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Abstract. Thermal adaptation of gross primary production
and ecosystem respiration has been well documented over
broad thermal gradients. However, no study has examined
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their interaction as a function of temperature, i.e. the ther-
mal responses of net ecosystem exchange of carbon (NEE).
In this study, we constructed temperature response curves of
NEE against temperature using 380 site-years of eddy covari-
ance data at 72 forest, grassland and shrubland ecosystems
located at latitudes ranging from∼29◦ N to 64◦ N. The re-
sponse curves were used to define two critical temperatures:
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transition temperature (Tb) at which ecosystem transferring
from carbon source to sink and optimal temperature (To) at
which carbon uptake is maximized.Tb was strongly corre-
lated with annual mean air temperature.To was strongly cor-
related with mean temperature during the net carbon uptake
period across the study ecosystems. Our results imply that
the net ecosystem exchange of carbon adapt to the temper-
ature across the geographical range due to intrinsic connec-
tions between vegetation primary production and ecosystem
respiration.

1 Introduction

Temperature is considered the most important extrinsic fac-
tor influencing biological systems across the scales from the
kinetics of biochemical reactions to ecosystem biogeochemi-
cal processes including carbon cycling (Johnson et al., 1974).
Both photosynthetic carbon assimilation (i.e. gross primary
production, GPP) and ecosystem respiration (Re), the two
largest fluxes determining the net ecosystem exchange (NEE)
of CO2 in terrestrial ecosystem, are temperature sensitive.
A number of studies have shown significant thermal adapta-
tions of GPP andRe in ecosystems (Luo et al., 2001; Melillo
et al., 2002; Galmés et al., 2005; Eliasson et al., 2005; Wright
et al., 2006; Angiletta, 2009; Bradford et al., 2009). For ex-
ample, Baldocchi et al. (2001) examined a variety of ecosys-
tem types and suggested that the temperature optimum for
ecosystem GPP is a function of mean summer temperature.
Plant autotrophic respiration also represents the adaptation to
the prevailing ambient temperature by adjustment of enzyme
activity and substrate availability (Atkin and Tjoelker, 2003).

Thermal adaptation of GPP andRe, however, has mostly
been studied individually, with relatively little known about
their interaction as a function of temperature, i.e. the thermal
responses of NEE. When considering the combined thermal
responses of GPP andRe, some studies conducted within
individual sites demonstrated thermal adaptation of the net
ecosystem exchange of CO2 (Luyssaert et al., 2007; Way and
Sage, 2008). For example, a high-elevation forest ecosys-
tem was found to adapt to low temperatures; while high tem-
peratures in the midsummer constrained photosynthesis and
stimulated respiration, causing a greater reduction in carbon
sequestration strength (Huxman et al., 2003).

Different functions are used to describe the responses of
GPP andRe to temperature among the models for predicting
ecosystem responses to global change at global or regional
scales (Running and Coughlan, 1988; Running and Gower,
1991; Potter et al., 1993; Woodward et al., 1995; Foley et
al., 1996; Wang et al., 2010 Is it 2011?). These mod-
els tend to represent GPP andRe as separate functions de-
spite recent findings that these opposing carbon fluxes are
strongly coupled (Ekblad and Hogberg, 2001; Högberg et
al., 2001; Bhupinderpal-Singh et al., 2003). Thermal proper-

ties of NEE, if consistent across a broad geographic range,
may result in a simple whole-ecosystem understanding of
ecosystem carbon metabolism (Baldocchi et al., 2005) that
will both be useful for modeling studies while stimulating
research on how ecosystems respond to and adjust to shifting
thermal constraints.

From the standpoint of ecosystem carbon balance regu-
lation and prediction, one can define temperature threshold
points. We studyTb, the temperature at which NEE changes
from carbon source to sink andTo the optimal temperature
for carbon uptake.Tb is related to the length of carbon up-
take period, which is the primary determinant of annual NEE
(Baldocchi et al., 2001; Churkina et al., 2003; Jia et al., 2010

Not mentioned in the ref. list?), andTo corresponds
with the maximum NEE, which is a signature for the poten-
tial carbon sequestration capacity of ecosystem (Falge et al.,
2002). Our overarching goal of this study is to investigate the
thermal adaptation of ecosystems on NEE by examining the
value ofTb andTo of ecosystems across a broad geographic
range.

2 Data and methods

We used eddy covariance (EC) data from the AmeriFlux
(http://public.ornl.gov/ameriflux) and CarbonEuropeIP
(http://gaia.agraria.unitus.it/database/carboeuropeip/) con-
sortia. We selected the non-crop sites which include at least
two years measurements. Eventually, direct flux measure-
ments of CO2 based on eddy covariance technology from
72 sites consisting of 380 site-years of data were included
in this study to explore the changes ofTb andTo, including
five major terrestrial biomes: deciduous broadleaf forests
(DBF), evergreen needleleaf forests (ENF), mixed forests
of deciduous broadleaf and evergreen needleleaf species
(MIX), shrublands (SHR) and grasslands (GRS) (Table 1).
Supplementary information on the vegetation, climate, and
soil of each site are available online.

Half-hourly or hourly averaged global radiation (Rg), pho-
tosynthetically active radiation (PAR), air temperature (Ta),
and friction velocity (u∗) were used in conjunction with eddy
covariance fluxes of CO2 (Fc). When available, datasets gap-
filled by site investigators were used for this study. For other
sites, data filtering and gap-filling were conducted according
to the following procedures. An outlier (“spike”) detection
technique was applied, and the spikes were removed, follow-
ing Papale et al. (2006). Because nighttime CO2 flux can be
underestimated by eddy covariance measurements under sta-
ble conditions (Falge et al., 2001 Not mentioned in the
ref. list?), nighttime data with nonturbulent conditions were
removed based on au∗-threshold criterion (site-specific 99 %
threshold criterion following Papale et al., 2006, and Reich-
stein et al., 2005).

Nonlinear regression methods were used to fillFc data
gaps (Falge et al., 2001), and the correlation measured fluxes
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Table 1. The FLUXNET sites used in this study arranged according to ecosystem type.

Site name Type1 Lat2 Lon3 PPT4 MAT5 Period6 Ratio (%)7

CA-Oas DBF 53.63 –106.20 428.53 0.34 1997–2006 45
DE-Hai DBF 51.08 10.45 780.29 7.15 2000–2007 36
DK-Sor DBF 55.49 11.65 573.44 8.03 1996–1999 32
FR-Hes DBF 48.67 7.06 793.3 9.24 1997–1999 39
IT-Co1 DBF 41.85 13.59 970.88 7.32 1996–2003 42
IT-Non DBF 44.69 11.09 741.77 13.56 2001–2003 48
IT-Ro1 DBF 42.41 11.93 763.66 15.35 2000–2006 39
IT-Ro2 DBF 42.39 11.92 760.27 15.40 2002–2006 48
Toledo DBF 41.55 –83.84 357.14 15.40 2004–2005 59
UK-Ham DBF 51.12 –0.86 829.39 9.38 2004–2005 318

US-Bar DBF 44.06 –71.288 1245.77 5.61 2004–2006 69
US-Dk2 DBF 35.97 –79.10 1168.69 14.36 2001–2005 56
US-Ha1 DBF 43.54 –72.17 1071.00 6.62 1992–2006 478

US-MMS DBF 39.32 –86.41 1031.57 10.85 1999–2006 63
US-Moz DBF 38.74 –92.20 985.50 12.11 2004–2007 52
US-Oho DBF 41.55 –83.84 842.84 9.43 2004–2005 51
US-Wbw DBF 35.96 –84.29 1372.05 13.71 1995–2007 358

US-WCr DBF 45.81 –90.08 787.19 4.02 2000–2005 48
CA-Ca1 ENF 49.87 –125.33 1369.24 9.93 1998–2006 63
CA-Man ENF 55.88 –98.48 227.14 –1.17 1994–2006 608

CA-NS1 ENF 55.88 –98.48 500.29 –2.89 2001–2005 58
CA-NS2 ENF 55.91 –98.52 499.82 –2.88 2001–2005 53
CA-NS3 ENF 55.91 –98.38 502.22 –2.87 2001–2005 51
CA-NS4 ENF 55.91 –98.38 152.68 –0.82 2002–2004 47
CA-NS5 ENF 55.86 –98.49 500.34 –2.86 2001–2005 56
CA-NS6 ENF 55.92 –98.96 495.37 –3.08 2001–2005 53
CA-NS7 ENF 56.63 –99.95 319.08 1.25 2002–2005 67
CA-Obs ENF 53.99 –105.12 405.60 0.79 1994–2006 63
CA-Ojp ENF 53.92 –104.69 430.50 0.12 2000–2006 62
CA-SF1 ENF 54.49 –10.82 423.69 –0.15 2003–2005 63
CA-SF2 ENF 54.25 –105.88 435.12 –0.08 2003–2005 72
CA-SF3 ENF 54.09 –106.01 441.78 0.08 2003–2005 59
CA-TP1 ENF 42.66 –80.56 907.98 8.57 2003–2007 54
CA-TP2 ENF 42.77 –80.46 935.85 8.74 2003–2007 56
CA-TP3 ENF 42.71 –80.35 935.855 8.74 2003–2007 68
CA-TP4 ENF 42.71 –80.36 935.85 8.74 2002–2007 63
US-AKCon ENF 63.88 145.73 317.25 –0.25 2002–2004 61
DE-Bay ENF 50.14 11.87 1159.35 5.15 1997–1999 568

DE-Tha ENF 50.96 13.57 643.09 8.12 1997–2006 52
FI-Hyy ENF 61.85 24.29 620.20 2.18 1997–2000 49
FR-Lbr ENF 44.72 –0.77 923.54 12.49 1996–2003 58
IT-Sro ENF 43.73 10.28 897.61 14.77 1999–2003 54
NL-Loo ENF 52.17 5.74 786.16 9.36 1997–2003 56
SE-Faj ENF 56.26 13.55 761.00 7.58 2005–2006 52
SE-Fla ENF 64.11 19.46 615.98 0.27 1996–1998/2000–2002 53
SE-Nor ENF 60.08 17.47 512.36 6.46 1996–1997 54
SE-Sk2 ENF 60.12 17.84 573.45 5.25 2004–2005 45
US-Blo ENF 38.90 –120.63 1630.00 12.50 1997–2006 53
US-Dk3 ENF 35.98 –79.09 1169.69 14.36 1998–2005 61
US-Ho1 ENF 45.20 –68.74 1070.29 5.27 1996–2004 638

US-Ho2 ENF 45.21 –68.75 787.75 6.51 1999–2001 608

US-Me1 ENF 44.58 –121.50 704.61 7.88 1999–2002 52
US-Me2 ENF 44.45 –121.55 522.88 6.28 2002–2007 51
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Table 1. Continued.

Site name Type1 Lat2 Lon3 PPT4 MAT5 Period6 Ratio (%)7

US-Me3 ENF 44.32 –121.61 719.25 7.07 2004–2005 48
US-Me4 ENF 44.50 –121.62 1038.82 7.61 1999–2000 53
US-NR1 ENF 40.03 –105.55 632.32 2.46 1998–2004 51
US-SP1 ENF 29.74 –82.22 1309.77 20.06 2003/2005/2006 46
US-SP2 ENF 29.76 –82.24 1314.41 20.07 1999–2004 45
US-SP3 ENF 29.75 –82.16 1312.35 20.25 1999–2003 47
US-Wrc ENF 45.82 –121.95 2451.96 9.45 1999–2004 52
NL-Cal GRS 51.97 4.93 776.67 9.59 2003–2006 458

NL-Haa GRS 52.00 4.81 534.72 4.94 2003–2004 52
NL-Hor GRS 52.03 5.07 779.70 9.50 2004–2006 538

NL-Mol GRS 51.65 4.64 218.48 3.73 2005–2006 548

CA-Let GRS 49.71 –112.94 398.40 5.36 2001–2004 61
US-Wkg GRS 51.52 –96.86 209.31 18.36 2002–2004 63
US-Wlr GRS 37.52 –96.85 995.70 13.10 2002–2004 52
US-Syv MIX 46.24 –89.35 391.93 5.20 2002–2006 71
US-UMB MIX 45.56 –84.71 615.64 7.35 1999–2003 518

BE-Vie MIX 50.30 6.00 821.02 8.31 1996–1998 458

BE-Bra MIX 51.30 4.52 822.39 11.34 1996–1999 428

US-Los SHR 46.08 –89.98 690.12 4.72 2001–2005 648

1 Ecosystem type, DBF: deciduous broadleaf forest; ENF: evergreen needleleaf forest; GRS: grassland; SHR: shrub wetland; MIX: mixed deciduous and evergreen needleleaf forest.
2 Positive value indicates north latitude.
3 Negative value indicates west longitude, positive value indicates east longitude.
4 PPT: mean annual precipitation (mm yr−1).
5 MAT: mean annual temperature (◦).
6 Available years.
7 The percent of measurements that were used in this analysis.
8 These sites do not measure the soil moisture, so all measurements are used in these sites.

and controlling environmental variables were fit using a 15-
day moving window. The van’t Hoff (see Lloyd and Taylor,
1994) equation was used to fill the missing nighttime fluxes
(Fc,night):

Fc,night= Ae(BTa) (1)

where,A andB are estimated model coefficients, andTa is
air temperature. A Michaelis-Menten light response equation
was used to fill the missing daytime fluxes (Fc,day) (Falge et
al., 2001):

Fc,day=
α ·PAR·FGPP,sat

FGPP,sat+α ·PAR
−FRE,day (2)

whereFGPP,sat(GPP at saturating light) andα (initial slope of
the light response function) are empirically-estimated coeffi-
cients, andFRE,day (daytimeRe) was estimated by extrapola-
tion of Eq. (1) using the daytime air temperature. Daily mete-
orological and flux variables values were synthesized based
on half-hourly or hourly values, and the daily values were
indicated as missing when missing hourly values exceeded
20 % of potential observations during each day.

The decreased solar radiation during cloudy days signif-
icantly restricts GPP more thanRe, resulting in a reduced
NEE. To exclude the influence of clouds on NEE and thus

isolate the temperature response, the cloudy days were ex-
cluded from our analysis (Fig. 1a). Cloudiness was defined
by using a clearness index (CI), defined as periods when the
ratio of the global solar radiation received on the surface to
the extraterrestrial solar radiation exceeded 0.5. On average,
35 % of days were removed which were defined as the cloudy
days. The amount of cloudy days excluded varied among
sites and ranged from 45 % (US-MMS) to 23 % (SE-Nor).
Moreover, the effects of drought on NEE during the growing
season were accounted for in a simplified way. A water stress
index (WSI) was calculated as:

WSI=
SW−SWW

SWF−SWW
(3)

where SW is the observed soil moisture content (m3 m−3).
SWW is wilting point of soil (m3 m−3), and SWF is water
field capacity of soil (m3 m−3). They were set to the max-
imum and minimum soil moisture content during the grow-
ing season. Measurements when the WSI during the grow-
ing season (April to September) were less than 15 % were
excluded from this analysis. The excluding measurements
made under water-stressed conditions resulted in the exclu-
sion of 16 % of measurements ranging from 13 % at US-Bar
to 28 % at US-Wkg. In total, 53 % of available measurements
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Fig. 1. Comparison on net ecosystem exchange (NEE) between all
days and sunny days(a) and wet days(b) and selected days ex-
cluding both cloudy and drought days(c) at DE-Tha site. Negative
values on y-axes indicate that carbon is absorbed by the ecosystem,
while positive values indicate that that carbon is released by the
ecosystem to the atmosphere.

were used in this analysis ranging from 31 % at UK-Ham to
72 % at CA-SF2.

From−30◦ to its maximum, temperature categories were
set every 1◦ increments. Air temperature and NEE for each
site were averaged within each increment over the study
years in order to examine the changes of NEE with tem-
perature to determineTb andTo (Fig. 2). The start and end
dates of carbon uptake were identified as the day when daily
NEE shifted signs (Falge et al., 2002). To deduce these dates
objectively, an 11-day running mean was calculated and the
onset date of carbon uptake was determined when consecu-
tive foregoing days acted as a net carbon source to the atmo-
sphere, and subsequent days represented a net carbon sink.

3 Results

Our analysis shows thatTb and To decreased significantly
with latitude, which co-varies strongly with temperature
(data not shown). Tb was strongly correlated with an-
nual mean air temperature across a broad geographic range
(Fig. 3a). Specifically,Tb under the same thermal condi-
tions was higher in deciduous broadleaf forests than in other
ecosystem types, though the regression curve ofTb to mean
annual temperature in the deciduous broadleaf forests did not

Fig. 2. Typical example of response curve of net ecosystem ex-
change (NEE) with temperature at DE-Tha site. Negative values
at y-axes indicate that carbon is absorbed by the ecosystem, while
positive values indicate that carbon is released by the ecosystem to
the atmosphere. The curve of “all days” was derived from all mea-
surements without any data filting; the curve of “sunny days” was
derived after excluding the cloudy days; the curve of “wet days”
was generated based on the measurements excluding the drought
days; and the curve of “selected days” was derived from the mea-
surements excluding the cloudy and drought days, and which was
used to determine theTb (the transition temperature from ecosys-
tem carbon source to sink) andTo (the optimal temperature for net
carbon uptake).

show a significant difference among all sites. In contrast, we
observed a significant difference of regression curve in ev-
ergreen needleleaf forests from the overall mean of all sites,
with a lowerTb in evergreen needleleaf forests (Fig. 3a).To
for carbon uptake was strongly correlated with mean air tem-
peratures during the carbon uptake period across the broad
spatial scale examined (Fig. 3b).

We compared the temperature curves of NEE among ad-
jacent ecosystems to investigate the impacts of stand age on
temperature thresholds of NEE. Comparison of seven adja-
cent boreal forest sites showed a constantTb andTo among
ecosystems comprising stand ages between 30 and 160 yr
(Fig. 4). Significantly higherTb andTo were found at 20-
and 12-yr stands (i.e. CA-NS6 and CA-NS7).

4 Discussion

A set of data selection criterion was used to remove the ef-
fects from other environmental factors when characterizing
the temperature curves of NEE. Two critical environmen-
tal limitation of low radiation at cloudy days and drought,
which can significantly reduce NEE, were considered in this
analysis. We used clearness index (CI), defined as the ratio
of the global solar radiation received on the surface to the
extraterrestrial solar radiation, to exclude the cloudy days

www.biogeosciences.net/8/1/2011/ Biogeosciences, 8, 1–11, 2011
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Fig. 3. The relationship between annual mean air temperature vs.Tb (a) and mean temperature of carbon uptake period vs.To (b) in
deciduous broadleaf forests (DBF), evergreen needleleaf forests (ENF), grasslands (GRS), mixed forests (MIX) and Shurblands (SHR) as
well as all ecosystems.Tb: the transition temperature from ecosystem carbon source to sink;To: the optimal temperature for net carbon
uptake. In panel(a), the regression lines are:y = 1.15x +1.41,R2

= 0.81,P < 0.01 (DBF);y = 0.92x +1.57,R2
= 0.73,P < 0.01 (All);

y = 0.73x+1.59,R2
= 0.77,P < 0.01 (ENF). At(b), y = 0.69x+7.02,R2

= 0.32,P < 0.05 (DBF);y = 1.02x+1.76,R2
= 0.64,P < 0.01

(All); y = 1.09x +1.09,R2
= 0.71,P < 0.01 (ENF).

Fig. 4. Temperature response curves of NEE at seven adjacent ev-
ergreen needleleaf forests in Canada shown at Table 1. Negative
values at y-axes indicate that carbon is absorbed by the ecosystem,
while positive values indicate that carbon is released by the ecosys-
tem to the atmosphere.

(Gu et al., 1999, 2003). Numerous of field observations
have shown that the highest rate of forest net ecosystem ex-
changes (NEE) of CO2 often occurs on cloudy rather than on
sunny days (Price and Black, 1990; Hollinger et al., 1994).
Several mechanisms have been postulated to explain such
observations. They include increases in diffuse radiation
(Price and Black, 1990; Hollinger et al., 1994; Fan et al.,
1998), decreases in the respiration of sunlit leaves (Baldoc-
chi, 1997), and stomatal dynamics associated with light fluc-
tuations (Sakai et al., 1996). Gu et al. (1999) examined the
influences of clouds on forest carbon uptake at a boreal as-
pen forest and a temperate mixed deciduous forest in Canada,

and found that both forests can tolerate exceedingly large re-
ductions of solar radiation (CI of 0.53 for the aspen forest
and 0.46 for the mixed forest) caused by increases in cloudi-
ness without lowering their capacities of carbon uptake. We
examined the threshold of CI when NEE significantly de-
creased over other study sites, and found the threshold val-
ues were close to 0.5 (Data not shown). So, in this study,
we excluded the cloudy days when the ratio was less than
0.5. Figure 1a showed the significant decreases of NEE due
to lower solar radiation of cloudy days at demonstrated site
(i.e. DE-Tha).

It has been well known that NEE is strongly influenced
by water availability in terrestrial ecosystems (Meyers, 2001;
Granier et al., 2000, 2007). For example, Europe experi-
enced a particularly extreme climate anomaly during 2003,
with July temperatures up to 6.8◦ above long-term means,
and annual precipitation deficits up to 300 mm yr−1, 50 % be-
low the average (Ciais et al., 2005). The net ecosystem pro-
duction decreased with increasing water stress at almost all
of investigated 12 forest sites (Granier et al., 2007). There-
fore, it is necessary to characterize temperature curve of NEE
using the potential NEE measurements given no water or ra-
diation limitation. In this analysis, a simple water stress in-
dex was used to quantify the impacts of drought on NEE. The
results showed that WSI can effectively ascertain the drought
effects (Fig. 1b). At the DE-Tha site, decreased measure-
ments of NEE resulted from water stress were excluded, and
especially at 2003, more than half of measurements were ex-
cluded due to severe drought.

Temperature curves of NEE under the different data se-
lection criterion showed the considerable differences (Fig. 2)
at the demonstrated DE-Tha site. In generally, ecosystem

Biogeosciences, 8, 1–11, 2011 www.biogeosciences.net/8/1/2011/
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carbon uptake after excluding drought and cloudy days were
higher than those at the other three conditions (Fig. 2).
Especially, low radiation at cloudy days substantially de-
creased the carbon uptake, and drought influenced NEE at the
high temperature periods. The transition temperature points
(i.e.Tb andTo) showed the prominent differences among the
temperature curves under the different data filting criterion.
For example, at the demonstrated site, there are the differ-
ences of 5◦ between the curves derived from original mea-
surements and measurements excluding cloudy and drought
days. Therefore, it is necessary to characterize temperature
curve of NEE using the potential NEE measurements given
no water or radiation limitation.

It would not otherwise be expected that ecosystem thermal
optima track so closely with average temperatures by chance;
significant correlations between ecosystemTb and annual
mean air temperature, as well asTo and mean temperature
during the carbon uptake period, suggests that ecosystem-
level thermal adaptation of NEE took place. Previous studies
have demonstrated strong thermal adaptation of photosyn-
thesis and respiration independently at the ecosystem level
(Baldocchi, 2008 Changed. OK?), while the scientific
investigations on thermal properties of NEE are examined in
this study. NEE is the balance between the carbon uptake by
photosynthetic carbon uptake and plant and microbial respi-
ratory losses, suggesting that the coupling of two thermally-
dependent processes should be further examined to evaluate
the mechanisms driving thermal adaptation of ecosystems.
The variation of soil respiration and its temperature sensitiv-
ity are both strongly correlated with GPP at diurnal, seasonal
and annual scales (Janssens et al., 2001; Tang et al., 2005;
Sampson et al., 2007; Ma et al., 2007). An increasing num-
ber of evidences further show that this complex influence on
plant growth rate also determines the microbial processing
of carbon in the soil (Christopher and Lal, 2007; Fornara and
Tilman, 2008; Cable et al., 2009). Chemical properties that
promote high physiological activity and growth in plants and
low lignin content also promote rapid decomposition (Hob-
bie, 1992). The quality of leaf litter, as often measured by
litter C:N ratio and carbon quality, correlates strongly with
corresponding plant production parameters in living leaves
(Aerts and Chapin III., 2000). Furthermore, the quantity of
litter input provides a second critical link between CO2 up-
take and decomposition because plant growth governs the
quantity of organic matter inputs to decomposers (Deforest
et al., 2009).

At a given mean annual temperature,Tb of evergreen
needleleaf forests is lower than that in deciduous broadleaf
forests (Fig. 4). Rapid induction of spring photosynthesis and
the low soil respiration compared to assimilation due to low
spring temperature, and the evergreen habit of these forests,
likely resulted in earlier transition from ecosystem carbon
source to uptake in evergreen needleleaf forests (Black et al.,
2000; Falge et al., 2002; Welp et al., 2007). Our observa-
tion of delayedTb in deciduous broadleaf forests was consis-

Table 2. Delayed days of soil temperature equals to mean an-
nual temperature compared with air temperature in the deciduous
broadleaf ecosystems (Table 1).

Site Lat Period1 Avg.2 Std.3

CA-Oas 53.63 1997–2006 5.56 3.35
DE-Hai 51.08 2000–2007 3.64 2.31
IT-Co1 41.85 1996–2003 5.78 1.57
IT-Non 44.69 2001–2003 3.89 2.01
IT-Ro1 42.41 2000–2006 2.65 1.68
IT-Ro2 42.39 2002–2006 3.89 2.36
Toledo 41.55 2004–2005 6.21 3.56
UK-Ham 51.12 2004–2005 5.87 2.37
US-Ha1 43.54 1992–2006 4.61 1.68
US-Moz 38.74 2004–2007 5.26 2.75
US-Oho 41.55 2004–2007 3.10 1.80
US-Bar 44.06 2004–2006 7.33 2.08
US-Wbw 35.96 1995–2004 5.75 3.65
US-WCr 45.81 2000–2005 2.57 2.07
FR-Hes 48.67 1997–1999 4.00 2.65
DK-Sor 55.48 1996–1999 4.67 0.58
US-DK2 35.97 2001–2005 2.20 1.90
US-MMS 39.32 1999–2006 7.20 4.80

1 Available years.
2 Averaged delayed days when soil temperature equals to the mean annual temperature
compared with air temperature.
3 Standard deviation.

tent with a previous study by Baldocchi et al. (2005), which
showed that net carbon uptake occurs at the period when the
mean daily soil temperature equals the mean annual air tem-
perature. We found thatTb was often delayed past the day
when soil temperature equaled mean annual air temperature,
with 18 deciduous broadleaf forests showing an average de-
lays of 4.67 days (Table 2).

We investigated the impacts of stand age on the ther-
mal response of NEE within seven adjacent forest stands
comprising a fire chronosequence to ascertain whether cli-
mate or stand characteristics were responsible for the tim-
ing of Tb and To (Fig. 4). Our results did not show dif-
ferences ofTb andTo among 30 to 160 yr-old stands, sug-
gesting that the thermal environment may be more impor-
tant than successional stage in determining thermal optima.
The two youngest sites showed higherTb andTo partly be-
cause the vegetation was dominated by deciduous broadleaf
seedlings and grasses, which have slightly different tem-
perature/thermal optima relationships than evergreen needle-
leaf forests (Fig. 3). Previous studies have shown that for-
est development following stand-replacing disturbance influ-
ences a variety of ecosystem processes including carbon ex-
change with the atmosphere (Law et al., 2003). The mag-
nitude of NEE differed dramatically among stands of differ-
ent ages (Fig. 4a, b, c), suggesting, along with the spatially-
distributed results (Fig. 3), that thermal adaptation is inde-
pendent of flux magnitude.
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All Global Dynamic Vegetation Models (GDVM) for pre-
dicting NEE at global or regional scales use separate func-
tions to describe the temperature relationship of GPP andRe
with substantial variations among these functions (Running
and Coughlan, 1988; Running and Gower, 1991; Potter et
al., 1993; Woodward et al., 1995; Foley et al., 1996). How-
ever, no study has been conducted to evaluate the accuracy
of these independent temperature functions across models.
Temperature functions of GPP andRe in these models are
often poorly constrained because the thermal adaptation of
GPP andRe, and its aggregate flux, NEE, are poorly un-
derstood, posing limitations in simulation certainty. In this
study, the thermal adaptation of ecosystem on NEE across
latitudes suggests the intrinsic physiological connections be-
tween thermal responses of GPP andRe, which will be very
useful to constrain ecosystem models.

5 Conclusions

Investigating the thermal adaptation of ecosystems on NEE
will improve our ability to model regional and global car-
bon balance both in the present and in the future. This study
adds to an existing empirical basis of thermal adaptation of
NEE that we anticipate will form a foundation for mechanis-
tic, process-based studies on the response of GPP andRe to
temperature. In this study,Tb andTo showed significantly de-
creasing trends with latitude and adapted to the mean temper-
ature during the whole year and growing season separately
across 72 study sites with a wide geographic distribution.
Thermal response ofTb andTo provides a promising phys-
iological rule that can be implemented in regional carbon
balance models constraining presently separated temperature
functions of GPP andRe.
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