voltage control scheme
and CCO is presented in Section II. The problem formulation
of the proposed technique is demonstrated in Section III. Sim-
ulation results are presented in Section IV. Finally, Section V
concludes the paper.

II. ASSUMPTIONS AND BACKGROUND

A. Voltage Control

The objective is to correct nonviable or unstable transmis-
sion voltages after an occurrence of a disturbance in the system.
The focus is on long-term voltage stability where the actions of
load tap changers (LTCs) and overexcitation limiters (OELs) are
mostly involved in dynamic system evolution [2]. It is assumed
that the snapshots of voltage measurements and generators ac-
tive power injections are available with a sample period about
10 s. This can be achieved via a wide-area monitoring (WAM)
system which uses enhanced measurements provided by PMUs.

The control variables considered include generator voltage
setpoints and load curtailment. The problem formulation al-
lows using additional controls, such as transmission-line tap
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changers, active power of generators, and FACTS devices using
their steady-state model. The actions of automatic LTCs is im-
plicitly modeled in the controller utilizing the pre-disturbance
load value calculated based on the last snapshot of measure-
ments received by the controller before the disturbance. This
is attributed to load power restoration which happens via the
restoration of distribution voltages by LTCs, where it can be
assumed that the load evolves to its pre-disturbance value [3].

The amount of load available for curtailment is considered to
be a random variable modeled with a normal distribution. Al-
though any distribution can be used in the proposed stochastic
controller, the normal distribution is selected since it represents
the distribution of demand in power systems [23]. It was
assumed that the constant power factor is preserved, therefore,
the same factor of uncertainty exist in the active and reactive
power available for curtailment. The formulation used in this
paper accommodates incorporating any uncertain parameter
presented as a linear term in the mathematical representation of
the problem.

B. CCO

Chance-constrained is a type of stochastic programming
which incorporates randomness into the model via a proba-
bilistic measure over uncertain constraints [24]. A typical CCO
problem can be written as

min f(y, ¢) (1a)

y
s.t. ho(y)=Pr(g.(y.€) >0 r=1,....,k) >« (1b)
hily)>2pii=1,....m (1c)

where f(y, ¢) is the objective function which generally includes
random variables, y is the vector of decision variables, and ( is
the vector of K random variables with given cumulative den-
sity functions (CDFs) such that F¢ (z) = Pr((; < z) (j =
1,..., K). The set of joint probabilistic constraints is described
in (1b), where P () denotes the probability measure, g1, . . ., gk
are the set of constraints which involve random variables, and «
is the specified confidence level on the probabilistic constraint
to be satisfied. Equation (1c) presents the set of deterministic
constraints with constant lower bounds as p1, ..., p..

The joint probability « is the probability of intersection of &
individual constraints to be satisfied. The solution to the joint
CCO problem can be found directly using a multidimensional
integral given the joint distribution of (. However, this approach
suffers from the problem of numerical processing of a multidi-
mensional integration and the solution space not being convex
[25]. Another approach is to convert the joint chance constraint
to a set of individual chance constraint [24], [26], [27]. In the
case that the function g..(y, ) can be linearly expressed in terms
of  such that g;(y,¢) = >, Tjiyi — ¢,J = 1,..., K, itcan
be shown that the set of equivalent individual chance constraints
can be written as follows:

> Thiyi > E(G) + ) Var(¢5) Za (2a)
/ R 1 -«
Zy=0 (1 - ) (2b)



1570

where F() and Var() are the functions that return the expected
value and variance of a random variable, and ¢ is the standard
normal CDF. Using the individual constraints (2) results in a
more conservative solution than the joint chance constraint (1b).
Therefore, it is required to update the value of Z,, in order to
find a solution which satisfies the required confidence level. The
method for updating Z,, proposed in [26] is used, which is based
on the interpolation of Z,, values and discussed in more details
in Section III-B.

The objective function can be transformed to an equivalent
deterministic one employing the E-model, V-model, or P-model
[24]. In this paper, the E-model approach is considered in which
a linear objective function expressed as f(y,¢) = (Ty is re-
placed with [E(¢)]Ty. This approach was used due to the ob-
served behavior of the problem formulation resulting in objec-
tive values with an average close to the expectation and rela-
tively low variations.

C. Latin Hypercube Sampling With Cholesky Decomposition
(LHS-CD)

Traditionally, Monte Carlo simulation along with simple
random sampling (SRS) is used in probabilistic problems in
power systems such as probabilistic power flow [28], [29].
This method could provide highly accurate results given a
sufficiently large sample size, however, the drawback is the
computational burden associated with the large number of
repeated calculations. Latin hypercube sampling (LHS) was
first introduced in [30] and was shown to produce better results
compared with the SRS method [31], [32]. In traditional LHS,
denoted as LHS-RP, the run order of different samples is
determined based on a random permutation for the number
of samples. However, in multivariate probabilistic problems
as the number of random variables increases, this method
suffers from the lack of producing samples with minimum
correlation among them. In this paper, LHS-CD is used which
can generate samples of random numbers given any predefined
correlation among the variables [33]. Given the characteristic
of ordering matrix generated by LHS-RP being a positive
definite matrix, Cholesky decomposition is employed in order
to set the correlation among variables. In this paper, zero
correlation among the uncertain variables is taken into account.
The details on the algorithm to generate LHS-CD samples can
be found in [32].

III. CCO IN VOLTAGE CONTROL

A. Stochastic Optimization Formulation

In this work, an extension of the SSO scheme presented in
[3] is proposed to accommodate uncertainty in the model. In
addition, it is proposed that steady-state equations can still be
used in the control scheme to model the long-term behavior of
system. The problem of correcting nonviable or unacceptable
transmission voltages can be formulated as finding a new
steady-state equilibrium point while minimizing changes in
control variables. While accounting for uncertainty in system
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model, namely load available for shedding, the associated
CCO-based OPF problem can be written as

Ny )
min Z C; [u”-o(()‘) - 1L,,l-]
Up,up,X

i=1
+F (Z ¢ [upi”(()*) — um]) (3a)
=1
st. g(x,u,s(07))=0 (3b)
urmin S u, S urmax (30)
Pr (upmi“ <up £ upmax) > o (3d)
VI < V(X up, up) < VI (3e)
Qmin S Q(X,ur,up) S Qmax (3f)
P < Pys(x,up,up) <P (g
o 1
P,s(x,up,up) =Py, — EAF (3h)

where x is the state vector, u, and ug are the vectors of 7.,
and n, controlled variables, respectively. u, may be either
decreased or increased such as generator voltage setpoints,
while u, represents controlled variables constrained to be
changed in one direction only, such as load shedding. w,.;°(07)
and upi"(()‘) denote the pre-disturbance value of u, and uy,
respectively, and ¢; reflects the respective costs of the various
controls. Vector V represents bus voltage magnitudes, Q is
the vector of reactive power productions, and P,y represents
active power of generators participating in primary frequency
control. Constraint (3b) models the steady-state operation of
the system in the post-disturbance post-control configuration.
Equation (3h) denotes distributed slack bus model, where P,
is the base generation, R is the speed droop of generators, and
AF is the frequency deviation. In the optimization problem
(3), the uncertainty appears in objective function (3a) and the
set of constraints in (3d).

Several points need to be addressed regarding the control
scheme.

1) Load Power Restoration: As was shown in [3], antici-
pating load power restoration resulted by LTCs actions, instead
of relying on detailed load response model, can lead to a sat-
isfactory voltage control. In this work, the impact of automatic
LTCs is incorporated by setting the load powers to s(0~ ) which
represents pre-disturbance load value.

2) Controller Activation: As noted in Section II, the con-
troller receives measured “snapshots” of voltage and bus power
injections at a 10-s sample period. The controller issues no
changes in control variables while all of the bus voltage mag-
nitudes and reactive power generations are within prescribed
limits. Upon a detection of unacceptable voltages or generator
reactive powers, the controller computes the changes required
in control variables to bring all the measured values back to
acceptable ranges. In addition, the network topology, if changed
after the disturbance, is updated in the controller. A 10-second
delay is also considered to implement control actions on system,
in order to consider computational time and communication
delays between the controller and generator/load sites. Note
that, since the solution to the OPF formulation (3) provides a
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static steady-state operating point to be reached by the system,
there is no need to repeat (3) in a time sequence or receding
horizon.

3) Generator Voltage Setpoints: The terminal voltages of
many generators are different from their AVR setpoints because
of the existence of steady-state error [2]. In (3), it is desired
to find the new AVR setpoints of generators while the terminal
voltage of the machines is involved in the optimization. To deal
with this problem, and knowing that the change in AVR setpoint
results in almost the same change in the terminal voltage of the
machine, the controller provides setpoint “corrections” of AVRs
based on desired changes in terminal voltages.

4) Generators Reactive Powers: According to generator ca-
pability curve, the maximum reactive power limit of each gener-
ator is a function of its associated active power generation and
terminal voltage. Therefore, Q™** is calculated based on re-
ceived snapshots of bus voltages and active power generation
utilizing [2. eqs. 3.32a, 3.32b, and 3.49], where the effect of
saturation is neglected for the sake of simplicity. The equations
are given in the Appendix.

The actions of OELs limiting the field current of generators
need to be incorporated in the controller since they prevent gen-
erators from increasing their voltages. However, in practice, it
is rarely possible to have the information about the field current
profiles, or the action of OELs in the control center. Instead,
using the snapshot of a generator reactive power, it is likely that
the field current of a generator becomes limited by the action
of its OEL when the sampled reactive power is equal or higher
than its Q™#*. Therefore, no increase in voltage of generators
exceeding their maximum reactive power is allowed in (3).

B. CCO Solution Approach

The solution to optimization problem (3) is required to be
feasible and able to stabilize the system within a preassigned
boundary of probability o« = A«. The joint probabilistic con-
straint (3d) is a function of multirandom variables that is trans-
formed to a set of deterministic constraints. As described in
Section II-B, the upper bound of the joint constraint (3d) can
be written as separated equivalent deterministic equations such
that

where 1; and 012 are the mean and variance of the jth curtail-
able demand with normal distribution. Z,, could be interpreted
as the loading level, which is equal to ¢~'(1=2). The same ap-
proach can be used to convert the lower bound in (3d) to the indi-
vidual deterministic constraints, which results in the following
equations:

Up; > Bluj—ojZa)j=1,..., K 5)
where [ is the fraction of desired load to be not shed, in other
words (1 — /) denotes the maximum fraction of load allowed

to be curtailed. Note that, care must be taken into account when
choosing (3, since relatively high values of /3 would lead to the
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load shedding lower bound in (5) to be higher than the upper
bound in (4) and, consequently, infeasibility of the problem.
The objective function (3a) is transformed to the equivalent
deterministic one using the E-model [24], where u;(07) is re-
placed with 1,7 =1,..., K.
For solving the CCO problem, the following three steps are
performed iteratively.

Step 1) Problem (3) is solved with the equivalent determin-
istic objective function and the constraints (3d) on
load shedding replaced with (4) and (5) for a fixed
scalar Z, to determine the set of new controlled
variables.

Step 2) The LHS-CD technique is used to efficiently sample
the random variables to determine if the specified
confidence level has been reached. For each sample
taken, new AVR setting of generators, and the
amount of load on curtailable buses are updated by
the solution found in step 1). Although a dynamic
model of system is needed to completely ensure the
effectiveness of the derived solution with respect
to the randomness in demand, this paper proposes
a steady-state model of the system in which the
feasibility of the solution is examined. The feasi-
bility model can be described as finding a feasible
operating point for the set of following equations:

g(x,s(07)) =0 (6a)
VI (Vo) < V(x) < VIV ,0p) (6b)
QIII?II S Q(X) S anax (60)
P <Ps(x) <P (6d)

1
P,s(x) =P — EAF (6¢)

where constraint (6a) models the steady-state oper-
ation of the system, and s(0F) describes the system
loading level after considering the derived load
shedding. V™*(V ¢) and V™ (V,.¢) in (6b)
are the minimum and maximum terminal voltage
of generators corresponding to the AVR setpoints,
respectively. Constraints (6¢) represent reactive
power limits, and (6d) and (6e) are to model dis-
tributed slack bus as commented in Section III-A.

The terminal voltage limits are calculated based on
the new AVR setpoint, active power generation and
minimum and maximum reactive power generation
using [2, eqs. 3.32a, 3.32b, and 3.44] (see the Ap-
pendix) neglecting the effect of machine saturation.
The new AVR setpoints can be computed by adding
the default setpoints to the terminal voltage correc-
tions determined in step 1). In order to avoid adding
complexity to the model, Q™" and Q™** in (6¢) are
considered to be the static limits of reactive powers.
Another option is to incorporate the maximum reac-
tive limit equations (i.e., [2, egs. 3.32a, 3.32b, and
3.49]) along with the equations for terminal voltage
of generators based on the AVR setpoint (i.e., [2,
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eqs. 3.32a, 3.32b, and 3.44]) directly into (6). How-
ever, using this approach was not observed to have
significant improvement on results other than in-
creasing the computational burden of solving the
equations.

Finally, by dividing the number of feasible cases
over Nii.1 samples, the probability of feasibility,
Pr..s, 1s determined.

Step 3) If |& — Preas| < A then the algorithm is stopped;
else Z, is updated and the previous steps are re-
peated. The method for updating Z,, is based on in-
terpolation between an upper and lower bound value
of Z., and continue this procedure with replaced
values for the upper or lower bound until the final
value satisfying the stopping criterion is reached.
The interpolation method can be found in more de-
tail in [26].

Compared with the SSO approach presented in [3], both papers
rely on the steady-state system model to optimize the control ac-
tions. However, no uncertainty is modeled in the optimization
problem in [3]. In the proposed approach, the objective function
includes a linear term corresponding to uncertain variables. In
addition, the set of constraints (3d) incorporates uncertainty on
the available load for shedding, where this is not directly con-
sidered in [3].

IV. SIMULATION RESULTS

A. Test System and Simulation Data

The proposed control scheme is implemented on Nordic32
test system [34] shown in a single-line diagram in Fig. 1. This
system contains 52 buses and 20 synchronous machines (speci-
fied as g, followed by generation number). A detailed dynamic
model of generators, AVRs, governors, and load is considered
to ensure employing the controller in realistic conditions. For
each generator, the model includes [34]-[36]: a standard syn-
chronous machine model with three or four rotor windings, a
simple governor for generators in the North and Equiv areas
(the other generators do not participate in frequency control),
and a simple automatic voltage regulator including an over-ex-
citation limiter. The synchronous machines gl—g5, g8—g12, and
g19—g20 are hydro units with the speed droops of 0.08 p.u. on
machine basis for g19 and g20 and 0.04 p.u. for the rest of the
hydro units. Each load is fed through a transformer with auto-
matic load tap changer. There is a delay of 30 seconds on the
first tap change and a shorter delay on the subsequent steps.
Each load is represented by an exponential model with expo-
nent 1(constant current) for the active power and exponent 2
(constant admittance) for the reactive power. More details on
the machine parameters and load models can be found in [35],
[36]. The model was simulated with MATLAB/SIMULINK using a
variable step-size method to simulate its dynamics, and the opti-
mization problem was solved using GAMS-IDE with the [IPOPT
solver interfaced with SIMULINK through MATGAMS [3]. The
simulations were executed on a Windows machine equipped
with Intel 2.00-GHz CPU and 2 GB of RAM.

The proposed controller is able to change 20 generator volt-
ages in the range [0.95 1.07] pu, and the loads at buses 1022,
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Fig. 1. One-line diagram of Nordic32 test system [34].

1041, 1042, 1043, 1044, 1045, and 2031. Only the distribution
of the load at the seven buses is known to the controller, which
is a normal distribution where there is 20% maximum error in
the mean value, and no correlation among random variables.
The associated costs related to the controls are: 10° for load
shedding and 10~ for generator voltages. A maximum rate of
control changes, (3c), is specified on generator voltages equal
to 0.05 pu. The tolerance in probability of feasibility, Ac, was
considered to be 0.01.

B. Sampling Technique

The performance of LHS-CD was compared with LHS-RP
and Monte Carlo with SRS sampling to demonstrate the effec-
tiveness of LHS-CD. In addition, the number of LHS-CD sam-
ples required to ensure satisfying the specific confidence level is
determined. This analysis was based on running the feasibility
model off-line with different number of samples for solutions
derived from the equivalent deterministic model described in
Section III-B.

It was assumed that the results obtained from 50 000 Monte
Carlo with SRS runs are accurate enough to be used to calcu-
late the error of different sampling methods. Fig. 2 illustrates the
average error in standard deviation of probability of feasibility
repeated 20 runs for different sampling methods and sampling
numbers. The average error in mean value of probability of fea-
sibility was found to be less than 0.7% for all three sampling
techniques and, therefore, is not shown. As seen in Fig. 2, the
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Fig. 2. Error in standard deviation of probability of feasibility for different
sampling methods with respect to sampling numbers.

LHS-CD achieves a better performance in terms of produced
error compared with SRS and LHS-RP.

In addition, it can be observed that with 100 samples the prob-
ability of feasibility could be achieved with an error in standard
deviation of approximately 1.5% which is the almost around the
accepted tolerance in Ac. For the above reason, 100 samples
generated by the LHS-CD method are used in all tests reported
hereafter.

The requirement for the number of samples was verified after
running offline simulations for different operating conditions.
Although different operating conditions might affect the con-
vergence of the equations and consequently the number of sam-
ples, a significant difference for the case of Nordic32 system
was not found. In addition, the solution derived with the pro-
posed control scheme was shown to be conservative in terms
of the chance of system saving allowing some compromise in
terms of number of samples. The number of samples for other
systems can be determined by a similar approach.

C. Stabilization of an Unstable Scenario

A disturbance case was considered where the outage of
transmission line 4032—4044 (Fig. 1) happens at £ = 20s. As
the result of actions of automatic LTCs trying to restore the
load, and the field current limitation of g6, g7, gl1, gl2, g13,
gl4, g15, and gl6, the system collapse happened at £ = 136 s.
Using the deterministic controller with the uncertain loads
represented by their mean values, resulted in system collapse
at t = 429s. Although the controller expected to stabilize
the system by shedding 123.7 MW load, it failed due to the
actual loads being different than the expected values. The
actual amounts of curtailable loads in this case were (102, 107,
104, 107, 92, 102, 95)% of the mean value. The CCO with
a = 0.9 was implemented in the controller, and it was able to
stabilize the system for the described case, with 314-MW load
shedding. The voltage profile of bus 1044 is shown in Fig. 3
for three cases of: without controller, deterministic controller,
and stochastic controller. Note that, incorporating the “actual”
amount of load, i.e., considering perfect information about
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Fig. 3. Voltage at bus 1044 without controller, with the deterministic and sto-
chastic controller.

the load available for shedding, in the deterministic controller
resulted in 192 MW of load shedding.

The above simulation, with & = 0.9, was performed with
100 samples of the initial load at curtailable load buses, which
resulted in 91 stabilized cases. In the successful cases, the
amount of the curtailed load was almost the same with an
average of 308 MW and 7-MW standard deviation. As can be
seen, the controller was observed to be slightly more conser-
vative in satisfying the desired confidence level compared to
the actual response of the system. However, the steady-state
feasibility model can still provide a satisfactory solution in a
reasonable time without incorporating dynamic system equa-
tions. By using the deterministic controller with the mean value
of uncertain loads, it was found that the controller was able to
stabilize the system only in 48 cases, therefore, the value of
using the stochastic controller is to enhance voltage stability of
the system by the factor of 90%.

For the above set of simulations, the values of # which led
into feasibility of (4) and (5) were found to be greater than 0.72.
This value can be calculated based on the minimum value of
Z, 1o be used in the CCO iterative approach. For those values
of 3, it was observed that (5) is not a binding constraint on the
optimization problem. Similar results were found for the rest of
simulations described hereafter.

D. Stabilization of a Low-Profile (Stable) Scenario

A low-profile but long-term stable voltage scenario was
addressed with the same transmission line outage occurrence
where the load in Central area (see Fig. 1) is initially lower.
Similar to Section IV-C, the actual amounts of curtailable loads
were (102, 107, 104, 107, 92, 102, 95)% of the mean value.
As illustrated in Fig. 4 with dotted curve, voltage at bus 1041
fell below the minimum limit of 0.95. Using the deterministic
controller with the mean value of load at curtailable buses
did not improve the situation, as shown by the dashed curve
in Fig. 4. The stochastic controller with @« = 0.9 was able to
restore all bus voltages within the acceptable range by adjusting
generator voltages and 199 MW of load shedding.
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E. Sensitivity Analysis

Here, the sensitivity of the results to the confidence level and
maximum error in the load available for shedding is analyzed.
The results of load shedding, presented in this section, are the
average values based on running the simulations with 100 sam-
ples of initial load on curtailable buses. In all scenarios, the it-
erative algorithm was converged to a solution.

At first, the impact of different confidence levels on the re-
sults was investigated as illustrated in Fig. 5. In this figure, the
amount of load shedding, the expected chance of system col-
lapse and the actual chance of system collapsed are presented.
As can be observed, lower confidence levels lead to lower
amount of load shedding with the compromise of increasing
the chance of system failure, and vise versa. The amount of
load shedding increases rapidly from v = 0.92 with the advan-
tage of higher chance in system stabilization. In addition, the
controller is conservative for the all values of o with the most
conservative solution for @ = 0.92 which resulted in actual
chance of system stabilization being as 97%.
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In the final set of simulations, the effect of changing the max-
imum error in the load on curtailable buses was verified. The
level of confidence level was selected to be & = 0.9 in this set
of results. Increasing the maximum error in load led to higher
amount of load shedding. The maximum error in the load was
increased from 10% to 30% of the mean value, which resulted
in 200-370-MW average curtailed load. The number of stabi-
lized cases was above 91 for all different values of maximum
errors, ranging from 91 to 93 cases.

F. Computational Burden

The computational burden of the proposed controller is
composed of the time required for the iterative procedure of
solving optimization problem (3) and feasibility model (6). In
the Nordic32 test system, the problem (3) contains 124 equality
constraints, up to 129 inequality constraints, 103 state variables,
and up to 27 controls. The feasibility model (6) involves 124
equality constraints, 94 inequality constraints, and 103 state
variables. The computational burden of the proposed controller
is mainly due to the iterative approach needed to be performed
to find the solution.

Problems of large dimension may require specific computing
structures, such as parallelism and multicore machines to
achieve computational times appropriate for real-time applica-
tions. Problems of moderate dimension should be efficiently
solved using sequential processors (including the possibility for
model reduction by considering lower dimension problem of
specific part of the system with full exploitation of the problems
structure such as sparsity).

With respect to adopting data parallelism for large dimension
problems [37], solving the feasibility model (6) for different
samples is an independent task that can be distributed over sev-
eral machines. Therefore, the total computational time in each
iteration is the summation of simulation time of optimization
problem, found to be 0.01 s, and the maximum time spent on
running the feasibility model for each sample, which is 0.25 s.
The higher computational time of feasibility model compared
with the optimization problem is due to infeasible cases that
might happen in the former and CPU time consumed till the
maximum number if iterations is reached. Since no communi-
cation is required between individual threads, communication
time can be neglected in this regard [38].

V. CONCLUSION

A CCO was proposed in order to consider online voltage
control where uncertainty is involved in available load for
shedding. A steady-state model was developed to ensure satis-
fying the given confidence level with the solution found by the
equivalent deterministic problem. The LHS-CD technique was
employed to efficiently sample from normally distributed load,
and was shown to be effective compared with the SRS, and
LHS-RP techniques. Scenarios with unstable voltage, and low
but stable voltage profiles were considered to show the effec-
tiveness of the proposed controller in different situations. Using
the steady-state model to verify the feasibility of the derived
solution was shown to lead to acceptable results. Sensitivity
analysis around the confidence level and the maximum error in
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curtailable loads was conducted. Finally, a discussion on the
computational burden of the proposed controller was provided.

APPENDIX

Using [2, eqs. 3.32a, 3.32b, 3.44, and 3.49] in this paper to
calculate maximum reactive power of generators and terminal
voltage limits as a function of AVR setpoints yields

P EEV (s — 6)
= sin(6 —
XlEq + (X(l - XI)E(;
+ E, V2 ( 1
2 \XiE, + (X, - X))E;
1
_ sin 2(8 —
XF, T (Xae XZ)E;> sin2(6 —6)  (7a)
0 EEV (6-0)
= cos(6 —
XiEg+ (Xq - Xl)Eg
B EqVQ( sin?(6 — 6) :
XlEq + (Xq — Xl)Eq
c082(6 — 6
cos?( ), ) (7b)
XiEy + (X — Xp) B3
E, =G(Viet — V) (7c)
Eq :E;inl (7d)

where E; is the open-circuit voltage of machine, E7 is the sat-
urated open-circuit voltage, X4, and X, are direct and quadra-
ture axis synchronous reactance, respectively, X; is the leakage
reactance, 6 — # is the internal angle. Vot and G are the AVR
setpoint and AVR gain of the machine, respectively. P, ¢}, and
V' are the machine active power, reactive power, and terminal
voltage, respectively.
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