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“As far as the laws of mathematics refer to reality,

they are not certain;

and as far as they are certain,

they do not refer to reality.”

A. Einstein
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Abstract

It is now well-known that there exist functions that are continuous but nowhere differ-
entiable. Still, it appears that some of them are less “irregular” than others. The pointwise
regularity of a function can be characterized by its Hölder exponent at each point. For the
sake of practicability, it is more appropriate to determine the “size” of the sets of points
sharing a same exponent, through their Hausdorff measure. By doing so, one gets the
multifractal spectrum of a function, which characterizes in particular its monofractal or
multifractal nature.

The first part of this work is based on the so-called “wavelet leaders method” (WLM),
recently developed in the context of multifractal analysis, and aims at its application to
concrete situations in geosciences. First, we present the WLM and we insist particularly on
the major differences between theory and practice in its use and in the interpretation of the
results. Then, we show that the WLM turns out to be an efficient tool for the analysis of
Mars topography from a unidimensional and bidimensional point of view; the first approach
allowing to recover information consistent with previous works, the second being new and
highlighting some areas of interest on Mars. Then, we study the regularity of temperature
signals related to various climate stations spread across Europe. In a first phase, we show
that the WLM allows to detect a strong correlation with pressure anomalies. Then we
show that the Hölder exponents obtained are directly linked to the underlying climate and
we establish criteria that compare them with their climate characteristics as defined by the
Köppen-Geiger classification.

On the other hand, the continuous version of the wavelet transform (CWT), developed
in the context of time-frequency analysis, is also studied in this work. The objective here is
the determination of dominant periods and the extraction of the associated oscillating com-
ponents that constitute a given signal. The CWT allows, unlike the Fourier transform, to
obtain a representation in time and in frequency of the considered signal, which thus opens
new research perspectives. Moreover, with a Morlet-like wavelet, a simple reconstruction
formula can be used to extract components.

Therefore, the second part of the manuscript presents the CWT and focuses mainly
on the border effects inherent to this technique. We illustrate the advantages of the zero-
padding and introduce an iterative method allowing to alleviate significantly reconstruction
errors at the borders of the signals. Then, we study in detail the El Niño Southern Oscilla-
tion (ENSO) signal related to temperature anomalies in the Pacific Ocean and responsible
for extreme climate events called El Niño (EN) and La Niña (LN). Through the CWT,
we distinguish its main periods and we extract its dominant components, which reflect
well-known geophysical mechanisms. A meticulous study of these components allows us to
elaborate a forecasting algorithm for EN and LN events with lead times larger than one
year, which is a much better performance than current models. After, we generalize the
method used to extract components by developing a procedure that detects ridges in the
CWT. The algorithm, called WIME (Wavelet-Induced Mode Extraction), is illustrated on
several highly non-stationary examples. Its ability to recover target components from a
given signal is tested and compared with the Empirical Mode Decomposition. It appears
that WIME has a better adaptability in various situations. Finally, we show that WIME
can be used in real-life cases such as an electrocardiogram and the ENSO signal.
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Résumé

Il est désormais bien connu qu’il existe des fonctions continues nulle part dérivables. Cepen-
dant, il apparâıt que certaines d’entre elles soient tout de même moins “irrégulières” que
d’autres. La régularité ponctuelle d’une fonction peut se caractériser par son exposant de
Hölder en chaque point. Dans un souci de faisabilité, il est plus approprié de déterminer “la
taille” des ensembles de points partageant un même exposant, via la mesure de Hausdorff.
On obtient ainsi le spectre multifractal d’une fonction, qui caractérise en particulier sa nature
monofractale ou multifractale.

La première partie de ce travail se penche sur la méthode dite des “coefficients d’ondelettes
dominants” (WLM), récemment développée dans le contexte de l’analyse multifractale, et a
pour objectif sa mise en application à des situations concrètes en géosciences. Nous présentons
d’abord la WLM et insistons particulièrement sur les différences majeures entre théorie et
pratique, tant au niveau de l’utilisation de la méthode qu’au niveau de l’interprétation des
résultats. Nous montrons ensuite que la WLM s’avère être un outil d’analyse performant pour
l’étude de la topographie de la surface de la planète Mars d’un point de vue unidimensionnel
et bidimensionnel; la première approche permettant de récupérer des informations cohérentes
avec de précédents travaux, la seconde étant inédite et mettant en évidence certaines zones
d’intérêt de Mars. Ensuite, nous étudions la régularité de signaux de température relatifs à
diverses stations climatiques réparties en Europe. Dans un premier temps, nous montrons que
la WLM permet de détecter une corrélation forte avec les anomalies de pression. Nous montrons
alors que les exposants de Hölder obtenus sont directement liés au climat sous-jacent et nous
établissons des critères qui les mettent en parallèle avec leurs caractéristiques climatiques telles
que définies par la classification de Köppen-Geiger.

D’autre part, la version continue de la transformée en ondelettes (CWT), développée dans
le cadre de l’analyse temps-fréquence, est également étudiée dans ce travail. Le but poursuivi
ici est la détermination de périodes dominantes et l’extraction des composantes oscillantes
associées qui constituent un signal donné. La CWT permet, contrairement à la transformée
de Fourier, d’obtenir une représentation en temps et en fréquence du signal considéré, ce qui
ouvre donc de nouvelles perspectives d’analyse. En outre, avec une ondelette de type Morlet,
une formule de reconstruction simple peut être utilisée lors de l’extraction d’une composante.

Ainsi, la seconde partie du manuscrit présente la CWT et se concentre principalement sur
les effets de bords inhérents à cette technique. Nous illustrons les avantages du “zero-padding”
et introduisons une méthode itérative permettant d’atténuer significativement les erreurs de
reconstruction aux bords des signaux. Ensuite, nous étudions en détail le signal ENSO (El Niño
Southern Oscillation) relatif aux anomalies de températures de l’Océan Pacifique et responsable
d’événements climatiques extrêmes appelés El Niño (EN) et La Niña (LN). Grâce à la CWT,
nous en distinguons les principales périodes et en extrayons les composantes dominantes, qui
sont d’ailleurs le reflet de mécanismes géophysiques connus. Une étude minutieuse de ces com-
posantes nous permet d’élaborer un algorithme de prédiction à plus d’un an des événements
EN et LN, ce qui constitue une meilleure performance que les modèles actuels. Enfin, nous
généralisons la méthode d’extraction des composantes utilisée jusqu’alors en développant une
procédure qui détecte des crêtes dans la CWT. L’algorithme, nommé WIME (Wavelet-Induced
Mode Extraction), est illustré sur plusieurs exemples hautement non-stationnaires. Ses ca-
pacités à récupérer des composantes connues hors d’un signal donné sont testées et comparées
à l’Empirical Mode Decomposition. Il apparâıt que WIME dispose d’une meilleure adapt-
abilité dans diverses situations. Nous montrons finalement que WIME peut être appliqué à des
situations réelles comme un électrocardiogramme ou encore le signal ENSO.
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Introduction

Nature holds many secrets that humans have been trying to unveil through ages, which

eventually led to numerous scientific breakthroughs. These discoveries were often the

result of meticulous studies of natural phenomena, starting with careful observations

and ending with the modeling of the underlying distinct processes. Such dissections of

apparently complex problems into simpler principles and equations are at the basis of the

most famous theories ever created, such as Newton’s laws of classical mechanics, Mendel’s

laws of heredity or Bohr and Chadwick’s atomic model. They all managed to identify the

ingredients explaining why and how a part of nature actually works. In mathematical

analysis, a groundbreaking discovery of at least the same importance can be attributed

to the French genius Joseph Fourier in 1822 with his theory of decomposition of a given

function into trigonometric series [56]. This tool allows to rewrite functions in terms of

utterly simple “building blocks” composed of sine and cosine functions, which can be

assimilated to the various atoms forming a molecule. Moreover, the associated Fourier

spectrum provides a brand new type of information: the spectral content of a signal,

i.e. the proportion of energy in a signal that can be imputed to a given frequency.

The implications of the masterpiece proposed by Fourier, coupled with the development

of computer science, are now beyond the sole world of mathematics or even physics1:

his method has become an unmissable tool for every scientist. In the 1890’s, Henri

Poincaré even wrote2: “Fourier’s Analytic Theory of Heat is one of the first examples of

application of analysis to physics [...]. The results he obtained are certainly interesting

by themselves, but what is even more interesting is the method he used to obtain them,

which will always serve as a model for anyone desirous of cultivating some branch of

1Fourier developed his theory while working on heat equations.
2“La Théorie de la Chaleur de Fourier est un des premiers exemples d’application de l’analyse

à la physique [...]. Les résultats qu’il a obtenus sont certes intéressants par eux-mêmes, mais ce
qui l’est plus encore est la méthode qu’il a employée pour y parvenir et qui servira toujours de
modèle à tous ceux qui voudront cultiver une branche quelconque de la physique mathématique.
[...] Le livre de Fourier a une importance capitale dans l’histoire des mathématiques.” [32, 119].

1



INTRODUCTION 2

mathematical physics. [...] Fourier’s book is of paramount importance in the history of

mathematics.”[32, 119].

Despite its unquestionable usefulness, the Fourier transform has a non-negligible

flaw: the loss of temporal information. In other words, it could be used as a way to

detect which notes are played in a song but not when they are played. Mathematically

speaking, this says that the Fourier transforms of e.g.

f1(x) = cos(2πx)χ[0,10](x) + cos(4πx)χ[10,20](x)

and

f2(x) = cos(4πx)χ[0,10](x) + cos(2πx)χ[10,20](x)

allow to determine the two frequencies present in f1 and f2 but not which one appeared

first in each function. This problem shows that the transition from the time domain to

the frequency domain is somehow a bit rude. It would thus be opportune to find a way

to decompose a function f in a Fourier-like spirit that can still give its spectral content

while keeping the possibility to identify the appearance of regime shifts or the presence

of short-lived components. Nevertheless, it is not possible to obtain a perfect accuracy

on both sides because time and frequency compete with each other and are regulated

by uncertainty principles comparable to Heisenberg’s inequality in quantum mechanics.

Whatever the methods developed, it is thus necessary to make a trade-off between these

two dimensions. Besides, it can be felt that there is a need to visualize the result of the

analysis in a time-frequency plane, like an image that displays the interactions between

time and frequency, which is infeasible with the Fourier transform. In this spirit, when

a local study of f at a given time t and frequency a is performed, it seems reasonable

to give more weight to the values of f closer to t, and the size of the window around t

through which f is examined should be inversely proportional to a. This necessity to

adapt the window as a function of the frequency is nicely summed up in the following

citation of Norbert Wiener in [152]: “A fast jig on the lowest register of an organ is in

fact not so much bad music but no music at all.”3 That being said, a complete analysis

of f would thus require convolutions of f with translations and expansions/contractions

of an analyzing modulated function. The wavelet transform naturally emerges.

Even though the first “wavelet” is generally attributed to Alfred Haar in 1909 [65],

it is commonly admitted that Hungarian Dennis Gabor introduced the first wavelet as

described above, in 1946 [59]. The translations and expansions of his Gabor functions

were often called the “Gabor atoms”. These atoms were thus used as new building

blocks of signals, allowing to extract sharp information from a time-frequency point of

view. The term “wavelet” (derived from the French word “ondelette”) appeared later,

3En français, la formulation de Patrick Flandrin est tout aussi élégante: “Une note, pour être
percue comme telle, doit être tenue d’autant plus longtemps qu’elle est plus grave.” [52].
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in 1984, with the seminal works of Jean Morlet and Alex(ander) Grossmann [63]. In

1986, Pierre Gilles Lemarié and Yves Meyer unify the results related to wavelets and by

doing so, they literally establish the first cornerstone of wavelet theory [93]. This golden

age is then enriched by the contributions of Stéphane Mallat [96, 97], Ingrid Daubechies

[34] and Yves Meyer [100, 101] amongst others, who consolidate the first generation of

works on wavelets and mark the starting point of a new era in signal analysis. Since

then, wavelets have proliferated and diversified in their shapes and uses4 so that they

are now prominent stakeholders in distinct branches of signal analysis5. One of them

is naturally time-frequency analysis, in which the continuous wavelet transform with

Morlet-like wavelets kept on expanding with its original objectives in focus: providing

a time-frequency representation of a signal and allowing the extraction of its elemental

building blocks. In the literature, this direction was followed by e.g. Flandrin [53, 54],

Cohen [30], Mallat [98]; half of this thesis integrates in this vein as well. On the other

hand, some fields of research have been hugely influenced by the discrete version of

the wavelet transform6. Indeed, this one led for instance to the development of image

compression standards (JPEG 2000), multiresolution analysis and multifractal analysis

[34, 96, 100].

This last example, namely multifractal analysis, has become a widespread tool in

the analysis of the irregularity of geophysical signals and images. As mentioned, some

methods based on wavelets have been designed, but other particularly popular algorithms

also exist, which reinforces our motivation to show that wavelets are an excellent choice

in that context. Multifractal analysis thus naturally establishes itself as an important

subject that has to be studied in the present work. Therefore, let us now have a deeper

look at the origins of this other thrilling wavelet-impacted area.

It all begins by the following question:“Is every continuous function differentiable

except on a set of isolated points?” This could have been one of the most treacherous

questions to ask mathematicians in the 19th century. At the time, mathematics was

mostly used as a tool to describe the laws of physics and was thus inspired by nature.

Rather than dealing with abstract and intangible concepts, it generally had to be intu-

itive and geometrically interpretable. Therefore, the instinctive answer to the question

was an uncontested “yes”, which was even supported by the “proof” provided by eminent

French scientist André-Marie Ampère in 1806 [9]. Its argument relied on the “obvious”

fact that a continuous curve had to have some sections on which it was either increasing,

decreasing or constant and thus allowing the computation of a derivative. From the

4A non-exhaustive -but long- list with the description of hundreds of wavelets can be found
in [45].

5Yves Meyer was even awarded the 2017 Abel Prize for his lifelong work on wavelets.
6Or sometimes by both the continuous and the discrete wavelet transforms, e.g. multifractal

analysis.
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parabolic trajectory of a cannonball to the elliptic motions of planets, every physical

phenomenon looked to comply with the theorem and no exception seemed to lurk in the

apparently soft world of continuous functions.

In 1872, Karl Weierstrass, a German mathematician not satisfied with Ampere’s

vague claims, presented at the Academy of Science in Berlin a work that would soon

take the world by storm and lead to a revolution in mathematics. He constructed a

special family of functions (using Fourier-like series) that were continuous everywhere but

nowhere differentiable [144, 145]. By doing so, Weierstrass had literally released monsters

in a mathematical realm which was not necessarily ready for such a cataclysm; this would

trigger intense debates on the usefulness of such unnatural objects among specialists.

For example, in 1893, Charles Hermite wrote to Thomas Stieltjes “I turn with terror

and horror from this lamentable scourge of functions with no derivatives”([68, 118]).

In 1908, his fellow-countryman Henri Poincaré wrote:7 “Logic sometimes engenders

monsters. Masses of strange functions emerged and seemed to endeavor to look as

little as possible to the honest functions that are of some use. No more continuity,

or continuity but no derivatives[...] In the past, when a new function was invented, it

was with practical perspectives; nowadays, they are invented on purpose to show our

ancestors’ reasoning is at fault, and we shall never get anything more out of them.”[120].

Since then, many such counter-intuitive functions have been constructed and studied by

renowned mathematicians of the 19th and 20th century, e.g. Darboux, Peano, Hilbert,

Takagi, Banach,... ([138]). The stunning diversity of that type of functions raises a

problem in which the other half of the present work find its roots: the characterization

of their irregularity8.

While the function fθ : x 7→ |x|θ is not differentiable at 0 for 0 < θ ≤ 1, one can feel

that fθ becomes “smoother” at 0 as θ increases. In this case, θ can be seen as the param-

eter that characterizes the regularity of fθ at 0. Continuous but nowhere differentiable

functions are much more complicated since they display singularities everywhere. Never-

theless, there is no reason to doubt that characterizing them in a similar way is possible.

For that purpose, the notion of Hölder exponent is commonly used, which is initially

designed to quantify the pointwise regularity of a function. In the case of the Weierstrass

function, it appears that each point displays the same Hölder exponent, which makes it

belong to the class of the “regularly irregular” monoHölder functions. Even if the sole

7Originally:“La logique parfois engendre des monstres. On vit surgir toute une foule de
fonctions bizarres qui semblaient s’efforcer de ressembler aussi peu que possible aux honnêtes
fonctions qui servent à quelque chose. Plus de continuité, ou bien de la continuité, mais pas de
dérivées[...] Autrefois, quand on inventait une fonction nouvelle, c’était en vue de quelque but
pratique ; aujourd’hui, on les invente tout exprès pour mettre en défaut les raisonnements de nos
pères, et on n’en tirera jamais que cela.”

8The interested reader can find much more information about the fascinating story of contin-
uous but nowhere differentiable functions in [138] and in the nice all-audiences article [89].
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Hölder exponent associated with a monoHölder function may allow a first distinction

between some of the beasts that once troubled mathematicians, it is not sufficient to

fully characterize the others, the so-called multiHölder ones ([4, 147]). Besides, the com-

putation of the Hölder exponent at each point might turn out overly difficult and even

useless since it may change radically from point to point. For these reasons, it becomes

clear that it would be preferable to obtain some kind of distribution of the Hölder ex-

ponents that can be found within a function. This concept, properly called spectrum of

singularities or multifractal spectrum, is theorized as the application that computes, for

a given Hölder exponent h, the Hausdorff dimension of the sets of points having h as

exponent. In other words, it “measures the size” of the so-called iso-Hölder sets, which

gives it the expected distribution-like interpretation. With these considerations taken

into account, the functions for which the support of the spectrum of singularities is re-

duced to a singleton are called monofractal (they include the monoHölder ones) while

the others are termed multifractal (these are multiHölder).

Mathematicians are thus confronted with another difficult task: the determination

of the spectrum of singularities of a given function. Even if the problem can often

be tackled from the definitions in the case of theoretical examples, numerical methods

involving stable and computable quantities have to be developed for real-life signals.

These algorithms designed to study the fractal nature of an object are called multifractal

formalisms and first emerged in the world of physics, more precisely in the context

of turbulence ([11, 57]). In the 1940’s, Russian mathematician Andrëı Kolmogorov

hypothesized that the structure function (moments of variations of velocity in a fluid)

follows a linear power-law of the increments [22]. While the statement has since been

proven wrong in a general framework, it paved the way for the modern understanding

and analysis of turbulent flows. Giorgio Parisi and Uriel Frisch reflected on the concepts

presented by Kolmogorov and suggested that a nonlinear dependence was the signature

of different types of singularities in the fluid. As a result, they presented the Frisch-

Parisi conjecture [114], a multifractal formalism based on the computation of a structure

function which was linked with the spectrum of singularities by heuristic arguments

and a Legendre transform. This pioneering technique had some limitations though,

such as the fact that only the strongest singularities contribute to the process ([13,

19, 103]). Among its numerous successors is the class of wavelet-based multifractal

formalisms, which appeared in the 1990’s and are still being developed. Over the years,

two main wavelet-based methods have been extensively studied and used in practice.

The first one, mostly developed at the instigation of Alain Arneodo, uses the continuous

wavelet transform and is called wavelet transform modulus maxima (WTMM) ([13, 19,

103]). The other one, mainly deepened by Stéphane Jaffard, relies on a discrete wavelet

transform ([2, 98]) and is termed wavelet leaders method (WLM) ([73, 75, 148, 151]). In

this work, we chose to use the WLM over the WTMM for several reasons: it borrows ideas

from both the Frisch-Parisi and the WTMM formalisms while being computationally
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faster, it has a strong mathematical background, it is easy to implement and to generalize

to real-valued functions of n variables.

It can be easily deduced from the outline presented so far that this thesis is orga-

nized in two parts: one about time-frequency analysis based on the continuous wavelet

transform and the other one about multifractal analysis with the WLM. Contrary to

this introduction, we decided to invert these two parts in the following. They could

be reversed with only minor modifications, but such a choice has been guided by a few

reasons. First, from a pedagogical point of view, it is more convenient to present the

large amount of mathematical notions and properties required for multifractal analysis

all at once. Since some of them involve results about wavelets, we judged best suited

to introduce these in that part as well, which somehow forces multifractal analysis to

be presented first. Moreover, from a chronological point of view, multifractal analysis is

actually the first subject that we investigated, it thus seemed more natural to start with

it as it is more comprehensive and completed. Regarding time-frequency analysis, we

got involved with it almost one year and a half later and this subject was new to us at

that time. Adding to the fact that we are still actively working on some related projects,

this explains why that part is presented in second place and leaves several open doors.

As a consequence, the structure of the manuscript is the following.

The first part deals with multifractal analysis through the WLM. In chapter 1, we

present the mathematical concepts involved in the WLM: Hölder exponent, Hausdorff

dimension and wavelet leaders. Then, we develop the WLM and illustrate it with a

theoretical example. A large part of the chapter is dedicated to the explanation of

the differences between theory and practice and how to properly interpret the results.

Chapter 2 is devoted to a direct application of the WLM in geosciences, namely the

study of the fractal nature of Mars topography. We conduct an extensive analysis of its

Hölder regularity in several ways (one-dimensional, two-dimensional, small scales, large

scales) and relate some of the results to particular features of the planet. Chapter 3

consists in another application of the WLM: the study of the surface air temperature

variability in Europe. However, in this case, we take a closer look at the values of the

Hölder exponents by examining their connection with pressure anomalies. We also show

that these exponents can be used to characterize the climate type of the corresponding

regions in a way which is consistent with the Köppen-Geiger climate classification. The

chapter ends with a discussion of the results and possible future works.

The second part is organized in the same way as the first part. Chapter 4 introduces

and exemplifies the continuous wavelet transform (CWT) with Morlet-like wavelets and

the representation of the signal in the time-frequency plane. Special attention is given

to border effects, which are inherent to the use of the CWT with finite signals. Then,

chapter 5 is devoted to the study of the El Niño climate index related to temperature
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anomalies in the Equatorial Pacific Ocean. This signal is analyzed with the CWT in

order to extract the main periods and components. We develop a method based on

these components that allows to predict the evolution of the curve more than one year

ahead, which is a benchmark that current models do not seem to be able to achieve.

Finally, chapter 6 is somehow a generalization of the extraction technique used thus far.

We formulate an algorithm named WIME (for Wavelet-Induced Mode Extraction) that

captures the highly nonstationary behavior of test signals. Its skills are tested in several

ways and compared with another method: the Empirical Mode Decomposition. The

manuscript ends with a conclusion that goes over the major points exposed in the six

chapters.





Part I

Wavelet-based multifractal
analysis

9





Chapter 1

Mathematical tools and wavelet
leaders method

This chapter presents the mathematical notions and tools orbiting the wavelet leaders

method (WLM) used in chapter 2 and chapter 3. Since this thesis is oriented towards the

practical aspect of wavelet-based methods for natural data analyses, the theoretic part

is intentionally reduced to the necessary minimum; the reader interested in the technical

details is invited to consult the references given throughout the sections. Besides, we

do not intend to rewrite the complete story and development of the WLM. This has

already been done impeccably in several excellent theses and we can only recommend to

go through [47, 91, 147] for more information on that subject.

1.1 Hölder exponent

Definition 1.1.1. Let f : Rn → R be a locally bounded function, x0 ∈ R
n and α ≥ 0;

f belongs to the Hölder space Cα(x0) if there exist a polynomial P of degree strictly

inferior to α, a constant C > 0 and a neighborhood V of x0 such that

|f(x)− P (x− x0)| ≤ C|x− x0|α ∀x ∈ V.

Remarks 1.1.2. The restriction to locally bounded functions holds for the rest of the

chapter. It can be shown that, if f ∈ Cα(x0), then the polynomial P in the previous

definition is unique and, if f is ⌊α⌋ continuously differentiable on a neighborhood of x0,

then P corresponds to the Taylor polynomial of f at order ⌊α⌋ (α−1 if α ∈ N). However,

the differentiability at x0 is not guaranteed if f ∈ C1(x0) as shown by f : R → R : x 7→ |x|

11



CHAPTER 1. THE WAVELET LEADERS METHOD 12

and x0 = 0. In the frequent case where 0 < α ≤ 1, P boils down to f(x0), which leads

to the following definition.

Definition 1.1.3. Let f : Rn → R be a locally bounded function; f is said uniformly

Hölder if there exist 0 < ǫ ≤ 1 and C > 0 such that

|f(x)− f(y)| ≤ C|x− y|ǫ ∀x, y ∈ R
n.

This somehow vague definition is handy and sufficient when it is only required that

f is “just a bit more than continuous” (see section 1.3).

The Hölder spaces are embedded, i.e. Cα(x0) ⊆ Cα
′

(x0) if α′ ≤ α. A notion of

regularity of f at x0 is thus given by the “highest exponent” α such that f belongs to

Cα(x0).

Definition 1.1.4. The Hölder exponent of a function f at x0 is defined as

hf (x0) = sup{α ≥ 0 : f ∈ Cα(x0)}.

Remarks 1.1.5. Although the Hölder exponent is mainly used for the characterization

of “irregularities” in f and thus is generally finite, its definition can lead to hf (x0) = +∞.

Therefore, hf can be viewed as a function with values in [0,+∞]:

hf : Rn → [0,+∞] : x 7→ hf (x).

For example, if

fα : R → R : x 7→ |x|α

with α ≥ 0, then hfα(0) = α if α is a non-integer real number or an odd integer and

hfα(0) = +∞ if α is an even integer. Note that f need not belong to Cα(x0) to have

hf (x0) = α. Indeed, if α > 0 and if one considers

f1 : R → R : x 7→ |x|α log |x|

and

f2 : R → R : x 7→ |x|α sin
(

1

|x|

)

with f1(0) = 0 = f2(0), then it turns out that hf1(0) = α = hf2(0) but f1 /∈ Cα(0)

whereas f2 ∈ Cα(0). These rather simple functions display only one so-called singularity

(at 0) which is the only point with a finite Hölder exponent. Some functions have

the same exponent at each point, others do not, which naturally gives the following

definitions.

Definition 1.1.6. If there exists H ∈ [0,+∞] such that hf (x) = H ∀x ∈ R
n, the

function f is saidmonoHölder with Hölder exponentH. Otherwise, if there exist x1, x2 ∈
R
n (x1 6= x2) such that hf (x1) 6= hf (x2), then f is said multiHölder.
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Figure 1.1: Weierstrass function Wa,b on [0, 1] for a = 0.5 and b = 16 (left, blue), 4
(right, blue), 24/3 (left, red), 2 (right, red). The functions plotted in red are shifted
1 unit downwards for the sake of clarity. The corresponding Hölder exponents are
0.25, 0.5, 0.75, 1.

Remarks 1.1.7. It is trivial to build monoHölder functions with exponent H = +∞;

the interesting question is about the existence of functions for which hf (x) < +∞ for all

x ∈ R
n or at least for “large” sets of points. From a historical point of view, this issue

actually emerged in the 19th century under the form: “Is every continuous function

differentiable except on a set of isolated points?” At the time, this was commonly

admitted to be true; Ampere even provided a “proof” of that claim [9]. However, in

1872, Weierstrass published the first example of a family of continuous functions nowhere

differentiable [145]1:

Wa,b : R → R : x 7→
+∞
∑

n=0

an cos(bnπx)

where a ∈ (0, 1) and b ∈ [1/a,+∞). In 1916 [66], Hardy gave the first proof that the

Weierstrass function is monoHölder with Hölder exponent

hWa,b
(x) = − log(a)/ log(b) ∀x ∈ R.

The function is plotted in Figure 1.1 for a = 0.5 and b = 16, 4, 24/3, 2, which gives

Hölder exponents H = 0.25, 0.5, 0.75, 1 respectively. It can clearly be seen that the

Hölder exponent is an appropriate measure of the regularity of a function since Wa,b

appears smoother as H increases. The monoHölder nature of the function is also visible

in the sense that, even though Wa,b is irregular, it is actually “regularly irregular”, i.e.

all the points are singularities of the same nature, with the same Hölder exponent.

1Other mathematicians constructed such functions at the same period, e.g. Bolzano, Cellérier,
Riemann (see [138]).
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Computing the Hölder exponent of a function at a given point is often difficult

in practice, if not impossible. Besides, it is usually more interesting to obtain global

information about the pointwise regularity of f , i.e. some kind of “distribution” of the

exponents, rather than the potentially erratic and numerically unstable function hf .

Therefore, even though the notions of monoHölder and multiHölder functions are defined

in an intuitive and natural way, they are often supplanted by the concepts of monofractal

andmultifractal functions. These are detailed in the following but require more advanced

mathematical tools first.

1.2 Hausdorff dimension

The classic topological dimension always being an integer number, it is not always suffi-

cient to underline the properties of the sets considered or to make a distinction between

them, even when they appear totally different. The Hausdorff dimension solves that

problem because it generalizes the notion of dimension to non-integers. Its definition

relies on the Hausdorff outer measure, defined as follows (see e.g. [50]).

Definition 1.2.1. Let X ⊂ R
n and d ≥ 0. The d-dimensional Hausdorff outer measure

of X is defined as

Hd(X) = lim
ǫ→0

inf

{

∑

r∈R

diam(r)d : R ∈ Rǫ(X)

}

where Rǫ(X) denotes the set of all countable covers of X by sets of diameter inferior to

ǫ.

Proposition 1.2.2. Given a set X ⊂ R
n, there exists a unique value d∗ ≥ 0 such that

Hd(X) = +∞ if 0 ≤ d < d∗ and Hd(X) = 0 if d > d∗.

This allows to define the Hausdorff dimension of X.

Definition 1.2.3. The Hausdorff dimension of X ⊂ R
n is defined as

dimH(X) = inf{d ≥ 0 : Hd(X) = 0}.

Note that HdimH(X)(X) can be 0, +∞ or any strictly positive number. Also, the

convention dimH(∅) = −∞ is often considered for easier technical uses. Some of the

properties of the Hausdorff dimension are exposed below.

Proposition 1.2.4. • If U ⊂ R
n is a non-empty open set, then dimH(U) = n.

• If X ⊂ Y ⊂ R
n then dimH(X) ≤ dimH(Y ) ≤ n.
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• If (Xj)j∈N is a sequence of subsets of Rn, then

dimH (∪j∈NXj) = sup
j∈N

{dimH(Xj)}

• If X ⊂ R
n is countable, then dimH(X) = 0.

Remarks 1.2.5. The classic triadic Cantor set C is a perfect example that shows the

usefulness of the notion of Hausdorff dimension. It is possible to show that

dimH(C) =
log(2)

log(3)
and HdimH(C)(C) = 1,

which illustrates the dimension at which it is possible to “measure” C. If one tries to

“measure” it by counting its number of points, i.e. computing H0(C), then one gets

+∞ since C is uncountable (C has the cardinality of the continuum). The next natural

attempt would be to “measure” its length, i.e. computing H1(C), in which case one

gets 0 since H1 coincides with the Lebesgue measure L1 and L1(C) = 0. Besides, its

topological dimension is also equal to 0. Therefore, the Hausdorff dimension of C is

somehow a “hybrid” way to measure C and gives finer information regarding such a

complex mathematical object.

We can now come back to the Hölder regularity of a function f . As mentioned,

it is interesting to obtain a global characterization of the regularity of f through a

distribution-like function of its Hölder exponents. This can now be achieved with the

spectrum of singularities of f , defined as follows.

Definition 1.2.6. The spectrum of singularities (or singularity spectrum) of a function

f defined on R
n is the function

df : h ∈ [0,+∞] 7→ dimH{x ∈ R
n : hf (x) = h}.

In other words, df (h) is the Hausdorff dimension of the set of points having h as Hölder

exponent (also called iso-Hölder set of exponent h).

The spectrum of singularities gives a straightforward glimpse on how regular f is. It

allows to define the notions of monofractal and multifractal functions in a natural way2.

Definition 1.2.7. A function f is monofractal with Hölder exponent H if the support

of its spectrum of singularities is reduced to {H}; f is said multifractal otherwise.

Remark 1.2.8. Although the concepts monoHölder and monofractal are close and have

a similar physical interpretation, they are not mathematically equivalent. The inclusions

that always hold are that a monoHölder function is monofractal and a multifractal func-

tion is multiHölder. In the literature, the focus is generally on the mono/multifractal

2Let us note that slightly different definitions also exist in the literature.
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nature of the functions or signals considered. This is due to the fact that several tech-

niques have been developed to estimate the spectrum of singularities of a signal (e.g.

[73, 76, 102, 114]). They bear the generic name of multifractal formalisms; among

them is the wavelet leaders method introduced by Jaffard in [73], which is described in

the following. This formalism has already been successfully applied in several scientific

fields, such as fully developed turbulence ([92]), heart rate variability ([6]) or texture

classification ([149]).

1.3 The wavelet leaders method in theory

1.3.1 Wavelet leaders

There seems to be no consensus in the literature on one unique definition of a wavelet.

Nevertheless, the following conditions are amongst the most commonly used.

Definition 1.3.1. We say that ψ : R → R is a wavelet if ψ ∈ L1(R) ∩ L2(R) and if ψ

satisfies the so-called admissibility condition

∫

R

|ψ̂(ω)|2
|ω| dω < +∞,

where ψ̂ denotes the Fourier transform of ψ.

Remarks 1.3.2. The admissibility condition forces ψ to satisfy ψ̂(0) = 0, i.e.
∫

R
ψ(x)dx =

0. This indicates that ψ has (at least) 1 vanishing moment, which makes ψ orthogonal

to polynomials of degree 0. In many situations, it is preferable to use wavelets that are

orthogonal to all low-order polynomials. Therefore, it is generally required that ψ has

M (M ∈ N) vanishing moments, i.e. for each m ∈ N such that m < M , the function

x 7→ xmψ(x) belongs to L1(R) and
∫

R

xmψ(x)dx = 0.

Let us add that n-dimensional wavelets are constructed using tensor products of 1-

dimensional wavelets ([34, 98, 100]).

The multifractal properties of a function can be studied by decomposing it in an

orthonormal wavelet basis of the space L2(Rn). The usual procedure to construct such

a basis comes from a multiresolution analysis of L2(Rn). For more details on how this

works and on the properties of these concepts, the reader is referred to [34, 96, 98, 100].

Proposition 1.3.3. Under some general assumptions ([34, 98]), it is possible to build

a wavelet φ and 2n − 1 wavelets (ψ(i))1≤i<2n such that

{φ(x− k) : k ∈ Z
n} ∪ {ψ(i)(2jx− k) : 1 ≤ i < 2n, k ∈ Z

n, j ∈ N}
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form an orthogonal basis of L2(Rn). Therefore, any function f ∈ L2(Rn) can be decom-

posed as

f(x) =
∑

k∈Zn

Ckφ(x− k) +
∑

j∈N

∑

k∈Zn

∑

1≤i<2n

c
(i)
j,kψ

(i)(2jx− k),

where

c
(i)
j,k = 2nj

∫

Rn

f(x)ψ(i)(2jx− k) dx

and

Ck =

∫

Rn

f(x)φ(x− k) dx.

Remark 1.3.4. The coefficients c
(i)
j,k are called the wavelet coefficients of f . The index

i can be seen as the direction in which the function is analyzed. In R
n, these directions

are given by the 2n − 1 vectors between the origin and the other vertices of the unit

cube [0, 1)n. For a given scale j (j ∈ N) and position k = (k1, ..., kn) (k ∈ Z
n), the

wavelet coefficients c
(i)
j,k (1 ≤ i < 2n) are usually associated with the dyadic cube λj,k of

R
n defined as

λj,k =

[

k1
2j
,
k1 + 1

2j

)

× . . .×
[

kn
2j
,
kn + 1

2j

)

.

In other words, it can be conveniently considered that c
(i)
j,k lies in λj,k. These dyadic

cubes allow an easy geometric visualization of the concepts of wavelet leaders related to

a point and to a cube defined in the following.

Definition 1.3.5. The wavelet leader of x0 ∈ R
n at the scale j is defined as

dj(x0) = sup
{

|c(i)j′,k′ | : λj′,k′ ⊂ 3λj,k(x0), 1 ≤ i < 2n
}

,

where λj,k(x0) is the unique dyadic cube at the scale j containing x0 and 3λj,k(x0) is a

three times enlarged version of λj,k(x0), i.e. it consists in the union of λj,k(x0) and its

3n − 1 neighbors at scale j.

The wavelet leaders (dj(x0))j∈N of x0 are key quantities to study the pointwise reg-

ularity of x0, as shown in the following theorem and its corollary ([39, 73, 87]).

Theorem 1.3.6. Let f : Rn → R be a locally bounded function, x0 ∈ R
n and α ≥ 0.

1. If f belongs to Cα(x0), then there exist C > 0 and J ∈ N such that

dj(x0) ≤ C2−αj ∀j ≥ J. (1.1)

2. Conversely, if there exist C > 0 and J ∈ N such that inequality (1.1) holds and if

f is uniformly Hölder, then there exist a polynomial P of degree strictly inferior

to α, a constant C ′ > 0 and a neighborhood V of x0 such that

|f(x)− P (x− x0)| ≤ C ′|x− x0|α log |x− x0| ∀x ∈ V. (1.2)
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Corollary 1.3.7. If f is uniformly Hölder, the Hölder exponent of f at x0 is given by

hf (x0) = lim inf
j→+∞

log dj(x0)

log 2−j
.

This result is the cornerstone of the wavelet leaders multifractal formalism. However,

since we are interested in global quantities and not in the exact computation of the

pointwise regularity, the definition of a wavelet leader has to be adapted so that it does

not depend on a particular point anymore. Therefore, it is natural to associate wavelet

leaders with the dyadic cubes of Rn, which are independent of the function of interest.

Definition 1.3.8. The wavelet leader of f associated with the cube λj,k is the quantity

dj,k = sup
{

|c(i)j′,k′ | : λj′,k′ ⊂ 3λj,k, 1 ≤ i < 2n
}

,

where 3λj,k is again the set of cubes consisting of λj,k and the 3n− 1 cubes surrounding

λj,k at scale j.

Remarks 1.3.9. The wavelet leaders of f are always finite since the Cauchy–Schwarz

inequality implies

|cj,k| ≤ C ‖f‖L2(Rn) ‖ψ‖L2(Rn)

for some positive constant C. A geometric view of the wavelet leader of a dyadic cube is

represented in Figure 1.2 in the case n = 2 (an example in the case n = 1 is detailed in

section 1.4). It can be seen that the wavelet leaders are hierarchical quantities and have

a “vertical” structure, this contributes to the validity of the WLM described below. If f

has a strong singularity at some point, then its influence can be perceived through the

scales, from the finer to the coarser. The wavelet leaders take this effect into account

by considering the largest coefficients through the scales, which reinforces the impact

of such singularities in the method and thus their characterization. In the same spirit,

the fact of considering 3λj,k rather than simply λj,k in definitions 1.3.5 and 1.3.8 allows

to track down singularities more efficiently. The use of 3λj,k is also justified by the

wavelet transform itself because, at the scale j and position k, ψj,k has most of its

energy concentrated in 3λj,k.

1.3.2 Wavelet leaders-based multifractal formalism

We now describe the n-dimensional wavelet leaders method (WLM) used to analyze

the Hölder regularity of n-dimensional data. The WLM is somehow an adaptation

of the box-counting method [58, 114] in the context of the discrete wavelet transform

[73, 74, 75, 76]. It can also be seen as the discrete counterpart of the renowned wavelet

transform modulus maxima (WTMM, see e.g. [10, 11, 102, 103]) which has been used

successfully in many domains (see e.g. [12, 13, 14, 15, 37]). Even if one may think that
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Figure 1.2: The wavelet leader of the dyadic cube λ (dyadic square in 2D) marked
by a black cross is the supremum of the modulus of the wavelet coefficients as-
sociated with the cubes in the red volume: λ, its 8 neighbors, and the cubes at
finer scales that fit in these 9 cubes. There are 3 wavelet coefficients associated
with each cube, indicated by the green, blue and red dots in each of them. Image
borrowed from [147].

the WTMM provides more information than the WLM, there is no formal proof that

one method is better suited for multifractal analyses than the other ([76]).

First, the structure function (or partition function) S associated with the WLM is

defined as

S(j, q) = 2−nj
∑

k

(dj,k)
q, (1.3)

where the sum is restricted to the indices k such that dj,k 6= 0. Then, the scaling function

η is obtained as

η(q) = lim inf
j→+∞

logS(j, q)

log 2−j
(1.4)

and one can hope to obtain the spectrum of singularities as

dηf (h) = inf
q
{hq − ηf (q)}+ n. (1.5)

The heuristic arguments underpinning this method are the following ([73, 150]).

First, by construction (equation (1.4)), η is involved in the asymptotic behavior (as

j → +∞) of the sum of the wavelet leaders:
∑

k

(dj,k)
q ∼ 2(n−η(q))j . (1.6)

On the other hand, if λj,k is a dyadic cube at the scale j containing a point of Hölder

exponent h, then theorem 1.3.6 states that dj,k should behave as ∼ 2−hj for j large

enough and thus

(dj,k)
q ∼ 2−hqj .
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Moreover, the iso-Hölder set of exponent h can be covered by about 2df (h)j cubes3, which

implies that the dominant behavior of the sum of the wavelet leaders should be

∑

k

(dj,k)
q ∼ 2suph{df (h)−hq}j . (1.7)

Comparing relations (1.6) and (1.7) gives

sup
h
{df (h)− hq} = n− η(q), (1.8)

and a Legendre transform gives relation (1.5).

Remarks 1.3.10. Through equation (1.5), the WLM leads to a concave spectrum dηf
which is actually a tight upper bound for the true spectrum ([73, 75]):

df (h) ≤ dηf (h).

In practice, dηf is usually the only quantity numerically computable and is often in-

terpreted as the spectrum of singularities df . Despite the fact that it is not possible

to determine whether the equality holds or not, dηf still provides valuable information.

Indeed, it can be shown ([73, 75]) that dηf is independent of the wavelet basis used

throughout the formalism provided that the number of vanishing moments exceeds the

supremum of the Hölder exponents found in the function. This condition is not really re-

strictive since wavelets can be chosen arbitrarily smooth. As a consequence, even though

we only have df (h) ≤ dηf (h), the estimated spectrum dηf contains information which is

intrinsically linked with the Hölder regularity of f and that can be used legitimately in

data analysis. Moreover, even if the conditions under which this multifractal formalism

holds (i.e. df (h) = dηf (h)) are still unclear, it has been shown that it yields exact results

in many situations, including fractional Brownian motions, cascades and Lévy processes

([3, 18, 73, 74, 75, 150]).

1.4 The wavelet leaders method in practice

1.4.1 Application to a Brownian motion

The practical use of theoretical methods often needs complementary explanations and

adjustments; the WLM does not contravene this principle. For that reason, this section is

dedicated to a thorough exemplification of the WLM with a commonly used monofractal

process, namely the Brownian motion. The wavelet used is the third order Daubechies

wavelet ([34]) which has proven well-suited for multifractal analysis.

3Assuming that, in a practical case, the signal analyzed (of finite length) is defined on [0, 1].
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Figure 1.3: The Brownian motion studied as an example and the modulus of
its discrete wavelet coefficients in the time-scale plane. The values range from 0
(black) to 10.2 (white).

The signal used in the present case is a classic Brownian motion which is monofractal

with Hölder exponent H = 0.5 and which is made of 212 data points. It is represented

in Figure 1.3 with its discrete wavelet transform. The wavelet leaders corresponding to

each dyadic interval are represented in Figure 1.4 and the time-scale plane is re-paved

with them.

The structure function S is computed and the function j 7→ log2(S(j, q)) is repre-

sented in Figure 1.5 for several values of q. Even though the top left panel is consistent

with the theory explained in this chapter, it is often displayed the other way round in the

literature, as in the top right panel (where j∗ = 13− j). This is simply a question of vo-

cabulary. The terminology used so far states that large scales j ≫ are more accurate in

some sense since they eventually allow to characterize the regularity as j → +∞. How-

ever, as j increases, the window through which the function is examined becomes smaller

and smaller and thus comes the denomination “small scales” for the scales that are of

real interest. From this point forward, we will give way to the customs of the scientific

literature and the term small scales will relate to the scales of finest/highest resolution.

In the same spirit, j will actually stand for j∗.

The top right panel in Figure 1.5 illustrates how the scaling function η is computed.

Given q, η(q) is obtained by performing a linear regression of j 7→ log2(S(j, q)) on a
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Figure 1.4: Top: Each dyadic interval is connected to its wavelet leader by a green
line (excepted those at scale j = 12 for clarity). The intervals whose coefficient
serves as wavelet leaders during the process are marked with a red star. Bottom:
The time-scale representation of the DWT when the coefficients are replaced by
their leader. This is the map used to compute the structure function S(j, q).
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range of small scales at which a scaling regime occurs, i.e. where j 7→ log2(S(j, q)) is

reasonably linear. The scaling function η obtained this way is shown in the bottom

left part of Figure 1.5. Since η displays a remarkably linear behavior with slope 0.5, the

associated spectrum dηf is almost reduced to one point (see fourth plot) located at (0.5, 1)

which is the expected spectrum of singularities. Zooming in on that point indicates a

slightly concave spectrum dηf , which was expected in a practical use of the WLM.

1.4.2 The WLM in practice: Important comments

Removal of some scales

The elementary example presented in this section illustrates the basic functioning of

the WLM. Despite its apparent simplicity, a certain number of important points can be

discussed. First, the smallest scale j = 1 is rarely used in practice because the associ-

ated wavelet leaders are not hierarchical quantities as for the other scales. Indeed, it is

impossible to envisage connecting them with wavelet coefficients at smaller scales as in

Figure 1.4. Also, the computation roughly concerns the differences between two consec-

utive data points, thus the wavelet coefficients at that scale are often extremely close

to zero so that numerical instabilities may occur when computing S(1, q) for negative

values of q. This explains why the first scale is not used to compute η. Also, as the scale

grows, the number of wavelet coefficients available decreases exponentially. In order

to compute sound means when building the structure function (equation (1.3)) and to

prevent a handful of larger coefficients from controlling the whole process, it is advised

to avoid the use of too large scales. In the present case, we stopped at the 7th scale

(see top right plot in Figure 1.5) because the next scale contains only 16 coefficients.

By the way, the horizontal stabilization of the structure function in the top left plot in

Figure 1.5 exposes perfectly the effect of a reduced number of coefficients.

Choice of values of q

The range of the values of q is subject to a careful choice. Indeed, the lowest (resp.

highest) values of q provide more weight to small (resp. large) wavelet leaders. Therefore,

in the same spirit as stated above, considering extreme values of q leads to an imbalance

in equation (1.3) because only one abnormally small (or large) coefficient may take it

all. The impact of such coefficients is weakened with larger datasets. Also, if the range

is too restricted, then significant information may go missing and the spectrum might

not be complete. Consequently, the choice of the values of q is guided by the number

of data points and the type of data to be analyzed. Since there is no consensus on a

fixed range of values for the parameter q, experiments with the signals considered have

to be carried out prior the proper analysis of the data. Nevertheless, in order to detect

the possible increasing and decreasing parts in the spectra, it is recommended to use
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Figure 1.5: Steps of the WLM applied to the Brownian motion (with Hölder
exponent 0.5). Top left: j 7→ log2(S(j, q)) for q ranging from -3 (red) to 5 (blue).
Top right: j∗ 7→ log2(S(j

∗, q)) with j∗ = 13− j only at small scales (small values
of j∗) and for q ranging from -2 to 2 for the sake of clarity. This is a more common
way to represent the structure function. It illustrates how the scaling function η
is obtained. Bottom left: Scaling function q 7→ η(q). Its linear behavior indicates
that the signal is monofractal, with Hölder exponent given by the slope of η.
Bottom right: the estimated spectrum of singularities h 7→ dηf (h), which is almost
reduced to the point (0.5, 1) as expected. Its concave shape is due to the use of a
Legendre transform.
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negative and positive values of q.

Focusing on η rather than dηf

From a practical aspect, the function η already contains most of the information useful

for the practitioner. A linear function η is the signature of a monofractal signal and

the slope of η coincides with the Hölder exponent of the signal (i.e. the support of the

spectrum) and characterizes its irregularity. Indeed, if we consider4 η(q) = c1q, then

dηf (h) = inf
q
{hq − c1q}+ n

=

{

n if h = c1
−∞ otherwise.

On the other hand, a nonlinear η indicates a multifractal behavior. If η is of the form

η(q) = c1q − c2q
2 (with c2 > 0), then the estimated spectrum is

dηf (h) = inf
q
{hq − c1q + c2q

2}+ n

=
−(h− c1)

2

4c2
+ n.

In both cases the maximum of dηf is located at (c1, n) and since df (h) ≤ dηf (h) ≤ n,

it turns out that “the most frequent” Hölder exponent in the signal can be obtained

as the first order coefficient c1 associated with η, regardless of its linearity. This could

have been seen the other way round: if the expected spectrum df is of the form df (h) =

−d2h2 + d1h + d0 with d2 > 0 and its maximum is located at (H,n), then an inverse

Legendre transform gives

sup
h
{−d2h2 + d1h+ d0 − qh} = n−

(

Hq − q2

4d2

)

and the same conclusion arises as seen to equation (1.8).

This remark is an interesting point since in practice η is never perfectly linear but can

be accurately approximated with a second-order polynomial of the form c1q − c2q
2. In

that case, the focus is on the parameters c1 and c2 as in e.g.[11, 44, 151]. Similarly, dηf can

never be perfectly reduced to a single point, which is problematic to classify monofractal

signals as such. However, a coefficient c2 close to zero (or any other indicator of a linear

behavior of η) suggests that the signal has a near-monofractal nature. As for the values

of q, no consensus on a threshold for c2 or on another method has been established to

firmly decide when a given signal is monofractal or not; this may differ from one work

to another. As a consequence, when the spectrum of singularities is not the primary

objective of the study, it is common to abandon the computation of dηf in favor of an

analysis of η.

4Note that S(j, 0) is the 0th-order moment of the wavelet leaders, giving S(j, 0) = 1 and thus
η(0) = 0.
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Estimation of the multifractal parameters

The coefficients c1 and c2 of the present example are estimated via a least-square polyno-

mial fitting of η with the constraint of vanishing at 0. A regression of the type f(x) = c1x

of a set of points (xi, yi)i gives

c1 =

∑

i xiyi
∑

i x
2
i

. (1.9)

In this case we get c1 = 0.5051, which is very close to the theoretical value 0.5. A

least-square second-order fit of the type f(x) = c1x− c2x
2 leads to

c1 =

∑

i x
4
i

∑

i xiyi −
∑

i x
3
i

∑

i x
2
i yi

∑

i x
4
i

∑

i x
2
i −

(
∑

i x
3
i

)2 (1.10)

and

c2 =

∑

i x
3
i

∑

i xiyi −
∑

i x
2
i

∑

i x
2
i yi

∑

i x
4
i

∑

i x
2
i −

(
∑

i x
3
i

)2 . (1.11)

Note that the denominator in equations (1.10) and (1.11) never vanishes in practice; this

is clearer when it is rearranged as

∑

i

x4i
∑

i

x2i −
(

∑

i

x3i

)2

=
∑

i,j
i 6=j

x2ix
2
j (xi − xj)

2.

With these equations we get c1 = 0.5011 which matches again almost perfectly the

expected value 0.5, and c2 = 0.0015 which is extremely close to 0 as awaited. Another

natural indicator of the linear behavior of η is the Pearson correlation coefficient (PCC):

PCC =

∑

i(xi − x̄)(yi − ȳ)
√
∑

i(xi − x̄)2
∑

i(yi − ȳ)2

where x̄ (resp. ȳ) denotes the mean of the (xi)i (resp. (yi)i) points. In our example,

the PCC is as high as 0.99998 and thus confirms the monofractal signature of the signal.

Let us note that if the values of q are chosen symmetrically with respect to 0, e.g. from

-2 to 2 by steps of 0.1, then
∑

i x
3
i = 0 in equations (1.10) and (1.11) and thus

c1 =

∑

i xiyi
∑

i x
2
i

c2 =
−∑i x

2
i yi

∑

i x
4
i

, (1.12)

which gives back equation (1.9) for c1. It is worth recalling that there is no consensus

in the literature on a parameter nor on a threshold that should be used to affirm that

a signal is monofractal or multifractal. Such choices are left to the discretion of the

practitioner depending on the context.
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Scaling regimes, scale breaks and practical interpretation

A last important remark is about the practical interpretation of the Hölder exponents

obtained from a signal. Theoretically, the notion of Hölder exponent is intrinsically

linked to limits and the WLM requires to examine the asymptotic behavior (at small

scales) of the partition and scaling functions. Nevertheless, only a finite number of scales

are available in practice and the smallest scales depend on the resolution of the data.

Therefore, if the scales 2 to 7 are used to build η (as in the top right plot of Figure 1.5)

and if we conclude that η is monofractal with exponent 0.5, it actually means that the

signal has a monofractal structure with Hölder exponent 0.5 at those scales. The

physical dimension of the data is necessary to fully understand how this works. Concep-

tually speaking, if we consider that the above Brownian motion is sampled at the rate

of 1 measurement per hour, then, roughly speaking, the scales 2 to 7 study the signal

by blocks of 22 = 4 to 27 = 128 data points and thus the signal is monofractal from

the scale of the hour to the scale of the week. Now, if a new device allows measure-

ments every second, it is possible that a different scaling regime (either monofractal or

multifractal) appears from the scale of the second to the scale of the hour (which are

the new smallest scales available), while at larger scales this new signal still displays

its monofractal behavior with Hölder exponent 0.5. Such regime shifts can be observed

when the structure function is plotted and thus guide the choice of the scales to consider

to build the scaling function η.

This discussion is illustrated with the following example. We consider a Brownian

motion f1 (with H = 0.5) made of 218 points and a fractional Brownian motion (fBm)

s of exponent 0.8 made of 211 + 1 points. We build the signal s′ as

s′(1 + k27 + j) = s(k + 1) +
s(k + 2)− s(k + 1)

27
j

for k = 0, . . . , 211 − 1 and j = 0, . . . , 27 − 1 so that s′ is made of 218 points, corresponds

with s every 27 points and is linear on each segment of the type [1 + k27, 1 + (k+ 1)27].

We set f2 = 100s′ and we apply the WLM on f = f1 + f2, which is partially plotted in

Figure 1.6 along with f1 and f2. By construction and with the use of a wavelet with at

least two vanishing moments, the influence of f2 remains negligible for scales 1 to 7 and

is the dominant force at stake from the 8th scale, which is confirmed by the structure

function plotted in Figure 1.7. The two distinct scaling regimes can be observed. The

first one, at small scales (from 2 to 7), gives a linear scaling function η with slope

c1 = 0.51, c2 < 10−2 and PCC > 0.99, which is the signature of f1. The second one,

at larger scales (from 8 to 14), also gives a linear η with c1 = 0.83, c2 < 10−2 and PCC

> 0.99; it thus captures the variability of f2. The scale break between scales 7 and 8 is

actually well-marked in Figure 1.8, which shows that the hierarchy that generally arises

among the wavelet leaders is broken between those scales. Similarly, the right plot of

Figure 1.8 shows the proportion of wavelet leaders at a given scale j that actually are
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Figure 1.6: Left: The signals f1 (black), f2 (red), and f (blue) studied to show the
presence of two scaling regimes within the same signal. Right: Close-up on f1. At
large scales, f2 governs the variability of the signal while at small scales it is f1.

wavelet coefficients at that scale j (i.e. the proportion of horizontal green lines per scale

in the left panel). Since this percentage reaches 99.3% for j = 8 and notably differs from

the proportions for j < 8 and j > 8 5, it can be suggested that a change of mechanism

occurs at that scale. The same curves are also displayed when f1 and f2 are processed

separately with the WLM. It can clearly be seen that the behavior of f mostly depends

on f1 at small scales and that a switch to f2 occurs at scale 8.

Finally, this discussion shows that the naming “Hölder exponent” cannot have ex-

actly the same meaning in theory and in practice. When used in practice, it is implicitly

associated with a particular range of scales used in the underlying multifractal formal-

ism. In the literature it is often denoted as scaling exponent of the signal at the

relevant scales. Alternatively, in order to get closer to the mathematical meaning, the

ambiguity can be dispelled by precising in advance the type (scale) of data being studied.

For example, the denomination “Hölder exponents of daily mean temperature signals”

signify that the signals are sampled at the specific rate of one measurement per day and

only the scaling regime at small scales is studied6. That being said, the terms Hölder

exponent and scaling exponent will be used interchangeably in the following and their

interpretation (e.g. regularity at small/large scales) will be clear from the context.

5Recall that the first scale and the largest ones are not relevant.
6Indeed, if a scale break is present and if a second scaling regime occurs at large scales, the

associated exponents are not related to the daily scale anymore.
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Figure 1.7: Left: j 7→ log2(S(j, q)) for q ranging from -3 to 5. A scale break can
be observed between scales 7 and 8, as expected. Right: q 7→ η(q) for the scaling
regime at scales 2 to 7, giving a slope close to 0.5, and at scales 8 to 14, which
gives back the behavior of f2.
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Figure 1.8: Left: A partial time-scale representation of the wavelet leaders of f .
The change of regime from scale 7 to 8 can be observed. Right: The proportion
of wavelet leaders of f (blue) at scale j which actually are wavelet coefficients at
scale j, as a function of j, and for f1 (red) and f2 (green) when they are analyzed
separately. Clearly, f displays a similar behavior as f1 at small scales and as f2 at
large scales.





Chapter 2

Analysis of Mars topography

In this chapter, we investigate the fractal nature of Mars topography with the WLM as

detailed in section 1.4; most of the results presented here have been published in [38].

It appeared to us that, due to endless technological improvements and the increasing

amount of data collected in recent years, the planetary and space sciences community

has a growing interest in multifractal analysis and the regularity/scaling properties of

celestial bodies. However, it also seemed that researchers in this specific field are not

particularly aware of multifractal wavelet-based techniques such as the WLM, especially

when it comes to multidimensional analyses. Therefore, we decided to conduct this study

to exhibit the potential of this technique with their datasets and hopefully motivate

scientists to use these tools1. It thus mainly consists in a practical implementation of

the WLM in a real-life context in which we provide an analysis of the scaling regimes

and exponents obtained. For more information on the physical significance or more

accurate possible interpretations of the results, the reader is referred to the references

given throughout the chapter.

2.1 Introduction

The surface roughness of Mars is an intensively studied subject in the scientific commu-

nity [7, 88, 90, 95, 106, 130, 133]. Identifying the best possible landing sites for rovers

or future manned missions and finding out the geophysical processes that shape the face

of the planet are among the most common reasons to analyze Mars topography. The

Mars Orbiter Laser Altimeter (MOLA) data collected during the Mars Global Surveyor

1In the best case scenario, we will soon be able to build a complete Scilab toolbox on the
WLM which could be used easily by any researcher.

31
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(MGS) mission from 1997 to 2001 gave researchers an unprecedented opportunity to

study the surface of the Red Planet with a high accuracy.

During the past two decades, numerous works about the fractal properties of Mars

topography have been conducted using several tools, such as median differential slopes

[88, 121], root mean square (RMS) slope and deviation [111], wavelets [95], power spectral

density (PSD) [7] and statistical moments [90, 130]. Regardless the method used, they

usually reveal two distinct scaling regimes in the topography of Mars (one at small scales,

the other at larger scales) and the scale break varies from one work to another. The

Hölder/scaling exponents2 associated with these scaling laws appear to differ according

to the region considered for the study (cratered terrains, smoother plains, ice cap, etc.)

but some common features can still be noted among the different works. These exponents

are sometimes used to claim that Mars topography is a monofractal or multifractal field,

which may depend on the definition of mono- or multifractality adopted by the authors

(if any).

Nevertheless, these studies are all based on precision experiment data records (PE-

DRs), i.e. one-dimensional (1D) along-track series following North-South trajectories.

This implies that the two-dimensional (2D) nature of the topographic field has not been

taken into account. Even though it seems reasonable to assume that topography is

isotropic at the planetary scale ([90]), small scales may be influenced by the spacecraft’s

orbit (North/South direction) so that the isotropic assumption may be flawed [8, 90].

Also, most of these works do not analyze the whole surface of Mars but rather different

regions that display distinct features (craters, plain, ice cap, etc.). Let us also add that

these along-track series may have missing points which need to be properly handled [90].

Therefore, the aim of this chapter is twofold: carrying out a complete study of the

surface roughness of Mars with the WLM while taking global longitudinal and latitudinal

topographic profiles into account, then perform a more local two-dimensional analysis

which thus keeps the 2D aspect of the data. We also show that such an analysis allows

to recover the main features of the surface of Mars, which validates the effectiveness of

the 2D-WLM. For that purpose, we use one of the topographic maps generated from

the MOLA dataset (see section 2.2). At the time of working on this project, this was,

to the best of our knowledge, the first WLM-based study of this kind and based on this

dataset. Hence, we also hope that this work can convince researchers that the WLM

is a suitable candidate for the study of scaling properties of planetary surfaces. The

organization of the rest of this chapter is the following. We first give a short overview

of the previous results obtained in the above-mentioned works and describe the dataset

used. Then we present our results about Mars topography in the 1D then in the 2D case

before finally discussing the results and drawing some conclusions.

2Also called power-law exponents or generalized Hurst exponents; either way keep in mind
the end of section 1.4.2.
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Table 2.1: Some previous results on the scale break and scaling exponents of Mars
topography. For the region type, “(Mars)” indicates that many different areas
covering Mars were used, leading to average scale breaks and exponents at small
scales (H Ss) and at large scales (H Ls). See the text for more details.

Method Reference Region type Scale break H Ss H Ls
PSD [7] Cratered ≈ 10km 1.2 0.2
PSD [7] Lowlands ≈ 10km 1.2 0.5
PSD [106] (Mars) ≈ 3.3 km 1.4 0.65

Var. of DWT [95] Polar cap ≈ 24km 1.25 0.5
Var. of DWT [95] Volcanic plain None 0.5 0.5

RMS dev. [111] (Mars) N/A 0.7 N/A
Struct. fcts. [107] (9 regions) ≈ 2km 0.75-0.92 Not done
Haar flucts. [90] (Mars) ≈ 10km 0.76 0.52

2.2 State of the art and dataset

A wide spectrum of results

In this section we give a short review concerning the scaling properties of Mars to-

pography obtained in the previously mentioned papers. The relevant information is

summarized in Table 2.1. Let us first note that the so-called power-law exponent β

originally obtained with the PSD method is related to the Hölder exponent H obtained

with the other methods as β = 2H + 1 (which is proved for fBms [46, 90, 111]). From

now on, β will be automatically replaced by H = (β − 1)/2, so that only H is used to

facilitate comparisons.

Among the seminal papers using the MOLA database, [7] and [95] are certainly at

the top of the list. The first one uses the so-called “PSD” method on two different regions

of Mars: a cratered one in the South and a smoother one in the North (lowlands). At

small scales (< 10 km), the power spectrum of both areas display a power-law with

H ≈ 1.2 while at large scales (> 10 km), one gets H ≈ 0.2 for the cratered region and

H ≈ 0.5 in the smooth region. Such results are in agreement with those obtained in

[95] on the analysis of Mars polar topography using the variance of a discrete wavelet

transform of the data: it appears that the Northern polar cap has an exponent H ≈ 1.25

at small scales (< 24 km) and H ≈ 0.5 at large scales (> 24 km). A study of the whole

gridded surface of Mars using the PSD was later carried out in [106], where statistical

confirmation of the different scaling regimes is brought. It is suggested that H ≈ 1.4 at

small scales and H ≈ 0.6 − 0.7 at large scales, with a scale break occurring on average

around 3.3 km, but some scale breaks up to 10 km are also found. One can see that, even

though there are common features between these works, there seems to be no consensus
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on the value of H nor about the scale at which the break occurs.

Slightly different results are found when other methods are used. For example, au-

thors in [111] use the “RMS deviation” to compute the Hölder exponent of 30-kilometers

long profiles and so covering the planet with small grids. It appears that the distribu-

tion of the exponents H follows a Weibull distribution with mean 0.7, while no scale

break is detected since only small scales are considered relevant for that study. In the

same spirit, authors in [107] computed generalized structure functions (based on surface

elevation increments) of order 1 to 12 related to nine distinct sites on Mars which led

to exponents H ≈ 0.75 − 0.9. More recently, in [90], a multifractal formalism based on

statistical moments of several orders relying on Haar fluctuations was used. It turns

out that their computation of H gives H ≈ 0.76 at small scales and H ≈ 0.52 at larger

scales, with a scale break occurring at ≈ 10 kilometers.

Consequently, drawing on these works on the surface roughness of Mars, it seems that

PSD-based and wavelet-based methods and those relying on (some kinds of) statistical

moments of fluctuations display a scale break which occurs somewhere between 2 and 25

kilometers. At small scales, the power-law exponent H is H ≈ 1.2− 1.4 with the former

methods and H ≈ 0.7− 0.9 with the latter. At large scales though, they seem to agree

on the value H ≈ 0.5 − 0.7. Moreover, let us note that the notions of monofractality

and multifractality (if debated) related to the scaling regimes and exponents obtained

in these papers heavily depend on the definition (if any) of the authors and is subject to

interpretation. Therefore, we will give in the next section our definition of a monofractal

or multifractal behavior in the present context.

MOLA data

Unlike the papers previously mentioned, and due to the objectives of this work, the data

used here is not PEDRs profiles. Instead, we perform our analysis on the MOLA Mission

Experiment Gridded Data Records (MEGDRs) [132], which are global topographic maps

of Mars created by combining altimetry values from the PEDR data acquired over the

entire MGS mission (about 600 million measurements). MEGDRs are available at 4, 16,

32, 64 and 128 pixels per degree and are available at http://pds-geosciences.wust

l.edu/missions/mgs/megdr.html. In order to have as many scales as possible at our

disposal, the 128-pixel-per-degree map is naturally chosen. Let us note that this map

almost represents the whole planet; the latitude ranges from 88◦ S to 88◦ N. More details

about the mission, the data and the MOLA experiment can be found in [132, 133] and

on the website mentioned above.

http://pds-geosciences.wustl.edu/missions/mgs/megdr.html
http://pds-geosciences.wustl.edu/missions/mgs/megdr.html
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2.3 Results on the one-dimensional study

First, the WLM is carried out as explained in section 1.4.2 of chapter 1 for 1D latitudinal

and longitudinal bands: in this framework, 22528 latitudinal and 46080 longitudinal

topographic profiles are analyzed. The third-order Daubechies wavelet [34] is used and

the 2D analysis relies on a usual tensor product-based technique [34, 100].

The structure and scaling functions S and η defined by equations (1.3) and (1.4) are

computed for q ranging from -2 to 2. We know that this choice might seem restricted

but it can be justified; we refer the reader to appendix 2.A for a discussion on this

point. An example of j 7→ log2 S(j, q) for these values of q is shown in Figure 2.1, as

well as j 7→ log2 S(j, 0.5) for several longitudinal profiles. As mentioned in section 2.2,

several studies about the surface roughness of Mars reveal a scale break occurring at

scales between 2 and 25 kilometers [7, 90, 95, 106]. Such a phenomenon also appears in

both longitudinal and latitudinal analyses in our computations at ≈ 15 kilometers, as

illustrated in Figure 2.1, which is in good agreement with [7, 90, 95]. We thus consider

two scaling regimes: the first one at small scales (< 15km) and the second one at large

scales (> 60km); the scales in between represent the transition from one regime to the

other.

2.3.1 Small scales (< 15 km)

We start with the scaling regime at small scales (< 15 km). The function η related to

different longitudinal and latitudinal profiles is displayed in Figure 2.2. From numerical

experiments, we set that η is “linear enough” in this context to allow the signal to

be considered monofractal if the associated PCC is greater than 0.98 and multifractal

otherwise. Let us remind that this threshold is somehow arbitrary and is only used

to make clear-cut categories (i.e. mono-multifractal) that allow statistical analyzes; the

parameter c2 introduced in section 1.4.2 brings similar information and is not used in

the present study. It is more important to keep in mind that a high PCC indicates

a near-monofractal behavior and that the distributions of these coefficients also bring

valuable information.

As far as the longitudinal signals are concerned, more than 99.7% of them are con-

sidered monofractal, i.e. the corresponding η has a PCC > 0.98 (and > 0.975 for more

than 99.9% of them). This can be seen on the top left histogram in Figure 2.3. The

exponents H extracted and the histogram of their distribution are also represented in

Figure 2.3 (middle left and bottom left). The mean value of H is 1.15 with a standard

deviation of 0.06. As expected, such results are in agreement with PSD- and other

wavelet-based methods [7, 95]. Regarding the latitudinal signals, it appears that 92.1%

are monofractal. Such a drop in the proportion of monofractal signals may seem surpris-

ing at first sight, but a few reasons may contribute to explain it: the crustal dichotomy

of Mars, the presence of polar caps, the fact that the map is actually a projection of
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Figure 2.1: Top: log2 S(j, q) versus j for q ranging from -2 (red) to 2 (blue) by steps
of 0.1 for a longitudinal band. A given scale j corresponds to a spatial resolution
of 0.463 ∗ 2j kilometers. The vertical dashed lines delimit the scaling regimes at
small scales (< 15 km) and at large scales (> 60 km). Bottom: log2 S(j, 0.5)
versus j for several longitudinal bands (blue) and mean of these functions over the
longitudinal bands (red).
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Figure 2.2: Left (resp. right): functions q 7→ η(q) for several longitudinal (resp.
latitudinal) profiles at small scales. In both cases the red one is considered as the
signature of a multifractal signal.

the planet, the North/South trajectory of the orbiter, among others. Moreover, if we

only keep latitudes between 80◦S and 80◦N , then more than 96.7% of the signals are

monofractal and again this percentage rises above 99.9% if we allow PCC > 0.975; this

can be noted on the top right histogram in Figure 2.3 (with latitudes kept from 80◦S

to 80◦N). Considering only these restricted latitudes, the mean value of H is 1.05 with

standard deviation 0.13. The influence of latitude can be clearly seen in Figure 2.3 and

such a latitudinal pattern is in agreement with [111]. Besides, a clear difference appears

between the two hemispheres: the mean value of H is 0.98 in the North and 1.12 in the

South.

Consequently, it seems reasonable to admit that a monofractal behavior is indicated

at small scales but the latitudinal study has to be more carefully interpreted and could

even be irrelevant in polar regions. Let us also note that the results of the longitudinal

case remain almost unchanged when poles are removed and that the clear difference of

shape in the histograms of Figure 2.3 and the differences in the values of H may indicate

a slight anisotropy of the surface roughness at small scales, as mentioned in [8].

2.3.2 Large scales (> 60 km)

Let us now focus on the larger scales. For that purpose, we consider scales ranging

from ≈ 60 km to ≈ 4000 km (between ≈ 15 km and ≈ 60 km we consider that a

transition occurs). Contrary to the results obtained at the small scales, it turns out that

the longitudinal and the latitudinal (restricted) analyses mostly display a multifractal

behavior (see Figure 2.4). Indeed, for the longitudinal ones (resp. latitudinal), the

PCC is lower than 0.98 for 91.7% (resp. 63.2%) of the bands. Such an observation is

in agreement with [90], though the latitudinal study has to be carefully interpreted as

already mentioned. A large percentage of latitudinal bands still has to be considered
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Figure 2.3: Top: Histograms of the distribution of the PCCs related to the func-
tions η for the longitudinal (left) and latitudinal (right) analyses at small scales
(< 15 km), subdivided into 1000 equally spaced bins. Middle: Exponent H as a
function of longitude (left) and latitude (right) at small scales (< 15 km). The
red lines indicate the topographic profiles that are considered multifractal. Bot-
tom: the corresponding histograms of the distributions of H, subdivided into 1000
equally spaced bins.
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Table 2.2: Proportions of longitudinal (left) and latitudinal (right) bands that are
monofractal/multifractal at small scales (Ss) and at large scales (Ls).

❍
❍

❍
❍
❍
❍

Ls
Ss

Mono. Multi.

Mono. 8.25% 0.05%
Multi. 91.53% 0.17%

❍
❍
❍
❍

❍
❍

Ls
Ss

Mono. Multi.

Mono. 33.67% 3.18%
Multi. 63.07% 0.08%

monofractal; however, there is a clear difference in the distribution of the PCCs and

the exponents H compared to the small scales case (Figure 2.3 and Figure 2.4). The

mean value of H is 0.78 for the longitudinal bands (resp. 0.65 for the latitudinal)

with standard deviation 0.087 (resp. 0.11), which is consistent with [106]. Again, a

clear difference appears between the two hemispheres: the mean value of H is 0.74 in

the North and 0.55 in the South. Let us add that longitudinal results remain almost

unchanged when poles are removed. It is also worth to recall that in the multifractal

case, H does not fully characterize the multifractal nature of the data but stands for the

“most frequent” exponent in the signal (maximum of the spectrum of singularities).

2.3.3 Localization of the monofractal and multifractal pro-
files

To complete this section on the 1D analysis of Mars topography, we briefly discuss the

spatial distribution of the monofractal and multifractal bands. For that purpose, Fig-

ure 2.5 shows a topographic map of Mars in false colors. On the top of the map (resp.

on the right), red lines indicate the few longitudinal (resp. latitudinal) bands exhibit-

ing a multifractal behavior at small scales, while the green ones correspond to those

associated with a monofractal behavior at large scales. The proportions of longitudinal

and latitudinal profiles that are monofractal/multifractal at small scales and monofrac-

tal/multifractal at large scales are given in Table 2.2. As mentioned previously, a large

part of the signals switch from a monofractal behavior at small scales to a multifractal

behavior at larger scales.

The analysis carried out on a band has somehow a “global” connotation from a

spatial point of view, compared to the more “local” 2D analysis performed in the next

section. That being said, it appears in Figure 2.5 that some areas of Mars seem to have

an impact on the whole characterization of the fractal nature of a band. Indeed, regions

such as Hellas Planitia (50◦S 70◦E), Olympus Mons (20◦N 225◦E) and the Tharsis

region (0◦N 250◦E) are likely to influence both longitudinal and latitudinal analyzes.

Also, the latitudinal analysis seems to be affected by the crustal dichotomy of Mars

since a large part of the Northern hemisphere displays a multifractal behavior at small

scales and a monofractal at large scales. This could be the result of the fact that the
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Figure 2.4: Top: Histograms of the distribution of the PCCs for the longitudinal
(left) and latitudinal (right) analyses at large scales (> 60 km), subdivided into
1000 equally spaced bins. Middle: ExponentH as a function of longitude (left) and
latitude (right) at large scales (> 60 km). The green lines indicate the topographic
profiles that are considered monofractal. Bottom: the corresponding histograms
of the distributions of H, subdivided into 1000 equally spaced bins.
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Figure 2.5: Topographic map of Mars in false colors (dark blue corresponds to
an altitude of roughly -8100 meters and dark red to 21200 meters). On the top
of the map (resp. on the right), red lines indicate the few longitudinal (resp.
latitudinal) bands exhibiting a multifractal behavior at small scales, while the
green ones correspond to those associated with a monofractal behavior at large
scales.
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topographic profiles at these latitudes are smooth and, from time to time, interrupted

by a crater or an anomalously irregular pattern. Therefore, at small scales, both the

wavelet coefficients related to the smooth behavior and those associated with the rougher

one are present, which globally results, quite logically, to a multifractal behavior. At

large scales though, the sporadic irregularities are somehow smoothed out or masked by

the predominant regular (smooth) nature of the profile, thus a monofractal behavior is

detected. This can be easily interpreted in another way: with the naked eye (i.e. what

we see is the behavior at large scales), it is natural to assert that such profiles do not vary

too much due to the smoothness of the entire area, which outbalances the irregularities

(they can barely be seen). Moreover, since these bands appear, at large scales, very

smooth, it should lead to larger scaling exponents. This is actually the case as seen in

Figure 2.4. These explanations should be investigated in more detail in future works,

since the influence of possible artifacts cannot be completely excluded.

2.4 Results on the two-dimensional analysis

Let us now examine the results of the two-dimensional WLM performed on the topo-

graphic map of Mars. Contrary to [8] and [64] where the two-dimensional multifractal

detrended fluctuation analysis (see section 3.A) is used to study a grayscale image of a

relatively small part of Mars, we aim to examine the whole surface, where data points

are actual topographic measurements. For that purpose, the map used in the 1D case is

first gridded into squares of 1024× 1024 pixels (which will be called tiles in the follow-

ing) thus giving ≈ 1000 tiles to analyze. Such tiles correspond to windows of 8◦ × 8◦ on

Mars. The choice of the tile size is rather subjective but is a good compromise between

a local analysis (size not too large) and the statistical meaning of the results (size not

too small). In a different approach, a similar resolution (5◦ × 5◦) is used in [106], where

a detailed justification of such a choice is provided. In order to increase the statistical

significance of the following results, the grid is also shifted 512 pixels rightward, then

downward and finally both rightward and downward, giving us a total number of 3696

tiles to work with.

Due to the restricted number of data available in such tiles, the parameter q now

ranges from -1.5 to 1.5 and the threshold for the PCC to consider a signal as monofractal

is now 0.97. However, the differences in the distributions of the PCCs and the exponents

at small and large scales are somehow more significant than the value chosen for the

threshold and the associated proportions of monofractal and multifractal signals. As a

first result, it can be noted that a scale break occurs once again at ≈ 15 kilometers; this

is illustrated in Figure 2.6 (which can be compared with Figure 2.1) where the function

j 7→ log2 S(j, q) is plotted for a tile for several values of q and j 7→ log2 S(j, 1) is plotted

for 370 tiles uniformly distributed in the map. The break may not seem as clear as in the

one-dimensional case due to the lower number of topographic measurements available in
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Figure 2.6: Top: log2 S(j, q) versus j for q ranging from -1.5 (red) to 1.5 (blue)
by steps of 0.1 for a tile. Bottom: log2 S(j, 1) versus j for several tiles (blue lines)
and mean of these functions over the 3696 tiles (red).

this case. Nevertheless, two scaling regimes can still be identified; this will be confirmed

in the following.

2.4.1 Small scales (< 15 km)

Not surprisingly, the 2D analysis of Mars topography reveals a monofractal behavior at

small scales. Indeed, 96.1% of the considered tiles have a function η with a PCC greater

than 0.97, as shown in Figure 2.7. As seen in the spatial distribution of these coeffi-

cients (Figure 2.7), the multifractal regions are mostly located around Hellas Planitia

(50◦S 70◦E), Amazonis Planitia (25◦N 180◦E) and Acidalia Planitia (25◦N 330◦E).

The mean of the exponents H is 1.12, with standard deviation 0.13, which is consistent

with the 1D analysis; their distribution is represented in Figure 2.7. One can note that

this histogram is somehow bimodal as the one corresponding to the latitudinal study,

suggesting that the latitudinal pattern previously observed has some influence in this

case. This is confirmed in Figure 2.8, which shows the longitudinal and latitudinal av-
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Figure 2.7: Top: Histograms of the distribution of the PCCs and the exponents H
for the 2D analysis at small scales (< 15 km), subdivided into 100 equally spaced
bins. Bottom: The spatial distribution of the PCCs where the multifractal tiles
are all colored in dark blue.

erage of H of the 2D analysis. It can also be noted that these curves display a similar

behavior as those obtained by averaging the exponents of the 1D case by blocks of 1024

longitudinal and latitudinal bands. Besides, the difference between the two hemispheres

is similar to the one in the 1D case: the mean value of H is 1.07 in the North and 1.17

in the South. Overall, these results are in good agreement with those obtained in the

1D case and with studies such as [7, 95, 106].

2.4.2 Large scales (> 60 km)

Let us now examine the second scaling regime for the 2D analysis. Similarly to the 1D

case, it appears that several regions of the planet switch to a multifractal behavior at

large scales. Indeed, it turns out that 45.8% of the tiles have a function η with a PCC
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H longitudinally (resp. latitudinally) in the 2D case, for the small scales. The
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smaller than 0.97. This is illustrated in Figure 2.9 where the distribution of the PCCs

is represented, as well as the distribution of the exponents H extracted. The Northern

hemisphere is mostly multifractal and Figure 2.9 clearly exhibits the crustal dichotomy

of Mars. Other multifractal areas include Hellas Planitia (50◦S 70◦E), Solis Planum

(20◦S 260◦E) and the southern latitudes (even though the influence of the projection

cannot be excluded in this case). This switch from monofractality to multifractality is

less pronounced than in the 1D case because of the restricted number of scales available

in this context, which artificially facilitates the monofractal characterization. Also, the

1D study is more concerned with global features while the 2D study examines the local

scaling of the topographic field. Nevertheless, the clear difference in the distributions of

the PCCs and exponents H at small and large scales still supports the existence of two

distinct scaling regimes, regardless the monofractal or multifractal nature of the tiles.

The mean value of H is 0.67, with a large standard deviation of 0.3. Surprisingly enough

are the curves displayed in Figure 2.10, which show as in Figure 2.8 the longitudinal and

latitudinal average of H of the 2D analysis compared with those obtained by averaging

the exponents of the 1D case by blocks of 1024 longitudinal and latitudinal bands.

Regarding the longitudinal case, the consistency between the two is obvious, with H

slightly lower in the 2D case. The latitudinal case is interesting in another way. Indeed,

the exponents extracted in the 2D case are much larger in the Northern hemisphere,

then they drop to lower levels. As already mentioned, this may be explained by the

famous Martian crustal dichotomy: the Northern hemisphere is rather flat, with few

impact craters. Therefore, it appears extremely smooth at large scales, which explains

the relatively large scaling exponents H associated with the regions within that area.

Such a difference in the surface roughness of the two hemispheres was also noted in the
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Figure 2.9: Top: Histograms of the distribution of the PCCs and the exponents H
for the 2D analysis at large scales (> 60 km), subdivided into 100 equally spaced
bins. Bottom: The spatial distribution of the PCCs, where the multifractal tiles
are all colored in dark blue.

1D case and is largely confirmed here: the mean value of H is 0.83 in the North and 0.51

in the South. The fact that the results differ so much from the 1D case for the highest

latitudes may be due to the fact that less wavelet coefficients are used in the analysis of

tiles of 1024× 1024 pixels than in the latitudinal bands and that the 2D case is more a

“local” analysis.

2.4.3 Detection of major surface features

In this last section, we show that the spatial distribution of the scaling exponents H

obtained from the 2D analysis of Mars is not “random”. Indeed, it is possible to detect

major surface features of Mars in the spatial distribution of these exponents, which is

an extra argument in favor of the effectiveness of the WLM. The identification of a
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Figure 2.10: Left (resp. right): the blue line indicates the mean of the exponents
H longitudinally (resp. latitudinally) in the 2D case, for the large scales. The
red line represents the mean of the exponents H of the 1D case by blocks of 1024
longitudinal (resp. latitudinal) bands.

particular feature is merely qualitative and subjective. In other words, we do not use

any algorithm to determine whether a pattern is detected or not; such a decision may

depend on the expectations of the reader for a feature to be detected. Nevertheless,

as shown below, there is often no point denying that some characteristics are clearly

identified.

For that purpose, we consider 9 of the most famous sites of the Red Planet: Hellas

Planitia (A), Isidis Planitia (B), Elysium Mons (C), Vestitas Borealis - Northern plains

(D), Olympus Mons (E), Tharsis (F), Valles Marineris (G), Argyre Planitia (H) and

Acidalia Planitia (I). These regions are represented in Figure 2.11. Let us recall that

the analysis carried out in the previous section was only performed on a sample of tiles

of 1024 × 1024 pixels, not all the possible ones. The value of H corresponding to a

tile is associated with the central pixel of the tile and, in order to fill in the gaps, the

missing values are interpolated using a 2D cubic spline. The interpolation method used

is not of primary importance; it is only used for more comfortable visual results and the

interpolated values are not used in any statistical analysis. The maps representing the

spatial distribution of the scaling exponents H at small and large scales are displayed in

Figure 2.11.

At small scales, among the 9 features of interest, it seems reasonable to say that

sites A, B, D, F, G and H can be identified on the map, whereas regions C, E and I

cannot. Regarding the exponents H at large scales, it is safe to assert that areas A, B,

D, E, F and I are pinpointed on the map, while it is not as clear as far as features C,

G and H are concerned. As already mentioned, poles appear to behave differently than

their surroundings but this may be due to some artifacts such as the projection used to

generate the maps. Also, the typical crustal dichotomy and the border of that feature
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(the vast Vestitas Borealis and Northern plains in a broad sense) are clearly detected on

the maps, especially the one representing the exponents H at large scales.

2.5 Conclusion

We used the MOLA data from the Mars Global Surveyor mission to study the surface

roughness of Mars with the WLM. We first focused on 1D latitudinal and longitudinal

topographic profiles of the complete 128-pixels-per-degree map of the planet. It appeared

that a scale break occurs at ≈ 15 kilometers as in some previous studies, which led us to

consider small and large scales separately. Regarding the small scales, Mars topography

was shown to exhibit a monofractal nature, with a mean scaling exponent H ≈ 1.11.

Conversely, it turned out that at large scales, a multifractal behavior is often displayed,

with H ≈ 0.74. A latitudinal trend also appeared, as well as indications of a slight

anisotropy in the topographic field, though such statements have to be confirmed via

several analyses. Regardless the values of H, we also showed that our results are in

agreement with previous seminal studies, thus confirming that the WLM is well-suited

for studying the irregularity of celestial bodies.

The results obtained in the 2D analysis confirmed most of the results of the 1D case.

A scale break at ≈ 15 kilometers was detected, with a mean scaling exponent H ≈ 1.12

at small scales and H ≈ 0.67 at large scales, as well as a switch from a monofractal

behavior at small scales to a multifractal behavior at large scales in several regions. The

2D analysis also gave information on the scaling law at a “local” level, which allowed

us to show that the spatial distribution of the exponents H recovers some of the most

characteristic features of the surface of Mars. It is important to keep in mind that the 2D

analysis was carried out with the assumption that the surface of Mars is isotropic, which

might not be exactly the case, as mentioned above. Therefore, the differences in the

values of H between the 1D and 2D cases could be partially explained this way, though

more investigations are needed. The most natural approach for that purpose would be to

adapt the wavelet analysis using a hyperbolic wavelet transform ([1, 5, 125, 126]). This

seems to be an excellent way to obtain complementary information about the roughness

of planetary surfaces.

Let us note that the scale break detected at ≈ 15 km indicates a change in the

geological processes that shape the surface of Mars. While there seems to be no consensus

in the literature on the exact nature of these processes, craterization appears to be an

eligible candidate, at least as far as the small scales are concerned [7, 90, 108]. Further

research is needed to fully understand Martian topography. Nevertheless, it appears

that the WLM is a useful tool in the present framework. The results provided here

could prove helpful for further investigation on the scaling properties of the surface

roughness of Mars. Finally, the topography of other celestial bodies could be studied in

an automatic way in future works.
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Figure 2.11: From top to bottom: the topographic map of Mars in false colors,
the map representing the spatial distribution of the exponents H at small scales,
then at large scales. The regions of interest are Hellas Planitia (A), Isidis Planitia
(B), Elysium Mons (C), Vestitas Borealis - Northern plains (D), Olympus Mons
(E), Tharsis (F), Valles Marineris (G), Argyre Planitia (H) and Acidalia Planitia
(I).
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Appendix

2.A On the range of values of q

As stated in section 2.3, the values of q range from −2 to 2 for the 1D study. The
arguments supporting this range are illustrated in Figure 2.12 and briefly discussed in
this section. First, the lower bound q = −2 is acceptable since moments of order −2
(and sometimes even below) appear steady and convergent and do not induce any erratic
behavior in the functions η. For the upper bound, as it can be seen from the top right
panel in Figure 2.12, a break around q = 2 may occur, which makes us choose this value
as the upper bound for the values of q for the sake of fairness between the signals. This
break is due to a handful of extreme wavelet coefficients (see histogram on the left) that
appear when intense sharp variations are present within the signal. According to the
criterion used in this paper, the topographic profiles corresponding to the blue and green
curves are monofractal and the one associated with the red curve is multifractal. The
bottom left figure shows that a comparable break can be simulated with a Brownian
motion (H = 0.5) for which a data point has been set to five times the maximum value
of the signal. A break around q = 2 occurs, similarly to the one observed in the top
right panel, but the slope of η up to q = 2 corresponds to the expected value 0.5. It
is also shown that this break can be annihilated when the highest 10% of the wavelet
coefficients are removed at each scale before the computation of S(j, q). One can see that
the break is only due to the highest wavelet coefficients and that removing them only
adjusts the curve, though the slope or the monofractal nature of the signal are correctly
identified up to q = 2. This is also observed for the signals of Mars, as indicated in the
last plot and this justifies our choice to limit the ranges of the values of q to -2 and 2.

The same kind of arguments justify the choice of -1.5 to 1.5 as the range of values of
q in the 2D case. Let us note that a brief investigation of the breaks did not reveal any
relevant information. Anyway, since we are interested in practical results of a standard-
ized analysis of a large number of signals, we imposed these limitations for the values
of q for the sake of equity between the signals. It is also worth mentioning that these
breaks in the functions η could probably be avoided with the more intricate Lν method
([48]) when they can be imputed to only a few coefficients, which could refine some of
the results presented here. However, this could be seen as a loss of information and the
signals considered in the present study are possibly too small for this method to be as
efficient as in [48].
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Figure 2.12: Top left: Histogram of the wavelet coefficients at scale j = 5 for
a longitudinal profile. Top right: Three functions η versus q at small scales for
q ranging from -5 to 5 for some latitudinal signals (those of Figure 2.2). The
red curve and the histogram come from the same signal. Bottom left: In red,
the function η versus q for a perturbed Brownian motion (H = 0.5). In blue,
the function η obtained for the same signal when the highest 10% of the wavelet
coefficients are removed at each scale. Bottom right: In red, a function η for a
longitudinal profile. In blue, the function η obtained for the same signal when the
highest 10% of the wavelet coefficients are removed at each scale.



Chapter 3

On the fractal nature of
temperature time series

As shown in chapter 2, the WLM can provide valuable information on the fractal nature
of real-life signals. More specifically, the influence of some particular features of Mars
could be observed in both 1D and 2D analyses. However, in that context, it is not easy
to come up with a rigorous framework that allows to perform quantitative measurements
of this influence. Therefore, we wonder if the WLM can provide information that can
be evaluated somehow and that is subtle enough to go beyond the sole computation of
Hölder exponents. Far from being the preserve of planetary scientists, the scaling prop-
erties of natural datasets are widely studied in numerous fields of geosciences. However,
as for chapter 2, it appeared to us that wavelet-based methods are often supplanted by
other techniques. As a consequence, we now immerse ourselves in the field of climate
data analysis and explore the Hölder regularity of daily mean air temperature data in
Europe with the WLM; most of the results presented here have been published in [40].

3.1 Introduction

The study of the fractal nature of climate time series is a subject of intense research
in the geosciences community, as demonstrated by the wide variety of related publica-
tions (see e.g. [10, 23, 94, 112, 128, 129, 137]). When it comes to the investigation of
the regularity of air temperature signals, a privileged tool used for the job is the De-
trended Fluctuation Analysis (DFA) or its common generalization named Multifractal
Detrended Fluctuation Analysis (MFDFA) ([24, 80, 81, 116]) described in section 3.A.
These techniques allow to exhibit a monofractal nature in air temperature time series
(e.g. [84, 85, 135]) but the values of the Hölder/scaling exponents obtained are hardly

53
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discussed. More specifically, most of these studies agree on a “universal scaling law” gov-
erning atmospheric variability with roughly the same exponent (≈ 0.65 for the so-called
integrated anomalies, not considered here) but few explore the accuracy of the results
in terms of correlations with other physical parameters. A geographic distribution of
some exponents is displayed in [21] and a “visual” argument states that the results do
not seem to be numerical artifacts but have probably a climatological origin. In [78],
authors examine the exponents obtained in numerous sites in China and their spatial
distribution in more detail. They refute the existence of a “universal” exponent (as we
also show) and suggest that the differences might be explained by parameters such as
latitude, distance from the shore, monsoons and various landforms interactions. In [77],
the same authors study the connection between the scaling exponents of ground surface
temperature time series and the corresponding types of land (in the same spirit as the
work carried out in this chapter) but without considering the climate type of the areas
in question.

As stated, this chapter explores the Hölder regularity of daily mean air tempera-
ture time series in Europe. We investigate this subject through the WLM presented
in chapter 1 with two questions in mind: Is there a strong connection between Hölder
exponents and standard deviations of air pressure anomalies? This one is raised because
the variability in pressure anomalies can intuitively be seen as one of the natural indi-
cators of the regularity of the climate type that a given region withstands. The second
question is: Is the Hölder exponent of a given surface air temperature time series a
possible characteristic of its associated climate type? As shown below, it turns out that
the Hölder exponents of air temperature data in Europe are indeed closely linked with
the Köppen-Geiger climate classification system ([83, 115]).

The rest of this chapter is structured as follows. First, we describe the datasets
used and we exhibit a strong anti-correlation between Hölder exponents obtained with
the WLM and standard deviations of air pressure anomalies. We also show that this
feature is not observed when the MFDFA is performed. Then, we establish a climate
classification based on the Hölder exponents in such a way that it allows to recover a
simplified version of the Köppen-Geiger classification for Europe. We show that the two
classifications match for almost all the stations, and we perform a confirmation test to
sustain these observations. We compare these results with those obtained with another
dataset to show that the new classification is still well-adapted. Finally, we discuss and
summarize the results and we give insights on possible future works.

Data

The surface air temperature data used throughout this chapter was downloaded from
the European Climate Assessment and Dataset website (ECA&D) [49] and consists of
daily mean temperatures. The corresponding weather stations were selected in Europe
in an area delimited by parallels 36◦N (which includes Spain, Italy, Greece) and 55◦N
(Ireland, Germany) and meridians 10◦W (Ireland, Portugal) and 40◦E (Ukraine) to
have a consistent geographic zone and limit the effects of latitude. Those located above
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1000m of altitude were first removed to reduce the influence of this parameter. Also,
only temperatures between years 1951 and 2003 were analyzed in order to have numerous
homogeneous data. As a result, it appeared that 115 stations fulfilled these requirements.
Moreover, the standard deviations of pressure anomalies used in section 3.2, computed
from 1951 to 2003, were provided by the NCEP-NCAR Reanalysis Project [109]. The
surface air temperature time series used in section 3.3.3 to compare the results with
another dataset were also provided by the NCEP-NCAR Reanalysis Project [109].

3.2 Hölder exponents and pressure anomalies

We first examine the relation between Hölder exponents and pressure anomalies. The
estimation of the Hölder exponents via the WLM is carried out as explained in sec-
tion 1.4.2 of chapter 1 and is illustrated in Figure 3.1 for the air temperature data of
Brindisi (Italy). Note that the air temperature time series are replaced by their cumu-
lative sums before the WLM analysis, i.e. the n − th value is replaced by the sum of
the first n values, giving a so-called “temperature profile” [81, 85, 123]. This gives more
stable numerical results; it also explains why the Hölder exponents obtained are greater
than 1.The wavelet chosen for the analyses is the third order Daubechies wavelet as in
chapters 1 and 2.

Since we investigate the Hölder regularity of the time series at a daily scale and
since data consists in daily mean temperatures, only the regime at the smallest scales
available is investigated (see Figure 3.1). The scaling function q 7→ η(q) of Brindisi is
computed for q ranging from -5 to 5 and displays a remarkable linear behavior. Given
that the same linear trend is observed for all the stations (see Figure 3.1), the signals can
be considered monofractal with Hölder exponents H given by the slope of their scaling
function. That being said, in order to improve the robustness to extreme coefficients of
this computation, we limit the range of q to [−2, 2]. This gives us exponents that range
from ≈ 1.1 to ≈ 1.4 as shown in the next section, with mean 1.24 and standard deviation
0.087.

To show that the computed Hölder exponents give sound results that can be con-
nected with pressure anomalies, we perform the following test. Each station is associated
with its Hölder exponent hn and with its inverse of standard deviation of pressure anoma-
lies pn (n = 1, ..., 115). In order to measure if these two sequences are close, we first
compact them in the interval [0, 1], i.e. hn becomes

hn −minn{hn}
maxn{hn} −minn{hn}

(3.1)

and similarly for pn. Then we compute the Euclidean distance d between them and we
define i0 = d−1 as an index of similarity between the two sequences. In this case, the
value of i0 obtained is 0.37. To check if this index is statistically significant, we compute
the same distance but with a randomly shuffled sequence hn to obtain the index of
similarity i1. We iterate the process 105 times to obtain the indices im (m = 1, ..., 105).
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Figure 3.1: Estimation of the Hölder exponent for Brindisi (Italy). Top left:
log2(S(j, q)) versus j for q = −5 (red) to q = 5 (blue) (increasing by steps of 0.1).
Only values of q between -2 and 2 and scales up to j = 5 will be used to compute
the Hölder exponents (dashed black lines). Top right: close-up of log2(S(j, q))
on the values that will be used later on. Bottom left: η versus q and associated
linear regression line (green) with a vertical shift for the sake of clarity. Since
η displays a linear behavior (PCC = 0.999, c2 = 0.018), the signal is considered
monofractal and the slope gives the Hölder exponentH of the signal. Bottom right:
Distribution of the PCC and c2 among the stations (for q from −5 to 5). They
both give the same information, i.e. the signals display a monofractal behavior.
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Figure 3.2: Left: Histogram of the indices of similarity between random shuffles
of the Hölder exponents hn obtained with the WLM and the inverse of pressure
anomalies pn. The arrow locates the measured index of similarity i0 = 0.37 between
pn and the original sequence hn. The red curve is the Gaussian probability density
distribution with mean 0.23 and standard deviation 0.0084. Right: the same for
the exponents obtained with the MFDFA instead of those obtained with the WLM.
We have j0 = 0.21 and the Gaussian curve has mean 0.22 and standard deviation
0.0069. It appears that i0 is highly significant while j0 is not.

Statistical tests accept the hypothesis that they are normally distributed, with mean 0.23
and standard deviation 0.0084. This implies that the probability that a random shuffle
of the Hölder sequence gives an index of similarity larger than i0 is of order 10

−50, which
means that i0 is a highly significant index of similarity (see Figure 3.2). Therefore the
anti-correlation between the Hölder exponents and the standard deviation of pressure
anomalies is confirmed: the higher the standard deviation of pressure anomalies, the
lower the Hölder exponents.

For the sake of comparison, we also perform the MFDFA in the same way as described
above. More precisely, if dn (n = 1, ..., 115) denotes the sequence of the exponents re-
normalized between 0 and 1 obtained with the MFDFA, then the measured index of
similarity between dn and pn is j0 = 0.21. The 105 indices jm (m = 1, ..., 105) obtained
with the shuffled versions of dn can be considered normally distributed with mean 0.22
and standard deviation 0.0069, which implies that the probability that a random shuffle
of dn gives an index of similarity larger than j0 is as high as 0.8 (see Figure 3.2).
Therefore, in the present case, it appears that the MFDFA is not able to recover sharp
information about a connection between the regularity of temperatures and pressure
anomalies.

This preliminary study thus indicates that the WLM gives sound results and that
its use is appropriate in the following.
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Figure 3.3: Distribution of the 115 weather stations within the different climate
types in Europe, according to a simplified version of the Köppen-Geiger climate
classification: in this case, precipitation is not taken into account. Hot continental
and temperate continental climates are merged and considered as continental cli-
mate. Stations close to 0.5◦C of another type of climate are also associated with
this second category.

3.3 From Hölder exponents to a climate classifi-

cation

3.3.1 Köppen-Geiger climate classification

In order to link the Hölder exponents of the stations with their associated climate,
we determine the climate type of each station according to a simplified version of the
Köppen-Geiger climate classification [83, 115]. Although precipitation is part of the
official classification, which can be found in appendix 3.B, we do not take it into account
since we focus on air temperature variability. By doing so, and considering the area in
which the stations were selected, only two parameters remain to determine the climate
type of a station: minimum (m) and maximum (M) monthly mean temperatures. These
induce four different types of climate: Mediterranean (Ca-type, m > 0◦C, M > 22◦C),
Oceanic (Cb-type, m > 0◦C, M < 22◦C), Hot continental (Da-type, m < 0◦C, M >
22◦C), Temperate continental (Db-type, m < 0◦C, M < 22◦C) (see Figure 3.3).

Compared to the Köppen classification and the map of Europe presented in [115]
and copied in appendix 3.B, our simplification has the effect of merging similar climate
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types. More precisely, the large part of Spain originally classified as an arid cold steppe
(BSk-type, mainly defined by very low precipitation) is now under the Mediterranean
label, as well as Northern Italy and some parts of the Balkans (e.g. Serbia), which display
the Cfa-type (same as Mediterranean climate with a wetter summer). They clearly have
common features in their air temperature data with the surrounding Mediterranean
regions and it is thus reasonable to merge them in the present work. Similarly, the
Csb-type (mainly the North part of Portugal) has now the Oceanic tag since the only
difference is the amount of precipitation during the summer season. Finally, the cold
continental types (Dsa, Dfc and ET) only occur at high altitude in the selected area
of Europe; data from weather stations located above 1000 meters of altitude will be
discussed separately. Subsequently, one can see that neglecting precipitation leads to a
union of similar climate types in a consistent way. In Europe, the main interest of taking
precipitation into account is to differentiate some relatively small regions of the South
half of the continent from the surrounding areas. This somehow brings more diversity
in the climate classification, though air temperature remains the most significant and
discriminant parameter. Besides, the intrinsic nature of precipitation measurements
make it irrelevant to use techniques such as the WLM to extract valuable information.

As a last remark, stations close to 0.5◦C of another type of climate are also associated
with this second category and the most appropriate one will be chosen in due time. This
is justified by the fact that climate may change over time; indeed, 12.2% of the stations
display a different climate type when computed from 1951 to 1977 and from 1977 to
2003. Also, due to the lack of Da-type stations (in Europe, only found around the Black
Sea), hot continental and temperate continental classes are merged into one category,
i.e. Continental stations (D-type). The climate distribution among the stations is given
by Figure 3.4.

3.3.2 A Hölder exponents-based climate classification

To check if the Köppen-Geiger climate classification in Europe can be regained from
the present analysis, we first compute another parameter related to a signal of Hölder
exponent H. Drawing on the scales used to obtain H and on the wavelet coefficients
(cj,k)j,k, the quantity

N = max
j,k

{|cj,k|/2jH}

inspired by equation (1.1) is computed for each signal and called -abusively but for
an easy-to-use purpose- the associated “norm”1. The mean of the norms is 17.61 and
the standard deviation 3.55. The distribution of the couple of parameters (H,N) is
represented in Figure 3.5.

At this point, it is interesting to examine how a clustering algorithm regroups the
points of the scatter plot displayed in Figure 3.5, without giving any information about
the climate type of the stations. For that purpose, we use the standard k-means clus-
tering algorithm ([16, 67]) in several ways; the results are displayed in Figure 3.6. First,

1It is actually a semi-norm on the uniform Hölder space CH [86].
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Figure 3.4: Climate distribution among the 115 weather stations. Green (Oceanic,
Cb): 33%, Orange (Mediterranean, Ca): 29%, Blue (Continental, D): 21%, Cb and
D: 9%, Ca and Cb: 7%, Ca and D: 1%.
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Figure 3.5: Distribution of the Hölder exponents and norms of the air temperature
time series.
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we cluster as if the norms were equal to zero, so that only H influences the procedure.
Since we will deal with three different types of climates in the following, we impose three
clusters, and get the clustering C1. Then, we proceed in the opposite way, i.e. as if
the exponents were zero, which gives three other clusters, denoted by C2. Therefore,
combining these two sets of clusters, the scatter plot can be divided in nine parts, which
gives a first “two-dimensional” separation of the points (see Figure 3.6), C3. Our second
choice is to perform directly a two-dimensional clustering with nine categories. However,
since the values of N are much greater than those of H, these two parameters are first
re-normalized with equation (3.1) to have a comparable weight in the clustering process,
before being reassigned to their initial values. This gives another cut-out of the cloud,
C4, which appears similar to C3 (see Figure 3.6).

If we now study more closely the climate types of the stations present in the clusters
of these four methods, it can be shown that the clusters in question generally regroup
stations having the same climate. More precisely, if we attribute to each cluster the
climate type which is the most abundant within, then 79% of the stations have the
same climate as their cluster in C1. Similarly, this percentage equals 78% for C2. The
combined cut-out C3 assigns the right climate for 83% of the stations, and this percentage
rises to 88% with C4. This is interesting since the climate types were not among the
parameters used in the clustering procedure. It thus indicates that it should be possible
to relate the (H,N) plane to the Köppen-Geiger climate classification. However, despite
the fact that C3 and C4 provide stimulating results, it is difficult to describe their
clusters analytically2 and they do not allow to perform an elementary cut-out of the
(H,N) plane through few basic horizontal and vertical lines. Finally, the classifications
obtained depend on the initial choice for the center of the clusters, and even iterations
of the procedure (1000 were performed in each case) cannot guarantee that the optimum
solution is found. As a consequence of these remarks, we will simplify our approach to
exploit these considerations.

We introduce the Köppen classification in the (H,N) plane of Figure 3.5: each
point is now colored according to its climate type (see Figure 3.7). Since it appears that
points with the same color are concentrated in the same areas, as foreseen in the previous
paragraph, we may now try to cut the plane into rectangles to isolate the three climates.
A simple possibility is to use only two vertical cuts (let us say at H1 and H2) and two
horizontal cuts (let us say at N1 and N2), which gives 9 rectangles. As previously, each
of them is then associated with the climate type that is the most abundant within, which
gives rise to a new kind of climate classification. The best way to do so, i.e. the cut-
out that gives the maximum coherence between this “Hölder-based classification” and
the Köppen-Geiger climate classification, corresponds to the cuts where H1 = 1.186,
H2 = 1.275, N1 = 14.81 and N2 = 16.18, which induces the classification given by
Table 3.1. In this case, 93.9% of the stations are correctly classified, i.e. their Köppen
climate type is recovered (see Figure 3.7).

We then perform a blind test on other weather stations in the same area to validate
the Hölder-based classification. Since none of the remaining stations available on [49]

2They divide the (H,N) plane in a kind of “broken stone mosaic”.
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Figure 3.6: Top: k-means clustering of the scatter plot of Figure 3.5 if N is
considered 0 (left) then if H is considered 0 (right). Bottom left: The combination
of the previous clusters giving nine groups of points. Bottom right: Direct two-
dimensional clustering in nine classes.

Table 3.1: The “Hölder-based” climate classification that best matches with
Köppen’s: almost 94% of the stations are correctly associated with their climate
type.

Hölder exponent Norm Climate type
H < 1.186 all Oceanic

1.186 ≤ H < 1.275
N < 14.81 Mediterranean
14.81 ≤ N < 16.18 Oceanic
16.18 ≤ N Continental

1.275 ≤ H all Mediterranean



CHAPTER 3. STUDY OF TEMPERATURE TIME SERIES 63

Figure 3.7: The diamonds (Green: Cb, Orange: Ca, Blue: D) represent the dis-
tribution of the Hölder exponents and norms of the 115 weather stations. Based
on these two variables, the red lines cut the plane into rectangles that induce a
climate classification (given by the color of the rectangles) designed to match as
much as possible with the Köppen-Geiger classification. Almost 94% of the points
have the same color as the rectangle in which they are located, which indicates that
the classification based on Hölder exponents and norms matches with Köppen’s.
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Figure 3.8: Climate distribution among the 69 weather stations selected for the
blind test. Green (Oceanic, Cb): 33%, Orange (Mediterranean, Ca): 28%, Blue
(Continental, D): 35%, Cb and D: 3%, Ca and D: 1%.

displayed at least 50 years of data between 1951 and 2003, we allowed shorter time
series for the test (at least 40 years of data in that period). We found 69 stations
exploitable for this experiment. As previously, we determine their Köppen climate types
(their distribution is given by Figure 3.8) and we display the scatter plot representing
the Hölder exponents and norms of these new stations (see Figure 3.9). Of course, the
values of H1, H2, N1 and N2 are left unchanged, as well as the cut-out of the plane into
rectangles and the colors of these rectangles. In this context, it appears that most of the
points (88.4%) are still correctly classified. Figure 3.10 shows a global overview of the
results (the first 115 stations and the 69 new ones).

As a reminder, all the stations used so far are placed below 1000 meters of altitude.
One can thus wonder how Hölder exponents behave for weather stations located at high
altitudes. We managed to find 10 stations above 1000 meters of altitude in the selected
part of Europe which display at least 40 years of data between 1951 and 2003. These
stations, as well as the associated information (Köppen climate, altitude) and results
(Hölder exponent, norm, prescribed climate) can be found in Table 3.2. Let us remark
that according to the simplified version of the Köppen classification described in this pa-
per, these stations are unsurprisingly classified as “Db” (Continental), and none of them
is 0.5◦ close to another type of climate. Nevertheless, following the original classification,
Fichtelberg, Mont Aigoual and Zavizan are actually “Dc” type (minimum monthly mean
temperature below 0◦C and only between 1 and 3 months display a monthly mean tem-
perature above 10◦C), whereas Sonnblick, Säntis, Grand Saint-Bernard and Kredarica
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Figure 3.9: The triangles (Green: Cb, Orange: Ca, Blue: D) represent the distri-
bution of the Hölder exponents and norms of the 69 weather stations selected for
the blind test. In order to check if the classification based on the Hölder exponents
and norms still match with Köppen’s, the cut-out of the plane is left unchanged.
Again, most of the points (almost 89%) have the same color as the rectangle in
which they are located, which confirms the first result.



CHAPTER 3. STUDY OF TEMPERATURE TIME SERIES 66

Figure 3.10: The first 115 weather stations are represented with diamonds, the 69
stations used for the blind test are represented with triangles. Each of them is col-
ored as follows: Oceanic stations (Cb-type) in green, Continental stations (D-type)
in blue, Mediterranean stations (Ca-type) in orange, and brown diamonds and tri-
angles are used for stations for which the climate type is erroneously predicted by
the Hölder-based classification.
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Table 3.2: List of the stations located above 1000 meters of altitude (Alt. column,
in meters) sorted by altitude and other relevant information. They are naturally
classified as “Db” according to Köppen but as “Cb” with our method (Hclim
column) because of their low Hölder exponent. This result seems surprising but is
discussed in section 3.4

Alt. City (Country) Tmax Tmin Köppen H N Hclim
1067 Vojsko (Slovenia) 15.6 -2.6 Db 1.168 16.4 Cb
1180 Ai-Petri (Ukraine) 15.6 -3.3 Db 1.163 19.5 Cb
1213 Fichtelberg (Germany) 12.1 -4.7 Db 1.136 20.5 Cb
1567 Mont Aigoual (France) 12.9 -1.9 Db 1.125 23.4 Cb
1594 Zavizan (Croatia) 13.1 -4.1 Db 1.137 21.8 Cb
1894 Navacerrada (Spain) 16.2 -0.7 Db 1.148 19.5 Cb
2472 Gd.-St.Bernard (Swit.) 7.6 -7.9 Db 1.130 23.1 Cb
2502 Säntis (Switzerland) 5.9 -8.0 Db 1.077 19.6 Cb
2514 Kredarica (Slovenia) 6.5 -8.1 Db 1.098 23.2 Cb
3106 Sonnblick (Austria) 2.1 -12.7 Db 1.123 20.8 Cb

are actually “E”-type of climate (maximum monthly mean temperature below 10◦C).
Table 3.2 indicates that all these stations located above 1000 meters of altitude are classi-
fied as “Cb” (Oceanic) according to our classification, due to their low Hölder exponents.
Such a result may seem surprising at first sight but is discussed in section 3.4.

3.3.3 Comparison between ECA&D and NCEP data

It can be asked whether the results described above are dependent on the dataset used
(i.e. ECA&D [49]). To answer that question, we perform the same analysis on surface air
temperature data from the NCEP/NCAR Reanalysis Project [109]. In this dataset, our
area of interest is divided in 27x10 pixels (1.875◦ of latitude, 1.905◦ of longitude), each
of them associated with a signal of daily mean temperatures over the period 1951-2003.
Figure 3.11 shows how Europe is divided in pixels, which are colored according to the
mean temperature over the 53 years of data.

After removing the pixels corresponding to the different seas, we analyze the Hölder
regularity and norms of the remaining air temperature profiles of the data with the
WLM. We then associate two climates with each pixel: one based on the Köppen-Geiger
classification, the other one using the Hölder-based classification (Table 3.1). With the
same color code as usual, the resulting maps are represented in Figure 3.12 (top left and
right) and match for 72% of the pixels.

To compare this result with those obtained from the ECA&D analysis, maps of the
same format representing these latter are needed. We first quad the map of Figure 3.10
to have the same pixels as the NCEP maps, then we associate two climates with each
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Figure 3.11: Illustration of the cut out of Europe into pixels by the NCEP data;
the area of interest is the region included in the black box. The colors of the pixels
represent the mean temperature of the corresponding region over the period 1951
to 2003. Image provided by the NOAA-ESRL Physical Sciences Division, Boulder
Colorado from their Web site [109].
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Figure 3.12: Top left (resp. right): Köppen (resp. Hölder)-based climate map
obtained with the NCEP/NCAR dataset. The two maps match for 72% of the
pixels. Bottom left (resp. right): Köppen (resp. Hölder)-based climate map
obtained with air temperature data from ECA&D. The maps match for 85% of
the pixels. Note that the Köppen maps (left) have a correspondence of only 78%.
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pixel (using Köppen and Hölder-based classifications). In the case where a pixel does
not include a weather station, the Hölder exponents, norms, minimum and maximum
monthly mean temperatures are kriged to allow the two climate classifications. The
resulting maps are represented in Figure 3.12 (bottom left and right) and match for 85%
of the pixels. It can also be noted that the Köppen-based maps match for 78% of the
pixels only.

3.4 Discussion

Let us now take a closer look at the results obtained in section 3.3.2. First, a major
observation that stands out from Figure 3.7 is that the type of climate influences the
regularity of the air temperature data. Indeed, it appears that Oceanic stations display
the lowest Hölder exponents, Continental stations have intermediate values of H, and
Mediterranean stations have the largest. This implies that, from a daily point of view,
the Oceanic climate is more irregular, less stable than the two others, while the Mediter-
ranean one is the most regular, the less variable in some way. It is an interesting fact
that a method which does not use mean temperatures matches the Köppen-Geiger clas-
sification. They do not even use data at the same scale: we investigated the regularity
at a daily scale while Köppen involves monthly mean temperatures. It thus also shows
that the WLM is powerful enough to give results about a rather complex mathematical
notion that are in good agreement with the intuition that surface air temperature vari-
ability is greater in Oceanic regions, whereas consecutive days and weeks are more likely
to have the same air temperature in the South part of Europe. This could be explained
by the fact that this region is more influenced by stable anticyclonic conditions, whereas
the West coast of Europe is more impacted by the North Atlantic Oscillation and is
therefore more subject to powerful winds, cold or humid air streams. These tend to
trail off while entering the land, such that continental weather is slightly more regular.
Such natural parameters affect the variability of air temperature, which is the principal
ingredient of the Köppen-Geiger classification in Europe. Similarly, we can see that the
Hölder exponent is the most important factor in the Hölder-based classification. If one
does not take the norm into account, keeping only columns 1 and 3 of Table 3.1, the
classification depends only on H: Oceanic if H < H1, Continental if H1 < H < H2,
Mediterranean if H > H2. In this case, 89.6% of the 115 stations of reference and 84.1%
of the 69 used for the confirmation test are still correctly associated with their climate
type.

This brings us to the discussion about the stations that are not correctly associated
with their Köppen climate type, which is the case for 7 out of the 115 initial stations (see
Table 3.3). Except for Salzburg and Graz, these stations are located at the confluence of
different climate types (see Figure 3.10 and [115]), which makes the climate more difficult
to prescribe. As far as these two Austrian stations are concerned, an explanation could
be found in the topography of the region. Located at the foot of the Alps, the climate of
these stations (Db according to Köppen) is probably highly influenced by the presence
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Table 3.3: List of the weather stations for which the prescribed climate type
(Hclim) and Köppen climate type do not match among the 115 initial ones. Tmax
and Tmin correspond to the maximum and minimum monthly mean temperatures
(in Celsius degrees), defining the Köppen climate type of the stations (column
“Köppen”). Column “Köp. 0.5◦C” corresponds to other possible climate types
that can be associated with the stations up to 0.5◦C. The values of Hölder expo-
nents and norms give the prescribed climate of the stations following our classifi-
cation.

Country City Tmax Tmin Köppen Köp. 0.5◦C H N Hclim
Austria Graz 19.8 -1.0 Db Db 1.237 14.9 Cb
Austria Salzburg 18.6 -1.1 Db Db 1.184 20.8 Cb
France Carcassonne 22.1 6.1 Ca Cb 1.214 17.9 Db
France Strasbourg 19.4 1.2 Cb Cb 1.202 19.5 Db
Spain Daroca 22.0 4.3 Ca Cb 1.249 17.5 Db

Switzerland Basel 19.3 1.2 Cb Cb 1.203 19.1 Db
Ukraine Askaniia Nova 22.8 -2.4 Da Da 1.385 21.8 Ca

of the mountains nearby and is therefore different from Db-stations in Eastern Europe,
which are easily detected by our classification. A comparable analysis can be made about
the stations used for the blind test. As seen in Figure 3.9, 8 out of these 69 stations
are not associated with their Köppen climate type (see Table 3.4). These errors can be
explained by the same arguments as above. Perpignan (close to Carcassonne), Lyon,
Mannheim and Rostov-On-Don are located in areas where different types of climates
meet (see Figure 3.10). Although it cannot be clearly seen in Figure 3.10 due to the
lack of stations in this region, Portugal undergoes both Oceanic and Mediterranean
climate (see e.g. [115]), hence the same explanation still holds for Tavira and Lisbon.
On the other hand, the cases of Poprad and Deva are similar to Graz and Salzburg
since the former is located at the foot of the High Tatra Mountains and the latter is
enclaved between the Apunesi Mountains and the Retezat Mountains in the Carpathian
Mountains. Nonetheless, with a correspondence of 88.4%, the excellent results obtained
in the confirmation test validate the “Hölder-based classification”. This is reinforced by
the fact that most of these new stations are located in countries in which none of the
first 115 stations were situated (e.g. Greece, Portugal, Russia, see Figure 3.10).

The case of stations located above 1000 meters of altitude is interesting since they are
all classified as Oceanic due to their low Hölder exponents. It is important to note that,
at high altitude, climate is more impacted by the variability from the free atmosphere
induced by the general circulation and thus tends to be very irregular, like the Oceanic
climate. This feature, embodied by a decrease in the values ofH with altitude, is detected
with the WLM. In addition, a closer examination at these stations reveals that 7 (out of
10) of them have a Hölder exponent lower than 1.137, which is smaller than 94% of the
stations of reference, and a norm higher than 19.6. Only 2 out of the 115 initial stations
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Table 3.4: List of the weather stations (among the 69 used for the blind test) for
which the prescribed climate type (Hclim) and Köppen climate type do not match.

Country City Tmax Tmin Köppen Köp. 0.5◦C H N Hclim
France Lyon 20.9 2.8 Cb Cb 1.235 19.8 Db
France Perpignan 23.8 8.1 Ca Ca 1.268 18.6 Db

Germany Mannheim 19.7 1.4 Cb Cb 1.186 19.4 Db
Portugal Lisbon 22.8 11.4 Ca Ca 1.147 12.0 Cb
Portugal Tavira 23.7 11.4 Ca Ca 1.182 15.1 Cb
Romania Deva 22.3 -1.9 Da Db 1.246 15.4 Cb

Russia Rostov-On-Don 23.3 -4.1 Da Da 1.307 24.7 Ca
Slovakia Poprad 15.8 -4.8 Db Db 1.184 19.8 Cb

have such values for H and N . Therefore, it is reasonable to assert that our classification
could be enhanced by defining a mountain climate for stations having H < 1.137 and
N > 19.6. Such a category could not have been guessed from the initial results and
should be considered with caution due to the restricted number of stations above 1000
meters at our disposal. Besides, among the 3 remaining ones, Navacerrada (Spain) is
somehow a nonstandard high altitude location in Europe (see [115]) and Vojsko and Ai
Petri are those with the lowest altitude in this category (resp. 1067 and 1180 meters).
It is thus probable that the decrease in the value of H due to altitude is limited in their
case.

Finally, we can comment the results obtained with the NCEP dataset in section 3.3.3.
One can notice that the three types of climate are still well discernible and well located
in Figure 3.12. Also, it appears that the Köppen-Hölder correlation between the maps
obtained from ECA&D is higher than the correspondence between the Köppen maps
from NCEP and ECA&D, which explains the relatively low correspondence percentage
between the Köppen-Hölder NCEP maps. However, the global tendencies remain visible
and detectable with the NCEP/NCAR data, which emphasizes the independence of the
results from the dataset and stresses the fact that surface air temperature variability,
through Hölder exponents, is correlated with climate types in Europe.

3.5 Conclusion

In conclusion, we first showed that the Hölder exponents from surface air temperature
data in Europe obtained with the WLM are anti-correlated with the associated standard
deviation of pressure anomalies, while those given by the MFDFA are not. Then, we
established a climate classification based on these Hölder exponents that allowed us to
recapture the renowned Köppen-Geiger climate classification. It appeared that Oceanic
stations display the lowest Hölder exponents, Continental stations have intermediate
exponents, and Mediterranean stations have the largest. We performed a blind test to
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check the efficiency of our classification and we investigated the particular nature of
stations located at high altitude. The computations performed with another dataset
confirmed that, as quantified by the notion of Hölder exponent, temperature variability
is correlated with climate types in Europe.

The results presented in this chapter, as well as the method used, could be useful to
test and compare different climate models. It could help in the detection of abnormalities
in reanalyses or could indicate if some factors tend to “smoothen” the temperature
curves. Apart from these potential impacts in climate modeling and, to some extend,
to weather forecast, the issue of a generalization to other parts of the world can be
considered. Indeed, the discussion about stations placed at high altitude raises the
question of the detection of completely different types of climates, such as Tropical,
Dry, or Polar climates. Of course, the current version of the Hölder-based classification
is not able to detect them provided that it is calibrated for Europe and that we do
not know which part of the (H,N) plane they would occupy. It is possible that they
are not clearly discernible from some European climates from a Hölder point of view.
However, is it really relevant to try to contrast the Hölder exponents of Madrid and of
Brasilia if they accidentally lie close to each other in the (H,N) plane? Maybe they
have a similar regularity although Brasilia is globally much wetter and hotter, so that
there would be actually no mistake by placing them in the same area of the plane. The
real interesting problem would be to establish a Hölder-based classification specific for
e.g. South America that is able to distinguish the different types of climates present in
that particular consistent geographic area. In line with this example, we could imagine
that the impact of precipitation on daily temperatures could be observed in data from
this region, while it is not the case in Europe. Moreover, it is always possible to add
new features in relation with H and N if we really want to ramify our classification.
Indeed, it may be good to recall that the Köppen-Geiger classification uses a dozen
of indicators related to temperature and precipitation to distinguish up to 30 types
of climates worldwide. Be that as it may, the results obtained for Europe are more
than encouraging and there is clearly an exciting challenge ahead with the study of
other continents and with the prospect of mapping the world according to the Hölder
regularity of surface air temperature data.

We acknowledge the data providers in the ECA&D project [136] (data and metadata
available at [49]) and in the NCEP/NCAR Reanalysis Project (GHCN Gridded V2 data
were provided by the NOAA-OAR-ESRL PSD, Boulder, Colorado, USA, from their Web
site at [109]).
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Appendix

3.A Multifractal detrended fluctuation analysis

The main ideas of the MFDFA method applied on a data series xk of length N are briefly
described below. More details can be found in e.g.[81].

1) Compute the “profile”

Y (i) =
i
∑

k=1

xk − x̄

where x̄ is the mean of the series.

2) For each scale (i.e. “length”) s > 0, divide the profile into Ns non-overlapping
segments of length s.

3) For each segment i = 1, ..., Ns, compute the variance of the detrended segment,
i.e.

F 2(s, i) =
1

s

s
∑

k=1

(Y ((i− 1)s+ k)− yi(k))
2

where yi(k) is the least-square fitting polynomial of order m (fixed in advance,
m = 1 for linear fit, m = 2 for quadratic fit, etc.) of the segment.

4) Compute the fluctuation function

Fq(s) =

(

1

Ns

Ns
∑

i=1

(F 2(s, i))q/2

)1/q

for each value of q.

5) For each value of q, compute ζ(q) as the slope of the linear regression of s 7→
logFq(s).

Then, ζ(q) plays the same role as η(q) in the WLM, i.e. if ζ is linear, then its slope is
the scaling exponent of the signal.

3.B Köppen-Geiger classification

Table 3.5 presents the Köppen-Geiger climate classification as given in [115]. The criteria
used are the following:

• MAP = mean annual precipitation

• MAT = mean annual temperature
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• Thot = temperature of the hottest month3

• Tcold = temperature of the coldest month

• Tmon10 = number of months where the temperature is above 10◦C

• Pdry = precipitation of the driest month

• Psdry = precipitation of the driest month in summer

• Pwdry = precipitation of the driest month in winter

• Pswet = precipitation of the wettest month in summer

• Pwwet = precipitation of the wettest month in winter

• Pthreshold = varies according to the following rules: if 70% of MAP occurs in winter
then Pthreshold = 2 x MAT, if 70% of MAP occurs in summer then Pthreshold = 2
x MAT + 28, otherwise Pthreshold = 2 x MAT + 14

• Summer (winter) is defined as the warmer (cooler) six month period of ONDJFM
and AMJJAS.

Figure 3.13 presents the Köppen-Geiger climate map for Europe.

3In the sense of maximum monthly mean temperature.
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Table 3.5: Description of Köppen climate symbols and defining criteria.

1st 2nd 3rd Description Criteria*

A Tropical Tcold≥ 18

f - Rainforest Pdry≥ 60

m - Monsoon Not (Af) & Pdry≥ 100–MAP/25

w - Savannah Not (Af) & Pdry< 100–MAP/25

B Arid MAP< 10× Pthreshold
W - Desert MAP< 5× Pthreshold
S - Steppe MAP≥ 5× Pthreshold

h - Hot MAT≥ 18

k - Cold MAT< 18

C Temperate Thot> 10 & 0< Tcold< 18

s - Dry Summer Psdry< 40 & Psdry< Pwwet/3

w - Dry Winter Pwdry< Pswet/10

f - Without dry season Not (Cs) or (Cw)

a - Hot Summer Thot≥ 22

b - Warm Summer Not (a) & Tmon10≥ 4

c - Cold Summer Not (a or b) & 1≤Tmon10< 4

D Cold Thot> 10 & Tcold≤ 0

s - Dry Summer Psdry< 40 & Psdry< Pwwet/3

w - Dry Winter Pwdry< Pswet/10

f - Without dry season Not (Ds) or (Dw)

a - Hot Summer Thot≥ 22

b - Warm Summer Not (a) & Tmon10≥ 4

c - Cold Summer Not (a, b or d)

d - Very Cold Winter Not (a or b) & Tcold< –38

E Polar Thot< 10

T - Tundra Thot> 0

F - Frost Thot≤ 0
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Figure 3.13: Europe map of Köppen-Geiger climate classification, from [115, 156].
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Chapter 4

Continuous wavelet transform
and border effects

This chapter is somehow the counterpart of chapter 1 for the continuous wavelet trans-
form. It will be used in this thesis in the context of the extraction of oscillating com-
ponents from a signal. The theoretic part is again reduced to the properties needed
in chapters 5 and 6 whereas a major difference between theory and practice - the bor-
der effects - is studied more deeply and is the main subject of the chapter. Note that,
throughout part II, we consider that every function (including wavelets) is defined on R

unless stated otherwise.

4.1 A convenient property

Notation 4.1.1. The Fourier transform of a function f is noted f̂ . If f ∈ L1(R), then

f̂(ξ) =

∫

R

e−iξxf(x)dx.

Given a wavelet ψ, the continuous wavelet transform (CWT) of a function f ∈ L2(R) at
position b and at scale a > 0 is defined as

Wψ
f (a, b) =

∫

R

f(x)ψ̄

(

x− b

a

)

dx

a
(4.1)

where ψ̄ is the complex conjugate of ψ.

Remarks 4.1.2. The superscript ψ will not be written anymore since it does not play
any role in the following. Also, as mentioned in chapter 1, more information on the
theoretical properties of wavelets can be found in the seminal works [34, 96, 98, 100].

81
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A wavelet ψ is called a progressive wavelet if ψ̂(ξ) = 0 if ξ ≤ 0. Progressive wavelets
have the following convenient property ([35]).

Proposition 4.1.3. If ψ is a progressive wavelet and if f(x) = cos(ωx) with ω > 0,
then

Wf (a, b) =
1

2
eibωψ̂(aω).

Proof. From Parseval-Plancherel’s theorem, it comes

Wf (a, b) =

∫

R

f(x)ψ̄

(

x− b

a

)

dx

a

=
1

2π

∫

R

f̂(ξ)aeibξψ̂(aξ)
dξ

a
.

Since
f̂(ξ) = π(δ(ξ − ω) + δ(ξ + ω))

where δ(.) is the Dirac delta-distribution, we get

Wf (a, b) =
1

2

∫

R

(δ(ξ − ω) + δ(ξ + ω))eibξψ̂(aξ)dξ

=
1

2
(eibωψ̂(aω) + e−ibωψ̂(−aω))

=
1

2
eibωψ̂(aω)

where the last equality comes from the fact that ψ is a progressive wavelet and that
aω > 0.

In the context of time-frequency analysis, it is recommended to use a wavelet well-
located in the frequency domain ([141]). In this work, we use the Morlet-like wavelet ψ
defined by its Fourier transform as

ψ̂(ξ) = sin

(

πξ

2Ω

)

e
−(ξ−Ω)2

2 (4.2)

with Ω = π
√

2/ ln 2, which has one vanishing moment ([104]). In the time domain, we
have

ψ(x) =
eiΩx

2
√
2π
e−

(2Ωx+π)2

8Ω2

(

e
πx
Ω + 1

)

.

Since
∣

∣

∣
ψ̂(ξ)

∣

∣

∣
< 10−5 if ξ ≤ 0, ψ will be considered as a progressive wavelet. Moreover, it

comes that the function1

a 7→ |Wf (a, b)| =
1

2
|ψ̂(aω)|

1Since ψ̂ is a real-valued function, we have ψ̂ = ψ̂.
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reaches a global maximum at some scale a∗ which satisfies a∗ = Ω/ω. As a consequence,
if ω is unknown, it can be obtained as ω = Ω/a∗ and thus

Wf (a
∗, b) =

1

2
eibω.

The initial function f can then be easily recovered from the real part of its CWT as

f(x) = 2ℜWf (a
∗, x)

= 2|Wf (a
∗, x)| cos(arg(Wf (a

∗, x))). (4.3)

4.2 Border effects

4.2.1 A practical approach

In practice, the signal has a finite length and thus needs to be padded at its edges to
obtain the whole CWT. The chosen padding irremediably flaws a certain proportion of
the wavelet coefficients located at the beginning and at the end of the signal, which is
known as the “border effects” or “edge effects”. While this problem is well-known by
practitioners, it is usually simply recommended to be careful about the interpretation
of the associated coefficients [113, 141]. Some of the most common possibilities are the
zero padding, the constant padding and the symmetrization of the signal. In [134], the
authors suggest to pad the signal with a Fourier series extension of the signal, which
appears interesting but only one simple example is presented. Be that as it may, it
appeared relatively difficult to find interesting works that provide a deeper analysis of
border effects. This is why we decided to investigate this topic more closely. Since
only the zero padding has a “universal” overtone, in the sense that the padded values
are independent of the signal, it will be our main subject of interest. Moreover, “on
average”, it has the same mean (i.e. zero) as a periodic oscillating component, regardless
the period. Therefore, in this section, we try to estimate how the zero padding interferes
with the CWT of a cosine in practice.

As a matter of example, we perform the CWT of the 32-units periodic function

f(x) = cos

(

2π

32
x

)

computed for x ranging from -255 to 0 by steps of 1 unit. For the computation of the
CWT, we impose that f(x) = 0 for x < −255 and for x > 0. The function

(a, b) 7→ |Wf (a, b)|

is commonly referred to as a time-frequency (TF) representation of f because the vari-
ables b and x are usually time variables and a given scale a can be seen as the frequency
at which the signal is analyzed (in the same spirit as in the Fourier transform). This



CHAPTER 4. CWT AND BORDER EFFECTS 84

−256 −192 −128 −64 0

4

8

16

32

64

b

P
er

io
d

−256 −192 −128 −64 0

4

8

16

32

64

b

P
er

io
d

−256 −192 −128 −64 0

4

8

16

32

64

b

P
er

io
d

−256 −192 −128 −64 0

4

8

16

32

64

b

P
er

io
d

Figure 4.1: Top left: Modulus of the CWT of f(x) = cos(2πx/32) defined on
[−255, 0] with the zero padding. The values range from 0 (blue) to 0.5 (red). Top
right: Argument of the CWT of f ; the values range from −π (blue) to π (red).
Bottom: The expected modulus and argument of the CWT of f , with no border
effects. The black lines indicate the wavelet coefficients at period 32 that will be
used to reconstruct f from its CWT.

function thus indicates at which scales/frequencies and time spans the energy of the sig-
nal is located, which generally guides the rest of the analysis. It is plotted in Figure 4.1,
where the scales a on the vertical axis have been converted into the corresponding pe-
riods for the sake of clarity. The function (a, b) 7→ arg(Wf (a, b)) is also plotted, as well
as their unbiased counterparts, i.e. the two expected TF planes with no border effects.
While it can be seen that the signal has its energy located around the period 32 (as ex-
pected) independently of the value of b, the influence of the zero padding is also clearly
noticeable.

We can extract the modulus (or amplitude) and argument of the CWT at period
32, i.e. along the black lines in Figure 4.1. They are displayed in Figure 4.2. It can be
observed that the influence of the zero padding in the present case is particularly strong
as far as the amplitude is concerned, dropping by almost a half at the beginning and
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at the end of the signal. This observation makes sense since the zero padding drags the
wavelet coefficients down so that they get closer to 0. Regarding the argument on the
top right plot, it is not clear how it differs from the expected one. In order to bypass this
problem, the argument can be unwrapped by adding appropriate multiples of 2π each
time it decreases. This procedure is conducted for both the obtained and the expected
arguments starting from the 128th data point, in the middle of the signal, where they
match perfectly. The operation gives the third plot in Figure 4.2, which is still not
easy to interpret. However, the difference between these two signals (“obtained minus
expected”, see last plot) reveals that the argument obtained in the present case with
the zero padding increases as b draws closer to the end of the signal. This indicates
that the instantaneous frequency “spins” too fast compared to its expected behavior.
Again, such an observation can be explained: at the right-hand border, the signal drops
abruptly from 1 to 0, which somehow forces a compression of the argument of the wavelet
coefficients in order to better replicate this sudden jump.

Using equation (4.3), we can extract the component associated to period 32. Due to
the significant decrease in amplitude, it only matches with the initial signal on an interval
of the type [−128−N,−128+N ] almost unaffected by border effects, where N depends
on the width of the wavelet ([141]); this is shown in Figure 4.3. For the wavelet used
in this work, numerical experiments showed that when a cosine sampled every unit is
analyzed at a scale a, corresponding to a period p, there are at most ≈

√
2p coefficients

at each border that differ of more than 5% from their correct value. Moreover, the
impact of the increasing argument of the so-obtained component is barely noticeable in
this case; the amplitude is the dominant source of error. Correcting the amplitude but
not the argument reduces the maximum absolute error to 0.03.

4.2.2 A more analytical approach

The previous section showed how the border effects influence the CWT of a cosine in
practice. Now, we try to estimate these effects from a more analytical point of view and
to derive a computable expression for a corrective factor. More precisely, we consider

f(x) =

{

cos(ωx) if x ≤ 0

0 if x > 0

which can be rewritten as f(x) = cos(ωx)H(−x) where H is the Heaviside step function.
We assume that ω is known and we naturally investigate the scale a∗ = Ω/ω. From the
previous section, it can be conjectured that

Wf (a
∗, b) =

1

2
eibωz∗ω(b) (4.4)

where z∗ω : R → C has the following properties:

1) 0 < |z∗ω(b)| < 1 ∀b ∈ R,

2) b 7→ |z∗ω(b)| is decreasing,
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Figure 4.2: Top left: In blue, the modulus of the CWT of f with the zero padding
along the black ridge in Figure 4.1. In red, the expected modulus without border
effects. Top right: The same with the argument of the CWT of f along the ridge.
Bottom left: “Unwrapped” versions of the arguments. The blue one masks the
red one. Bottom right: Difference between the obtained unwrapped argument and
the expected one.
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Figure 4.3: Left: The initial signal (red) and the reconstructed one (blue) from
the CWT. Right: the difference between them, i.e. the error in the reconstruction.

3) arg(z∗ω(b)) > 0 ∀b ∈ R,

4) b 7→ arg(z∗ω(b)) is increasing.

Given b, we thus try to find an appropriate compensation z∗ω(b) with these properties,
numerically computable, and such that

2ℜ
(

Wf (a
∗, b)

z∗ω(b)

)

= cos(ωb)

for negative values of b.
For that purpose, we mimic the procedure of section 4.1. First, the Fourier transform

of f can be obtained as

f̂(ξ) =
1

2π

(

π(δ(ξ − ω) + δ(ξ + ω)) ∗ Ĥ(−ξ)
)

=
1

2

(

(δ(ξ − ω) + δ(ξ + ω)) ∗ (πδ(ξ) + i

ξ
)

)

=
1

2

(

πδ(ξ − ω) +
i

ξ − ω
+ πδ(ξ + ω) +

i

ξ + ω

)

=
1

2
ĝ(ξ) +

ξi

ξ2 − ω2

where g(x) = cos(ωx) for x ∈ R. Even if the conditions for Parseval-Plancherel’s formula
do not fully hold, we can hope to have

Wf (a, b) ≈
1

4
eibωψ̂(aω) +

i

2π

∫

R

ξ

ξ2 − ω2
ψ̂(aξ)eibξdξ.

As mentioned, the scale of interest is a∗ = Ω/ω. With the change of variables ξ = ωx,
we thus get

Wf (a
∗, b) ≈ 1

4
eibω +

i

2π

∫

R

x

x2 − 1
ψ̂(Ωx)eibωxdx. (4.5)
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We now consider the remaining integral as a principal value integral and hope it con-
verges, so that we can work with numerically computable quantities. Besides, if we
assume that ψ is a progressive wavelet, then ψ̂ vanishes for negative arguments, and
since ψ̂ is symmetric with respect to Ω, we can consider that ψ̂ is supported in [0, 2Ω].
It comes that ψ̂(Ωx) vanishes outside [0, 2]. Also, if we write

I = P.V.

∫ 2

0

x

x2 − 1
ψ̂(Ωx)eibωxdx = lim

ǫ→0

(
∫ 1−ǫ

0
. . .+

∫ 2

1+ǫ
. . .

)

,

then with the change of variables y = 2− x for the second part and given that ψ̂(Ω(2−
y)) = ψ̂(Ωy), we get

I = lim
ǫ→0

∫ 1−ǫ

0

x

x2 − 1
ψ̂(Ωx)eibωx +

2− x

(2− x)2 − 1
ψ̂(Ωx)eibω(2−x)dx

= eibω lim
ǫ→0

∫ 1−ǫ

0

ψ̂(Ωx)

x− 1

(

x

x+ 1
e−ibω(1−x) +

2− x

x− 3
eibω(1−x)

)

dx

= eibω lim
ǫ→0

∫ 1−ǫ

0

ψ̂(Ωx)

x− 1

( −2(x− 1)

(x+ 1)(x− 3)
cos(bω(1− x))

+i
−2(x2 − 2x− 1)

(x− 3)(x+ 1)
sin(bω(1− x))dx

)

= 2eibω

(

∫ 1

0

ψ̂(Ωx)

(x+ 1)(3− x)
cos(bω(1− x))dx

+i

∫ 1

0

(x2 − 2x− 1)ψ̂(Ωx)

(x2 − 1)(3− x)
sin(bω(1− x))dx

)

.

As a consequence, we finally get

Wf (a
∗, b) ≈ 1

2
eibωzω(b) (4.6)

with

ℜ(zω(b)) =
1

2
− 2

π

∫ 1

0

(x2 − 2x− 1)ψ̂(Ωx)

(x2 − 1)(3− x)
sin(bω(1− x))dx (4.7)

and

ℑ(zω(b)) =
2

π

∫ 1

0

ψ̂(Ωx)

(x+ 1)(3− x)
cos(bω(1− x))dx, (4.8)

where it can be noted that both integrals make sense. From a numerical point of view,
it appears that the complex number zω(b) defined by equations (4.7) and (4.8) has
the desired properties, i.e. |zω(b)| < 1, b 7→ |zω(b)| is decreasing, arg(zω(b)) > 0 and
b 7→ arg(zω(b)) is increasing, as shown in Figure 4.4. It can also be seen that zω(b)
is close to the expected z∗ω(b) of equation (4.4). Besides, drawing on equation (4.6), it
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Figure 4.4: Left: b 7→ |z∗ω(b)| (black) and b 7→ |zω(b)| (green). Right: b 7→
arg(z∗ω(b)) (black) and b 7→ arg(zω(b)) (green).

appears that 1/zω(b) should be an appropriate candidate corrective factor in the sense
that

f(x) ≈ 2ℜ
(

Wf (a
∗, x)

zω(x)

)

,

which is confirmed in Figure 4.5. It is also reassuring to observe that the dependency
of zω(b) in ω only manifests through horizontal expansions or compressions of the case
ω = 1:

zω(b) = z1(ωb).

4.2.3 Influence of the phase

The situation studied so far is the particular case ϕ = 0 of the more general one

f(x) = cos(ωx+ ϕ).

It goes without saying that the equations established in the theoretical framework of
section 4.1 can be adapted effortlessly. As a result, it comes that

Wf (a
∗, b) =

1

2
ei(bω+ϕ)

so that the relation
f(x) = 2|Wf (a

∗, x)| cos(arg(Wf (a
∗, x)))

still allows to recover f . The case involving border effects as above is slightly more
challenging. If we consider

f(x) =

{

cos(ωx+ ϕ) if x ≤ 0

0 if x > 0
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Figure 4.5: Left: The initial signal (red, masked by the green signal) and the
reconstructed signal corrected with 1/zω(b) (green). Right: the error in the recon-
struction.

and if we mimic the procedure used previously, then equation (4.6) becomes

Wf (a
∗, b) ≈ 1

2
ei(bω+ϕ)zω,ϕ(b)

with

zω,ϕ(b) =
1

2
+

2ie−iϕ

π

∫ 1

0

ψ̂(Ωx)

(x2 − 1)(x− 3)

(

e−iϕ(1− x) cos(bω(x− 1))

+i(cosϕ(x2 − 2x− 1)− 2i sinϕ) sin(bω(x− 1))
)

dx,

i.e.

ℜ(zω,ϕ(b)) =
1

2
+

2

π

∫ 1

0

ψ̂(Ωx)

(x2 − 1)(x− 3)
(sin(2ϕ)(1− x) cos(bω(x− 1))

+(2 sin2 ϕ− cos2 ϕ(x2 − 2x− 1)) sin(bω(x− 1))
)

dx

and

ℑ(zω,ϕ(b)) =
2

π

∫ 1

0

ψ̂(Ωx)

(x+ 1)(3− x)
(cos(2ϕ) cos(bω(x− 1))

+ sinϕ cosϕ(1− x) sin(bω(x− 1))) dx.

It can be seen that these quantities are all numerically computable and that the intuitive
relations

zω,ϕ(b) = z1,ϕ(ωb)

and
zω,ϕ+π(b) = zω,ϕ(b)
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hold for all b, ω, ϕ, which indicates that we can assume that ϕ ∈ [0, π). As in equa-
tion (4.4), we note z∗ω,ϕ(b) the complex number such that

Wf (a
∗, b) =

1

2
ei(bω+ϕ)z∗ω,ϕ(b). (4.9)

Similarly to Figure 4.4, it can be seen in Figure 4.6 that zω,ϕ(b) is close to the expected
z∗ω,ϕ(b) in modulus and in argument for all ϕ ∈ [0, π). More precisely, it comes out from
Figure 4.7 that

sup
ϕ∈[0,π)

sup
b≤0

{∣

∣

∣

∣

1− |zω,ϕ(b)|
|z∗ω,ϕ(b)|

∣

∣

∣

∣

}

< 0.025

and that

sup
ϕ∈[0,π)

sup
b≤0

{
∣

∣arg(zω,ϕ(b))− arg(z∗ω,ϕ(b))
∣

∣

}

< 0.044 <
1.5π

100
.

It can also be seen in Figure 4.7 that the skills of 1/zω,ϕ(b) as corrective factor are of
the same order as those already displayed in Figure 4.5 and that

sup
ϕ∈[0,π)

sup
b≤0

{∣

∣

∣

∣

2ℜ
(

Wf (a
∗, x)

zω,ϕ(x)

)

− f(x)

∣

∣

∣

∣

}

< 0.04,

so that the corrected reconstructed signal is always extremely close to the initial one.
Finally, it is interesting to note that, while the interpretation of the decrease in

amplitude of zω,ϕ(b) with b is the same as in the case ϕ = 0, the instantaneous frequency
is not necessarily increasing anymore. As a matter of example, for ϕ = π/2, the last
data point is zero, thus the zero padding can be seen as a somehow natural extension of
the signal in this case. As a consequence, the arguments of the wavelet coefficients have
to “slow down” to better match with this feature, giving an instantaneous frequency
lower than expected.

A brief comparison with the symmetric padding

As mentioned in the introduction of this section, the symmetric padding is commonly
used in practice. It consists in completing the signal at both borders with its own mirror.
One of the reasons that justify this choice is the fact that it pads the signal while somehow
keeping its properties, particularly the spectral content. Contrary to the zero padding,
the additional values depend on the signal, which might be double-edged. On the one
hand, in the case of cos(ωx) defined for x ≤ 0 (thus ϕ = 0), the symmetric padding
is actually the perfect way to complete the signal (on the right hand side at least) and
thus the CWT gives a flawless reconstruction of the initial signal. On the other hand, in
the case of cos(ωx+ π/2), the symmetric padding is probably one of the worse possible
choices and leads to major mistakes in the recovery of the signal. It can thus be sensed
that this technique is heavily dependent on the phase ϕ at stake. In order to support
this claim, we compare the amplitudes and arguments of the extra factors that appear
in the CWT with the zero padding and with the symmetric padding for various phases
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Figure 4.6: Top left: b 7→ |z∗ω,ϕ(b)| (black) and b 7→ |zω,ϕ(b)| (green) for ϕ ranging
from 0 to π (by steps of π/32). Top right: b 7→ arg(z∗ω,ϕ(b)) (black) and b 7→
arg(zω,ϕ(b)) (green) for ϕ ranging from 0 to π. Bottom left: ϕ 7→ |z∗ω,ϕ(0)| (black)
and ϕ 7→ |zω,ϕ(0)| (green). Bottom right: ϕ 7→ arg(z∗ω,ϕ(0)) (black) and ϕ 7→
arg(zω,ϕ(0)) (green).
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Figure 4.7: Left: maximum values of
∣

∣arg(zω,ϕ(b))− arg(z∗ω,ϕ(b))
∣

∣ (blue),
∣

∣1− |zω,ϕ(b)|/|z∗ω,ϕ(b)|
∣

∣ (red) and |2ℜ (Wf (a
∗, b)/zω,ϕ(b))− f(b)| (black) for b ≤ 0,

as functions of ϕ. Note that it comes out that the blue and red curves are actually
obtained exclusively from the case b = 0 in Figure 4.6. Right: error in the recon-
structions, i.e. f(x) − 2ℜ (Wf (a

∗, x)/zω,ϕ(x)) as function of x ≤ 0, for ϕ ranging
from 0 (blue) to π (red) (by steps of π/32).

ϕ. In other words, we consider f(x) = cos(2πx/32 + ϕ) for x ≤ 0 as previously, we still
note z∗ω,ϕ(b) the complex number such that equation (4.9) holds for Wf (a

∗, b) obtained
with the zero padding, and we write zsω,ϕ(b) the counterpart of z∗ω,ϕ(b) in the case of the
symmetric padding. The modulus and argument of z∗ω,ϕ and zsω,ϕ as functions of b are
displayed in Figure 4.8 for ϕ ranging from 0 to π. This sole figure wholly illustrates a
major advantage of the zero padding in a general context, in the sense that the wavelet
coefficients are always affected by the border effects in the same way, while it is not the
case with the symmetric padding where the influence of the phase can lead to drastically
different performances. As a consequence, the symmetric padding should be preferred
only in safe and controlled cases, e.g. when the practitioner knows that it is the best
option and only wants to illustrate new signal processing techniques on toy examples;
this common custom will be used in chapter 6.

A brief comparison with the constant padding

The last type of padding that we examine is the constant padding, i.e. the last value of
the signal is repeated as many times as necessary after the end of the signal (and simi-
larly for the first value for the constant padding on the left-hand side). This technique
is also sometimes used in practice because, unlike the zero padding, it never creates a
discontinuity at the end of the signal, and unlike the symmetric padding, it does not
create a cusp-like singularity either. However, the spectral content of the signal is not
preserved and, more importantly, the padded values give a signal which cannot be ap-
proximated in terms of oscillatory components (unless the last value is zero, which gives
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Figure 4.8: Left: b 7→ |z∗ω,ϕ(b)| (i.e. zero padding, black) for ϕ ranging from 0 to π
(by steps of π/32) and b 7→ |zsω,ϕ(b)| (i.e. symmetric padding) for ϕ ranging from 0
(blue) to π (red). Right: b 7→ arg(z∗ω,ϕ(b)) (black) and b 7→ arg(zsω,ϕ(b)), with the
same color code.

back the zero padding). This means that, for a cosine of period p, the average of the
padded values on an interval of length p is not zero, which is the case in the two previous
methods. Intuitively, since the first padded values are close to the last available ones and
somehow close to the expected ones, the instantaneous frequency should decrease at the
borders so as to replicate this “good” feature as long as possible. Similarly to the zero
padding, the amplitudes are likely to decrease since, at some point, the padded values
will be far from the natural behavior of the signal. Moreover, in the same context as
above, the influence of the phase ϕ should be noticed since, in the case ϕ = 0, after half
a period the padded values stay at 1 while the signal should be around -1, which is quite
a significant difference. On the other hand, the case ϕ = π/2 (thus the zero padding)
will never be that far from the expected values. In the same spirit as in the previous
section, these claims are confirmed in Figure 4.9, where zcω,ϕ(b) is the counterpart of
z∗ω,ϕ(b) in the case of the constant padding. It can be seen that the decrease in ampli-
tude is of the same order as in the zero padding, while the instantaneous frequency is
always decreasing and this reduction is worse than with the zero padding. The influence
of the phase is especially noted in the second plot and raises the following important
remark. As mentioned, the zero padding has a “universal” connotation. In some way,
the symmetric padding has also this characteristic in the sense that, if the signal is made
up of several cosines, the symmetrization will be applied for all of them, with the con-
sequences exposed in the previous section for each of the components. However, in the
case of the constant padding, the last value of the signal is generally not the last value
of any of the components, which makes the padding less appropriate and may lead to
immoderate abnormalities.
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Figure 4.9: Left: b 7→ |z∗ω,ϕ(b)| (i.e. zero padding, black) for ϕ ranging from 0 to π
(by steps of π/32) and b 7→ |zcω,ϕ(b)| (i.e. constant padding) for ϕ ranging from 0
(blue) to π (red). Note that the blue and red curves mask the black ones; they are
always close to each other. Right: b 7→ arg(z∗ω,ϕ(b)) (black) and b 7→ arg(zcω,ϕ(b)),
with the same color code.

4.3 Countering border effects through iterations

Originally, we initiated the study of the border effects as presented in section 4.2 in
an attempt to correct the wavelet coefficients computed at the end of the signal so
that they can be extrapolated to make predictions of the ENSO climate index (see
chapter 5). While this technique worked reasonably well with corrections inspired by
the zero padding with simple stationary harmonic components as in the previous section,
the practical case of amplitude modulated-frequency modulated (AM-FM) signals turned
out extremely difficult to handle. Not only were the corrected amplitudes sometimes far
from the expected values, but also the arguments began to play a non-negligible role in
the process. This called for the development of another method to counteract the border
effects and improve the reconstruction of the signal at the edges.

It is reasonable to believe that the zero padding should be a suitable asset in this
framework (see section 4.2). However, even if Figure 4.8 suggests that it might be pos-
sible to find some kind of “universal average” corrective factor with the zero padding,
it appears that the exact knowledge of the phase is crucial. Indeed, a corrective factor
computed for a phase ϕ1 applied on a cosine with another phase ϕ2 sometimes gener-
ates considerable mistakes. In consequence, we are naturally led to develop a safer yet
less accurate procedure, which does not involve potentially dangerous treatments of the
components. Even if the technique proposed in this section still does not allow a correc-
tion of border effects leading to satisfying extrapolations and forecasts, it does always
improve the reconstruction of the initial signal through the components extracted from
its CWT.

The method is based on the following simple idea. When it comes to extracting
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components from a signal s as accurately as possible, the CWT with the zero padding
can be used several times to sharpen the desired modes and improve the reconstruction
of s progressively. More precisely, if the components of interest are located at the scales
(ai)i∈I (for some set of indices I), then at the first iteration we can extract c1i for each
i ∈ I as

c1i (x) = 2ℜ(Ws(ai, x)).

With the use of the zero padding, we know from section 4.2 (see e.g. Figure 4.2 and
Figure 4.3) that there is still some energy to siphon off the signal at the borders at the
scales (ai)i∈I . For this reason, we repeat the process, i.e. the CWT and extraction at
the same scales (ai)i∈I but with

s1 = s−
∑

i∈I

c1i

instead of s to get the modes (c2i )i∈I . The iterative procedure thus consists in the
successive extractions of

cni (x) = 2ℜ(Wsn−1(ai, x))

for n ∈ N and i ∈ I, where

sn = sn−1 −
∑

i∈I

cni

with s0 = s. By construction, the successive sums (
∑

i∈I c
n
i )n∈N carry less and less

information as n increases. We thus stop the process when the components extracted
are not significant anymore: we chose to finish after the N th iteration if

T (N) = sup
x

∣

∣

∣

∣

∣

∑

i∈I

cNi (x)

∣

∣

∣

∣

∣

< α sup
x

∣

∣

∣

∣

∣

∑

i∈I

c1i (x)

∣

∣

∣

∣

∣

= αT (1),

where α is a threshold regulating N and which will usually be set as 0.001. The final
components of interest (ci)i∈I at the scales (ai)i∈I are then obtained as

ci =
N
∑

n=1

cni .

Table 4.1 shows how the number of iterations N varies with α for f(x) = cos(2πx/32)
defined on [−255, 0] as in section 4.2.1, where I is naturally reduced to the scale corre-
sponding to the period 32. It also displays the evolution of T (N) (note T (1) = 1 in this
case), the PCC, the root mean square error (RMSE), and the maximal absolute error
(MxAE) in the reconstruction, i.e.

MxAE = sup
x

∣

∣

∣

∣

∣

f(x)−
∑

i∈I

ci(x)

∣

∣

∣

∣

∣

.

The reconstructed signal and the errors for α = 0.1, 0.01, 0.001, 0.0001, thus corre-
sponding to N = 3, 10, 42 and 185 iterations, are plotted in Figure 4.10. Compared
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Table 4.1: Number of iterations N , T (N), PCC, RMSE and MxAE as functions
of α.

α N T(N) PCC RMSE MxAE
.1 3 .0632 .99708 .05437 .296
.05 4 .0393 .99794 .04558 .257
.01 10 .00915 .99929 .02664 .162
.005 15 .00489 .99956 .02108 .131
.001 42 .000987 .99986 .01190 .0761
.0005 67 .000499 .99992 .00911 .0588
.0001 185 .0000993 .99997 .00531 .0335

to the initial case N = 1 displayed in Figure 4.3, it can be seen that only 10 iterations
already greatly improve the reconstruction. It can also be seen that the error in the
reconstruction can be made arbitrarily small.

Remark 4.3.1. The threshold α depends on the purpose of the study. Nevertheless,
in all cases, we recommend to perform at least a few iterations not only to improve the
reconstruction at the borders but also to sharpen the components extracted from the
signal. It is also important to keep in mind that, in practice, this technique does not
generally provide a full correction of the border effects. Besides, if one tries to combine
the iterations and a “universal average” corrective factor with the zero padding, the
results obtained after a few iterations are extremely close to those exposed in this section.
For these reasons, the study of the border effects and the ways to counteract them may
be useful in the case of components that display a stationary behavior, with only little
variations in amplitudes and frequencies. It may also be of some help in works where
the wavelet coefficients at the borders do not play a primary role. In the opposite case,
such as in the context of time series forecasting, it is strongly advised to avoid the use
of the wavelet coefficients at the borders, with or without corrections or iterations. It is
then recommended to use different techniques, possibly based on the information that
the CWT brings on the general behavior of the components extracted, as in chapter 5.
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Figure 4.10: Left: The initial signal (red) and the reconstructed one (blue) for 3,
10, 42, 185 iterations. Right: The corresponding errors.



Chapter 5

Analysis and forecasting of the
Oceanic Niño Index

In this chapter, we investigate the predictability of the El Niño Southern Oscillation
(ENSO) index through information obtained with its CWT. Initially, the idea was to
develop a wavelet-based algorithm designed to produce forecasts of a given time series
by smooth extrapolations of the modulus and arguments of the components extracted
with the CWT. We realized that, in the ideal (and artificial) case where border effects
were completely annihilated, this simple predicting scheme was able to produce excellent
forecasts. Of course, this was not so surprising since a perfect correction of border effects
was only possible when the future values of the time series were already known and used.
Nonetheless, for the ENSO index, we noticed that the arguments of the components
somehow played a more important role than their amplitudes. We thus believed that,
in the real case where border effects were present and the future values unknown, the
zero padding and the results exposed in chapter 4 would allow us to provide corrections
sufficiently accurate so that we could come close enough to the ideal context and provide
acceptable extrapolations and forecasts. However, no matter how hard we tried, we
found it utterly difficult to implement these ideas in a satisfying way in practice, as
mentioned in section 4.3. Therefore, we changed our approach and decided to draw on
the information provided by the CWT of the available data (thus mostly unaltered by
border effects) to elaborate a forecasting model for the specific ENSO time series. Most
of the results presented here have been published in [43].

99
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5.1 Introduction

El Niño Southern Oscillation (ENSO) is an irregular climate oscillation induced by sea
surface temperature anomalies (SSTA) in the Equatorial Pacific Ocean. An anomalous
warming in this area is known as El Niño (EN), while an anomalous cooling bears the
name of La Niña (LN). ENSO is well recognized as the dominant mode of interannual
variability in the Pacific Ocean and it affects the atmospheric general circulation which
transmits the ENSO signal to other parts of world; these remote effects are called tele-
connections. Variations in the SSTA between warm and cold episodes induce changes in
the occurrence of severe weather events, which dramatically affect human activities and
ecosystems worldwide (see e.g.[62, 69]). Therefore, ENSO predictions are of first impor-
tance in order to help governments and industries to plan actions before the occurrence
of these phenomena.

Over the last two decades, many models have been proposed for forecasting ENSO1

by focusing on sea surface temperatures in the so-called Niño 3.4 region (5◦N-5◦S, 170◦W-
120◦W, see e.g. [99, 140, 154, 155] and Figure 5.1). Other variables such as sea level
pressure and wind stress data are also used in many dynamical and statistical models
(see e.g. [20, 82]). At the Climate Prediction Center (CPC), the official ENSO indicator
is the Oceanic Niño Index (ONI), which is a 3 month running SSTA signal with respect
to 30 years periods in this Niño 3.4 area and is the principal measure for monitoring,
assessing, and predicting ENSO (see Figure 5.1). The EN (resp. LN) events are defined
by the CPC as 0.5◦C positive (resp. negative) anomalies (called warm (resp. cold)
episodes in the following) during at least 5 consecutive overlapping months of ONI. As
it can be found in the literature, current predictions of ENSO based on dynamical or
statistical models are most often limited to twelve months (e.g.[20, 99, 140, 154, 155])
and have mixed success rates ([20]). While it has been argued that accurate ENSO
forecasts at longer lead times are out of reach ([51, 139]), some works provide evidence
that long-term predictions are actually achievable ([29, 79, 117]).

The present chapter fits into the category of long-term predictions. Indeed, we
use the CWT introduced in chapter 4 to analyze and forecast the ONI signal for lead
times ranging from a few months to three years. First, the application of the CWT
to ONI is developed in section 5.2. The components extracted for reconstructing the
signal of interest carry valuable information which is then exploited to derive a simple
predictive scheme for ONI, explained in section 5.3. The prediction skills of the proposed
model are then assessed and discussed in section 5.4. Finally, we draw some conclusions
and envisage possible future works in section 5.5. Let us underline that the proposed
approach is independent of any geophysical principles but is based only on the quasi-
periodicity of the ENSO signal; the reader interested in physical considerations should
consult [117] and the references therein. The philosophy of this chapter is to provide a
glimpse of the practicability of long-term predictions of ONI and to pave the way for
further investigation in this direction.

1http://iri.columbia.edu/our-expertise/climate/forecasts/enso/current/

http://iri.columbia.edu/our-expertise/climate/forecasts/enso/current/
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Figure 5.1: Top: Localization of the Niño 3.4 region in the Pacific Ocean. Bottom:
ONI index from 1950 and illustration of the strength of El Niño and La Niña events.
Retrieved from [143].
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Figure 5.2: Top: Modulus of the CWT of ONI. The values range from 0 (blue) to
0.45 (red). Bottom: Wavelet spectrum of ONI. The main periods governing the
signal can be easily identified and correspond to near-annual to decadal modes of
variability.

5.2 Wavelet Analysis

This section is devoted to a wavelet analysis of ONI, which brings valuable information
for modeling and predicting long-term trends of the signal. The principles involved are
inspired from [41, 104, 105] as well as section 4.3 of chapter 4. The ONI signal used
consists of the usual 3-months running means of monthly SSTA; it can be found at [26]
and the last data point considered is the season March-April-May 2016.

The CWT is applied to ONI with the same wavelet ψ defined by equation (4.2) as
in chapter 4 and its modulus (i.e. its TF-representation) is represented in Figure 5.2. It
can be observed that the energy of the signal is concentrated in periods between ≈ 20
and ≈ 80 months. The signal displays the characteristics of an AM-FM signal; we will
thus need to capture time-varying amplitudes and periods. In order to determine at
which periods we will extract components, the wavelet spectrum (WS) is computed:

a 7→ Λ(a) = Et |Wf (a, t)| (5.1)

where Et denotes the mean over time (see Figure 5.2). It can be observed that Λ
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displays a significant amount of energy at periods of ≈ 17, 31, 43, 61, 140 and 340 months,
which is globally consistent with previous studies (see [117] and references therein). The
associated components are extracted from the CWT using the iterating scheme explained
in section 4.3. They are named c17, ..., c340 and are plotted in Figure 5.3 along with the
high-frequency seasonal and annual modes c6 and c12. We can note that, as desired, the
CWT allows a “flexible” representation of the signal, i.e. these components are AM-FM
signals. The components c17, c31, c43, c61 are near-annual, quasi-biannual and two quasi-
quadriennal modes of variability of ENSO and are largely discussed in [117] whereas c140
and c340 are likely linked with the tropical decadal and interdecadal Pacific variability
(see e.g. [110]). Let us also mention that, while we were investigating if these components
could be related to the variations of solar activity through the monthly sunspot number
signal, we found out a few particularities which are briefly exposed in appendix 5.A.

The contribution of a given component c in the signal can be assessed through several
indicators. First, the relative energy of c with respect to ONI (denoted s) is computed
as

ǫrel =
‖c‖
‖s‖ ,

where ‖.‖ denotes the energy of a signal from the signal analysis point of view, i.e. as
the square of the L2 norm (sum of the squares of the data points). In order to ensure
that c contains pertinent information, we also compute the relative accretion of energy
that can be attributed to c as

λrel =
‖s‖ − ‖s− c‖

‖s‖ .

Finally, we compute the PCC between c and s. These indicators can be found in Ta-
ble 5.1 and confirm that c17, c31, c43, c61 and c140 contain most of the information about
the variability of ONI. We also calculated these indicators for the reconstructed signal
srec8 (sum of the 8 components extracted) and for srec4 = c31 + c43 + c61 + c140. The
first ones indicate that the reconstruction is almost perfect; we can add that the root
mean square error (RMSE) is 0.04. Those related to srec4 show that the low-frequency
components capture a significant part of the variability of ONI (with RMSE= 0.349).
This observation is actually the one suggesting that long-term forecasts of ONI should
be achievable.

The CWT brings other valuable information that turn out useful for conceiving a
model for long-lead forecasts of ONI. Indeed, if we look at Figure 5.3, it appears that
c31, c43, c61 and c140 regulating the long-term variations of ONI are relatively stationary
and should thus be easily modeled. Regrettably, since the high-frequency components
c6, c12 and c17 are quite volatile and unpredictable and as the nature of c340 is uncertain,
these will not be taken into account. Neglecting the high-frequency components can be
seen as a “lesser of two evils” choice. On the one hand, trying to model and use them
for long-term forecasting is overly hard; our attempts resulted in predictions that were
globally worse than without using them because of their variability. On the other hand,
omitting them inevitably leads to a loss of accuracy in the timing and intensity of EN
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Figure 5.3: ONI signal and the components extracted with the CWT.
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Table 5.1: Relative energy, relative accretion of energy and correlation associated
with the components with respect to ONI. These indicators are also given for srec8
which stands for the reconstructed signal as the sum of the 8 components and srec4
defined as the sum of c31, c43, c61, c140.

Signal ǫrel λrel PCC
c6 .013 .017 .131
c12 .026 .073 .306
c17 .095 .190 .462
c31 .147 .326 .617
c43 .108 .321 .653
c61 .159 .284 .555
c140 .086 .101 .319
c340 .021 .028 .168
srec8 .996 .997 .999
srec4 .731 .801 .896

and LN events. Besides leaving room for improvements, this second option turned out to
be the most appropriate in the context of long-term forecasting of ONI. In consequence,
we are led to build initial guesses on future values of the signal based on oscillating
components with periods of 31, 43, 61 and 140 months. Their amplitude will be estimated
through the wavelet spectrum and considered constant throughout the signal, whereas
their phases will be evaluated for each prediction. When the first guess is made, the
CWT will be applied to recover amplitude and frequency modulations and to provide a
forecast in a natural way. This is detailed in the next section.

5.3 Forecasting method

In the present study, we focus on forecasting the last two decades of ONI, i.e. from
January 1995 to April 2016. Data prior to 1995 is used as training set to calibrate the
method. As mentioned, the idea is to construct components yi (i ∈ I = {31, 43, 61, 140})
of the form

yi(t) = Ai cos (2πt/i+ φi(t))

that can then be extrapolated effortlessly. The amplitudes (Ai)i∈I can be estimated
easily with data until 1995. The calculation of the phases (φi)i∈I is more challenging
and needs to be done as accurately as possible to have efficient forecasts. The main ideas
of the algorithm proposed for the whole procedure are described below and appendix 5.B
shows a more detailed prototype of the code used to construct y43. In the following, the
values of the initial discrete ONI signal are noted s(t) for t = 1, ..., T , where s(T ) is the
last data available for the considered forecast.



CHAPTER 5. ONI ANALYSIS AND FORECASTING 106

1. First, we model the decadal oscillation. The amplitude A140 is estimated with the
WS of s (always until 1995 for the amplitudes) as 0.35 and we set

y140(t) = A140 cos(2πt/140 + 2.02)

so that it is phased with the solar maximum and c140 in the 70’s.

2. We now work with s1 = s− y140. The WS of s1 gives A61 = 0.435. The idea is to
phase y61 with the strongest warm events of s1, which occur approximately every 5
years, and anti-phase y61 with the weaker warm events occurring in between. More
precisely, for each time t ≤ T , we find the position p of the last local maximum of
s1 such that s1(p) > 0.5. If s1(p) > 0.9 then we set

y61(t) = A61 cos(2π(t− p)/61);

else
y61(t) = −A61 cos(2π(t− p)/61).

3. We now work with s2 = s1 − y61. The WS of s2 gives A31 = 0.42. Now, the idea
is to phase y31 with the cold events of s2, which occur approximately every 2.5
years. More precisely, for each time t ≤ T , we find the position p of the last local
minimum of s2 such that s2(p) < −0.5 and we set

y31(t) = −A31 cos(2π(t− p)/31).

4. We now work with s3 = s2 − y31. The WS of s3 gives A43 = 0.485. We set that
y43 has to explain the remaining warm and cold events of s3 and we proceed as
follows. For each time t ≤ T , we find the position p of the last local maximum of
s3 such that s3(p) > 0.5 and we set

y143(t) = A43 cos(2π(t− p)/43).

Then we find the position p of the last local minimum of s3 such that s3(p) < −0.8
and we set

y243(t) = −A43 cos(2π(t− p)/43).

Finally, we define
y43 = (y143 + y243)/2.

5. We extend the signals (yi)i∈I up to T +N for N large enough (at least the number
of data to be predicted). Then

y =
∑

i∈I

yi

stands for a first reconstruction (for t ≤ T ) and forecast (for t > T ) of s.

6. We set s(t) = y(t) for t > T , perform the CWT of s and extract the components
ĉj at scales j corresponding to 6, 12, 17, 31, 43, 61 and 140 months. These are
considered as our final AM-FM components and ĉ =

∑

j ĉj both reconstructs (for
t ≤ T ) and forecasts (for t > T ) the initial ONI signal in a smooth and natural
way.
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5.4 Predictive skills

The predictive skills of the proposed model for the period 1995-2016 are tested in two
ways. First, we show that El Niño and La Niña events that occurred during this period
could have been anticipated years in advance. Then, we show that the PCC and RMSE
of the retrospective forecasts as functions of the lead time are encouraging regarding
long-term forecasts.

The predictions of EN and LN events 6, 12, 18, 24, 30 and 36 before the peak of
the episode are displayed in Figure 5.4 and Figure 5.5. It can clearly be seen that the
trend of the ONI curve can be predicted in advance and thus major EN and LN events
can be forecasted long before they happen. One of the most interesting results is about
the famous strong event of 1997/98, which is foreseen up to 3 years in advance with a
lag of only 3 months. A similar observation can be made regarding the 2009/10 EN for
which El Niño conditions are anticipated 2 to 3 years in advance with a lag of 3 to 6
months. Our model also suggests that the recent strong EN event of 2015/16 might have
been forecasted at least 18 months in advance and even classified as “strong EN” in mid
2014. However, it can be seen that the intensity of the most extreme EN events, e.g.
1997/98 and 2015/16, is underestimated. Nevertheless, since the occurrence of strong
EN events seems to depend mainly on the local maxima of c61, predicting that this
component is about to reach a peak could be sufficient to warn of an upcoming strong
event. Comparable observations can be made regarding the predictions of LN events,
though the lags are generally delays of 3-6 months in this case. It is important to recall
that seasonality is not taken into account, which contributes to explain the delays and
the underestimation of the intensities to some extent. The fact that we use constant
amplitudes in the model plays a role as well since the real ONI components are actually
AM-FM. This calls for further investigation in the modulations of the amplitudes and
their potential phase-locking with their associated component. Even though there is
an exciting challenge in trying to incorporate high-frequency components in the model
and to modulate the amplitudes, the long-term trends are recovered and our predictions
are satisfying, especially given the long-lead times considered and the simplicity of the
model.

In a more “global” approach, we can now focus on the prediction skills of our model
as functions of the lead time. For that purpose, the retrospective forecasts at 6, 12, 18,
24, 30 and 36 months lead times are plotted in Figure 5.6. As a matter of information,
they are computed and displayed from 1975 to show that the model also explains ONI
variability prior to 1995 if the values of the amplitudes got in section 5.3 had been
obtained in the mid-70’s (the rest of the algorithm does not depend on the training
data). As already observed, most EN and LN events can be foreseen from 1 to 3 years in
advance. The overall trend of the curve is almost always in agreement with observations,
confirming that long-term predictions are possible. Using data until April 2016, we issued
a forecast of ONI (plotted in Figure 5.6), which predicts a relatively strong LN event
during 2017.

Finally, the prediction skills of the model are measured with the RMSE and PCC
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Figure 5.4: Forecasts of El Niño events 6 (green), 12 (red), 18 (blue), 24 (orange),
30 (cyan), 36 (magenta) months before the peak of the event. The black curve is
the ONI signal. The arrows indicate the moment at which the El Niño condition
(SSTA > 0.5◦C) is reached.
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Figure 5.5: Forecasts of La Niña events 6 (green), 12 (red), 18 (blue), 24 (orange),
30 (cyan), 36 (magenta) months before the peak of the event. The black curve is
the ONI signal. The arrows indicate the moment at which the La Niña condition
(SSTA < −0.5◦C) is reached. Note that the LN event of 2000 is a remnant of the
one that occurred in 1999; SSTA do not even reach 0◦C in between. The same
observation holds for LN events of 2011 and 2012. Therefore, it does not make
any sense to draw the arrows as in the other panels.
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Figure 5.6: Retrospective forecasts of ONI at 6 (blue) and 12 (red) (then 18 and
24, 30 and 36) months lead time. On the first panel, the green curve is our forecast
of ONI (issued in April 2016).

between the forecasted values and the initial signal as functions of the lead time; these
indicators are plotted in Figure 5.7. An indicative comparison with the skills of the
models from [20] and [117] is discussed in appendix 5.C. It appears that the skills of
our model remain relatively stable and decrease slowly rather than abruptly compared
to some other methods (see Figure 5.9 and Figure 5.10 in appendix 5.C). Although the
performances are acceptable but not remarkable at short lead times in comparison with
[20, 117], the most interesting fact is that they are excellent at long lead times (> 12
months). This is because it is designed to capture and predict the long-term variability
of the signal. Let us also note that, since ONI has almost zero mean (= 0.03), its
standard deviation (= 0.84) can be viewed as the RMSE-skill of a model for which all
the predictions are set to zero. As seen in Figure 5.7, our model remains below this
threshold while Figure 5.10 suggests that it would not necessarily be the case for other
models. Consequently, it is necessary to underline that the proposed model should be
used in complement with other methods because it brings helpful benefits regarding the
long-term predictability of ONI.

5.5 Conclusion

We carried out a wavelet analysis of the Oceanic Niño Index to detect the main periods
governing the signal and to extract the components underlying its variability. The
periods and modes in question appeared globally in agreement with previous studies
and brought valuable information for the elaboration of a model predicting the long-
term trends of the signal. The proposed model fits in the growing body of evidence
suggesting that long-term predictions of ONI are much more possible than previously
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Figure 5.7: RMSE and PCC between the forecasted values and the signal as
functions of the lead time. The results for the period 1995-2015 are in blue. The
green curve represents the results for the period 1975-2015 for the curious minds
wondering what would be the skills if the model was applied as it is for a longer
period of time. The black line in the first panel is the standard deviation of ONI.
Since it has zero mean, this line can be viewed as the skill of a model where all
the forecasted values are set to zero.

thought and showed that early signs of major EN and LN events can be detected years in
advance. This model could improve our understanding and forecasting skills of EN and
LN. More importantly, the proposed technique or, at least, the essence of the algorithm
(i.e. phasing appropriate components with warm or cold events), could be combined with
other models which are more accurate for short-term predictions. This complementarity
could give rise to models able to predict ONI at a large range of lead times.

Future work will consist in incorporating the seasonal (near-annual and annual)
variability to improve short-term predictions and the timing and intensity of EN and LN
events in long-term forecasts, which remains the main strength of the model. Moreover,
we will continue to work on the development of the prediction of the peaks of the
components extracted from the CWT, which are the cornerstones of the model and
dictate its forecasting skills. The time variations in the periods, phases and amplitudes
will also be studied in more detail to improve the predictions. Due to the effects that
EN and LN events induce worldwide, predictions 1-2 years ahead could be intelligently
used to better prepare for the consequences.

We acknowledge the Climate Prediction Center (CPC) for providing the ONI signal
([26]) and the WDC-SILSO, Royal Observatory of Belgium, Brussels for the sunspot
number signal ([131]). We also wish to thank Dr. Desislava Petrova for providing
fruitful discussions and suggestions that improved the quality of the work presented in
this chapter.
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Figure 5.8: Top: Sunspot number signal (red) and c140 (blue) plotted from 1950 for
better visualization. Bottom: Components with period of ≈ 61 months extracted
from the sunspot number signal (red) and from ONI (blue). The anti-phase be-
tween them is striking. The red curve has been divided by 500 on the first panel
and by 50 on the second one for a better visualization.

Appendix

5.A Comparison with sun-induced components

We briefly investigated if the components extracted from ONI could be related to similar
components extracted from the sunspot number signal (SN). This is purely for informa-
tion purposes. It could be of interest for some specialists and deserves more examination.
However, we do not expand on that subject since it is far beyond the purpose of this
chapter.

First, it turns out that c140 is moderately correlated with SN given the correlation
coefficient of 0.43 from 1962 to 2012, where c140 is the most reliable (see Figure 5.8).
This may imply that a solar forcing occurs in the tropical decadal Pacific variability and
could contribute for a non-negligible part of ONI. Moreover, when the 11 years cycle is
removed from SN, the CWT reveals that the highest peak of the WS of the so-obtained
signal is located at a period of ≈ 64 months (giving the mode s64), which calls for a
comparison with c61. As shown in Figure 5.8, it appears that s64 and c61 are completely
anti-phased for the years between 1975 and 2000, with a correlation coefficient of −0.85.
If we consider a left shift of c61 by half its period (30 months), the correlation between
the curves extends to 2008 with a coefficient reaching 0.90 for the 1975-2008 period.
This intriguing observation is reinforced by the fact that they even anti-phase during
their anomalously long oscillation in the years 1998-2005 for SN and 2000-2007 for c61.
This could deserve a deeper examination by specialists.
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5.B Details for y143

For simplification, let us write s instead of s3 and y instead of y143. If y is already known
up to time t− 1, here are the steps describing how to obtain y(t). We note p(t− 1) the
position of the peak used to generate y(t− 1) = A43 cos(2π(t− 1− p(t− 1))/43). We use
a variable called lock to prevent abrupt changes from p(t − 1) to p(t). To obtain p(t),
proceed as follows.

if lock=1 then

if s(t)>s(t-1) and s(t-1)>0 then p(t)=p(t-1)+1

else p(t)=p(t-1); if s(t-1)>0 and s(t)<0 then lock=0

else

a=abscissa of the last local max of s

if s(a)>0.5 then

if p(t-1)+floor(period/2) > a then p(t)=p(t-1)

else p(t)=a; lock=1

else p(t)=p(t-1)

Then y(t) = A43 cos(2π(t − p(t))/43). Special mention for y61: if it comes that y61
reaches a peak before s1, impose that y61 stays at A61.

5.C An informative comparison with other mod-

els

Skills of state-of-the-art dynamical and statistical models

Many dynamical and statistical models are evaluated in [20]; Figure 5.9 displays the
results relevant in our work.

Comparison with our model

The skills of our model (Figure 5.7) are compared to those of [117] and [20] in Figure 5.10.
It is important to note that this comparison is for information purposes only, it should
not be considered as an official result. Indeed, authors in [117] make forecasts of the raw
Niño 3.4 time series (not the anomalies or the smoothed ONI) which displays more high-
frequency variability. The results provided in [20] are computed for the period 2002-2011
and they are operational forecasts, meaning that the forecasts are not retrospective, but
issued in real time. Therefore, Figure 5.10 only gives indications (rather than accurate
quantitative measurements) that our model is performing well compared to state-of-the-
art methods.

Unsurprisingly, it appears that the other models display slightly better performances
at short lead times than ours because they involve more parameters than the sole ONI
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Figure 5.9: Skills (RMSE and PCC) for several dynamical and statistical models
as functions of the lead time, from [20]. Dashed lines and cross symbols represent
the statistical models. The other lines correspond to the dynamical ones.
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Figure 5.10: Comparison between our results (blue and green curves from Fig-
ure 5.7) and other models. The red dashed line corresponds to the results exposed
in [117], the cyan one represents the skills of the best statistical models from Fig-
ure 5.9 and the magenta one is for the best dynamical models of Figure 5.9 (the
best data point from each set of models is taken for each lead time).

index and they take some dynamical principles and high-frequency variability into ac-
count. However, it seems that our model outperforms the others at longer lead times (> 6
months) and, as mentioned, decays more slowly. Also, the RMSE of the other models is
above the standard deviation threshold for lead times exceeding ≈ 6− 8 months, which
indicates excessively large deviations from the observed data for mid-term predictions.





Chapter 6

Wavelet-Induced Mode
Extraction

After completing our study of the ENSO index, it appeared to us that the decomposition
technique used in chapter 5 would not be appropriate to extract AM-FM components
from much trickier signals. Several well-established techniques (see below) seemed better
suited for that particular task. However, despite exhibiting various strengths, they also
have different kinds of weaknesses. As a consequence, we decided to implement our
own wavelet-based mode decomposition method while trying to resolve these problems.
The result of this thought is presented in this chapter and an article on this method is
currently under review ([42]).

6.1 Introduction

Extracting the components that constitute a given amplitude modulated-frequency mod-
ulated (AM-FM) signal is undoubtedly a subject of primary importance in many areas
involving signal processing and analysis. Among the multiple benefits of such decompo-
sitions, one can mention that it allows to better understand the underlying mechanisms
governing the signal, to extract its main frequencies and their temporal variations and to
rule out noisy parts or irrelevant information for the study carried out. These aspects are
generally encapsulated in a time-frequency (TF) representation of the signal and/or of
the extracted components, which helps visualize the information contained in the signal
from a time, energy and frequency point of view simultaneously [54].

One of the most popular ways to tackle such a task is called the Empirical Mode
Decomposition (EMD [55, 71, 124]), which is described in appendix 6.A. It is a complete
adaptive algorithm that decomposes a signal into “intrinsic mode functions” (IMFs)

117
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that are, roughly speaking, AM-FM signals with slowly time-varying amplitudes and
frequencies (i.e. they can be viewed as locally harmonic [35]). The EMD has proven its
effectiveness in many situations (such as medicine [31, 33], climatology [153], finance [72],
geophysics [70]) despite its lack of mathematical background, which is often mentioned
as its main drawback [35, 61]. Moreover, by using the EMD, one has little control over
the results since no parameter can be tuned in this rather hermetic heuristic algorithm.
Even though it has been shown to act as an adaptive filter bank [55] and that many other
studies have investigated its properties, methods that can be analytically described are
also needed.

Wavelet transforms are now well-established tools for signal analysis and are provided
with a rather strong mathematical theoretical background and with an inverse transform,
which is the backbone of reconstruction procedures (see e.g. [34, 35, 98]). However, in
the classic CWT analysis, all (or, in practice, many) wavelet coefficients are needed
to accurately rebuild the original signal and the area of the TF plane needed for the
reconstruction has to be manually selected (as in e.g. [35, 60]). Approaches such as
in [104] resolve that problem by giving an automated way to determine which wavelet
coefficients to use, but it appears that this method is relatively rigid and cannot deal
with close frequencies nor with non-stationary signals. Other techniques such as in [61]
consist in performing a segmentation of the Fourier spectrum of the signal in order to
isolate the highest local maxima and then build a wavelet basis associated with each
so-obtained segment. Some kind of inverse wavelet transform allows the extraction of
a component per segment. The results presented in [61] are interesting and the idea
of segmenting the Fourier domain is appealing, but it turns out that the procedure
described is rather complicated and is not well-suited for the analysis of e.g. “highly”
non-stationary signals having an “erratic” Fourier spectrum. Let us also mention works
such as [127], in which some curves called “skeletons” are extracted from the wavelet
transform by considering stationary points in the “time-phase”1 plane that satisfy some
properties. The idea is interesting as well but it does not necessarily lead to components
that can be viewed as signals (i.e. functions of time).

In this chapter, we develop a wavelet-based mode decomposition that we call Wavelet-
Induced Mode Extraction (WIME). This method aims to extract automatically signal-
length AM-FM components that are present in a signal. It is inspired by some of the
above-mentioned techniques and attempts to resolve most of their problems. The rest
of the chapter is organized as follows. We first explain the concepts and the main ideas
that animate WIME, before describing the algorithm in detail. We then apply WIME on
toy examples and on two homemade signals that illustrate its advantages over the other
methods, we compare its skills with the EMD, test its tolerance to noise and discuss the
results. Finally, we apply it with two real-life signals (electrocardiogram and ONI index)
and draw some conclusions.

1Understand “time-frequency-argument” plane, i.e. (a, b) 7→ arg(Wf (a, b)).
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6.2 Wavelet-Induced Mode Extraction

In this section we first give the intuitive ideas that relate to WIME before going into
further details. As a preliminary remark, one has to be aware of the class of functions
that can be handled while developing a specific tool for signal analysis. Without going
into technical details, it appears obvious that we aim to deal with real-valued AM-FM
signals of the type:

f(t) =
K
∑

k=1

ak(t) cos(φk(t)), (6.1)

where some conditions as in [35] may be imposed on ak(t), φk(t) or φ
′
k(t). As far as we

are concerned, we will only assume that the amplitudes, frequencies and their derivatives
are “smooth” in an intuitive sense. In [35], such functions are called a “superposition of
well-separated intrinsic mode components” and the conditions in question are examined
minutely. It is clear that this class of functions is relatively large and that many real-
life signals can be (at least partly) approximated by AM-FM components, even though
pre-/postprocessing treatments may be required.

6.2.1 Main ideas of the method

Basically, the first step is to perform a CWT of the signal using a Morlet-like wavelet
as in chapters 4 and 5, which has proven to be well-suited for TF analysis of oscillating
functions ([104, 141]). Let us remind that the modulus of this CWT can be seen as
a TF representation of the signal. The wavelet spectrum (WS) is computed following
equation (5.1) and segmented in order to isolate its largest local maximum in a frequency
band.

Then, we choose a starting point with high energy in the TF plane in the selected
time-frequency band and determine a ridge of high energy forward and backward from
this point up to the edges of the plane while adapting the frequency window as we go
along the ridge. A component modulated in amplitude and frequency by the modulus
and argument of the CWT along that ridge can be extracted with equation (4.3) used
throughout chapter 4 (i.e. two times the real part of the CWT along the ridge).

Finally, we subtract this component from the signal in order to unveil information
potentially hidden by the dominant mode and repeat the whole process with this newly
obtained signal. The procedure is iterated until the components extracted are no longer
relevant.

Let us briefly comment some of the aspects of the proposed algorithm and contrast
them with other methods. First, the use of equation (4.3) in the case of AM-FM signals
is motivated by the following idea. If f(t) = A(t) cos(φ(t)), then around a given time t0
one has

f(t) ≈ A(t0) cos(φ(t0) + φ′(t0)(t− t0))

by truncated Taylor series ([35]). Now, if we simply mimic the procedure explained in
chapter 4, we get that if a∗(t0) denotes the scale at which a 7→ |Wf (a, t0)| reaches its
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maximum, then the instantaneous frequency φ′(t0) can be recovered from the fact that
a∗(t0) = Ω/φ′(t0) and Eq. (4.3) evaluated at t0 and a∗(t0) gives back a value close to
f(t0). Using the same process at each time t, AM-FM signals can thus be recaptured as

f(t) ≈ 2|Wf (a
∗(t), t)| cos(arg(Wf (a

∗(t), t))).

Then, segmenting the wavelet spectrum instead of the Fourier spectrum (as in [61]) has
the advantage of being easier since the wavelet spectrum is usually much smoother. For
example, chirps will generally be handled comfortably with WIME while their Fourier
spectra are extremely irregular and are therefore more difficult to segment. Also, unlike
skeletons computed in [127], the ridges considered here can be viewed as functions of time
and thus allow to derive signal-length components. Moreover, regarding [124], the EMD
extracts the IMFs of a signal one after another, sorting these by decreasing frequency.
However, such an approach does not take into account the energetic hierarchical order
of the components that build the signal. WIME resolves that problem by extracting
the components successively by sorting them with respect to their energy level, starting
with the most energetic ones. In this way, some kind of natural order is respected for
the extraction, which is particularly useful when the TF representation of the signal
displays, for example, intersecting curves.

6.2.2 Description of the algorithm

We now describe in detail the WIME algorithm. The wavelet ψ used in this study is
still the one used in chapters 4 and 5 defined by equation (4.2).

The algorithm of WIME applied on a signal f defined on a time interval T consists
in the following steps:

1) Perform the CWT of f :

Wf (t, a) =

∫

T
f(x)ψ̄

(

x− t

a

)

dx

a

as in chapter 42.

2) Compute the wavelet spectrum Λ associated with f :

a 7→ Λ(a) = Et |Wf (t, a)|

where Et denotes the mean over time, as in chapter 5.

3) Locate the scale a∗ at which Λ reaches its highest local maximum and isolate it
between the scales a1 and a2 at which Λ displays the left and right local minima
that are the closest to a∗. Set A = [a1, a2].

2Note that we choose to write Wf (t, a) instead of Wf (a, t) so that the ridge (t, a(t))t∈T can
actually be seen as the function t 7→ a(t) in the TF plane.
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4) Define (t0, a(t0)) in the time-frequency band T ×A of the TF plane as:

(t0, a(t0)) = argmax
(t,a)∈T×A

|Wf (t, a)|,

which is the starting point for the ridge detection step.

5) Compute3 the ridge (t, a(t))t∈T forward and backward that stems from (t0, a(t0)):

a) Compute b1 and b2 such that b2 − b1 = a2 − a1 and a(t0) = (b1 + b2)/2, i.e.
center a(t0) in a frequency band of the same length as the initial one.

b) Among the scales at which the function a 7→ |Wf (t0 + 1, a)| with a ∈ [b1, b2]
reaches a local maximum, define a(t0+1) as the closest one to a(t0). If there
is no local maximum, then a(t0 + 1) = a(t0).

c) Repeat step 5) with (t0 + 1, a(t0 + 1)) instead of (t0, a(t0)) until the end of
the signal.

d) Proceed in the same way backward from (t0, a(t0)) until the beginning of the
signal.

6) Extract the component associated with the ridge:

t 7→ 2|Wf (t, a(t))| cos(argWf (t, a(t))),

7) Subtract this component (say c1 at the first iteration) from f to get the rest
r1 = f − c1 and repeat steps 1 to 7 with r1 instead of f . Obtain c2, repeat with
r2 = r1 − c2, etc.

8) Stop the process (iterating steps 1 to 7) when enough energy has been drained
from the signal. More precisely, if the components already extracted are denoted
by (ci)i for i = 1, ..., N then stop if

‖rN‖ < α ‖f‖ ,

where we set the threshold α = 0.05 and ‖.‖ denotes the energy of a signal from
the signal analysis point of view as in chapter 5 (i.e. as the square of the L2 norm).

The so-obtained components successively extracted are the counterparts of the IMFs
from the EMD and their sum provides an accurate reconstruction of f . The signal
c0 = f −∑N

i=1 ci is considered as the remaining “noise” and therefore the decomposition

of f can be completed with this component, i.e. f =
∑N

i=0 ci. Let us note that the
ridge extraction can be made more difficult if many components of similar energy and
frequency are added together within the signal. To overcome these difficulties, reallo-
cation methods ([17, 28, 27]) such as synchrosqueezing ([35, 36]) that sharpen the TF
representation of the signal might be useful before the computation of the ridge.

3For this step, keep in mind that we are working with signals, i.e. discrete time series and not
functions defined on R. We can thus move from “one point to the next”, i.e. the points located
around t0 can be considered as located at times ..., t0 − 2, t0 − 1, t0, t0 + 1, t0 + 2, ....
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Table 6.1: Comparison of the extraction and reconstruction skills of WIME and
the EMD for the signal used in section 6.3.1. The signal sn corresponds to the
nth component cn (displayed in Figure 6.1) in the case of WIME and to the nth

IMF in the case of the EMD. The last line compares the initial signal f and the
reconstructed signal fr defined as the sum of the components (sn)n related to each
case.

Signals
WIME EMD

RMSE PCC RMSE PCC
s1, f1 .261 .987 .163 .995
s2, f2 .070 .998 .171 .989
fr, f .267 .991 .151 .997

6.3 Experiments

6.3.1 Basic example

We now apply WIME on several signals in order to prove its effectiveness in various
situations and depict some of its properties. We also compare its performances with the
EMD. For that purpose, the first example illustrates how WIME actually works. We
consider the function f = f1+f2 defined on [0, 1] as the sum of two AM-FM components:

f1(t) = (2 + sin(5πt)) cos(100(t− 0.5)3 + 100t)

f2(t) =

{

(1.5 + t) cos(0.2e10t + 350t) if t ≤ 0.5
t−1 cos(−300t2 + 1000t) if t > 0.5

The signal and the steps of WIME applied to f are represented in Figure 6.1. One can see
that the first TF representation (i.e. (t, a) 7→ |Wf (t, a)|) shows very distinctly the bricks
used to build f . At the first step, the wavelet spectrum displays more energy (highest
peak) around the 20Hz frequency. The component c1 extracted in that region clearly
corresponds to f1. At the next step, only the footprint of f2 remains in the TF plane;
the corresponding component c2 clearly matches with f2. Naturally, the reconstruction
of f thanks to c1 and c2 is highly accurate, as shown in Figure 6.1. Quantitative
measurements through RMSE and PCC of the extraction and reconstruction skills of
WIME and of the EMD can be found in Table 6.1. It appears that both methods display
excellent skills, as expected for this basic example.

6.3.2 A more intricate example

The second example considered is taken from [124] and is one of the classic examples
that prove the effectiveness of the EMD. The signal consists of the sum of two FM
sinusoidal signals and a Gaussian wavepacket (see [124]). The FM components are
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Figure 6.1: Top row: original signal f (blue) and reconstructed signal (red) of
section 6.3.1. Second row, from left to right: |Wf (t, a)| (stands for the TF repre-
sentation of f) and the corresponding ridge detected (black line), wavelet spectrum
of f and its segmentation (red lines) to isolate the highest local maximum (used
to set a starting point for the ridge), first component c1 extracted following the
ridge, original first component f1. Last row: the same figures with f − c1 instead
of f . Clearly, c1 and c2 successively extracted match f1 and f2.
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Figure 6.2: Top row: original signal f (blue) from the EMD test examples [124]
and reconstructed signal (red) (section 6.3.2). As for Figure 6.1, the other rows
are, for the successive signals under consideration: |Wf (t, a)| and ridges (black
line), wavelet spectra and their segmentations (red lines), components extracted
following the ridges, original components.
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Table 6.2: Extraction and reconstruction skills of WIME for the signal used in
section 6.3.2, with the same notations as in Table 6.1. The fourth line compares
c3 and f3 on the interval [0.35, 0.65].

Signals
WIME EMD

RMSE PCC RMSE PCC
s1, f1 .128 .984 .125 .985
s2, f2 .194 .963 .100 .990
s3, f3 .128 .846 .076 .933
s∗3, f

∗
3 .058 .988 .095 .970

fr, f .174 .986 .048 .998

“highly” non-stationary, as seen in the TF representation in Figure 6.2. Nevertheless,
since the three components are somehow “well-separated” in the TF plane, WIME is
able to deal with the non-stationarity and extracts more than satisfyingly the original
components of f , as seen in Figure 6.2. Note that, during the extraction step of c3, since
WIME is programmed to extract a signal-length component by default, superfluous
parts are kept outside the support of the Gaussian wavepacket (which is not exactly of
the form of equation 6.1); simple postprocessing treatments could resolve that problem
if needed. Again, the reconstructed signal is extremely close to f , which shows the
effectiveness of WIME in decomposing thorny non-stationary signals. Its extraction and
reconstruction skills are presented in Table 6.2 and compared to the EMD. It appears
that both techniques display remarkable aptitudes in the present case, with a slight
advantage for the EMD.

6.3.3 Crossings in the time-frequency plane

We now apply WIME and the EMD to homemade toy examples for which the TF
plane displays features not studied in [61] nor in [124]. We consider a function made
of three FM signals whose TF representations display some crossings and with constant
amplitudes of 1.25, 1, 0.75. We consider f(t) = f1(t) + f2(t) + f3(t) for t ∈ [0, 10] with

f1(t) = 1.25 cos
(

− (t− 3)3 + 180t
)

f2(t) = cos
(

1.8t + 20t
)

f3(t) =

{

0.75 cos(−1.6πt2 + 20πt) (t < 5)
0.75 cos(4πt) (t ≥ 5)

and we then set f(10+ t) = f(10− t) for every t ∈ [0, 10] (i.e. f is concatenated with its
mirror).

The TF representation of this signal displays, as wanted, multiple crossings between
the patterns associated with each component (see Figure 6.3). However, as it can be seen
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Figure 6.3: As for the previous figures, the top row displays the original signal
f (blue) and the reconstructed one (red) of section 6.3.3 and the other rows are,
for the successive signals under consideration: |Wf (t, a)| and ridges (black line),
wavelet spectra and their segmentations (red lines), components extracted follow-
ing the ridges, original components. Clearly the influence of the multiple crossings
in the TF plane remains limited because WIME respects the energy-based hierar-
chical order of the components.

in Figure 6.3, the energy corresponding to each component allows WIME so successfully
retrieve the original components; the influence of the crossings remains extremely low.
Naturally, when a crossing occurs, WIME follows the “first come, first served” principle:
the energy is consumed by the first component that has the crossing on its way, and
when another component reaches that point, there is no energy left for it even though
it should have been the case. This phenomenon can be clearly seen in Figure 6.3 and
is unavoidable without treating/adjusting a component before extracting the next one.
Nevertheless, the components obtained respect the hierarchical order imposed by their
energy level and remain easily interpretable from a physical point of view.

This example also shows how the EMD proceeds to extract successive components,
and why it is not well-adapted in that type of case. The EMD acts as a bandpass
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Table 6.3: Extraction and reconstruction skills of WIME for the signal used in
section 6.3.3, with the same notations as previously. In this case, since the com-
ponents are not recovered by the EMD, the comparison is only possible with the
reconstructed signal.

Signals
WIME EMD

RMSE PCC RMSE PCC
s1, f1 .156 .984 N/A N/A
s2, f2 .193 .962 N/A N/A
s3, f3 .131 .970 N/A N/A
fr, f .111 .996 .133 .994

filter [55], filtering components following a frequency-decreasing order, i.e. high frequen-
cies IMFs are extracted first, regardless their energy level. From a TF representation
perspective, this corresponds to successively extract components related to the “upper
ridge” present in the considered signal, then subtracting it, extracting the next “upper
ridge”, and so on. This is illustrated in Figure 6.4, which displays the first three IMFs
obtained with the EMD from f and their CWT-based TF representation4. This also
depicts why the EMD has such effective reconstruction skills: at the end of the process,
as for WIME, all the energy of the TF plane has been drained, ridge after ridge. This
can be seen in Table 6.3 which displays the skills of the methods. The problem lies in
the fact that the hierarchical order imposed by the amplitudes of the three components
is not respected at all with the EMD, which thus gives IMFs that are not as easily inter-
pretable from a physical point of view. Even though it is probably useful to have such a
filtering approach in some cases (e.g. for denoising purposes), something is clearly wrong
in this case. Besides, the EMD has no choice but following that order of filtering whereas
WIME is more flexible and could be adapted to perform a similar task if needed.

The first two examples showed that WIME successfully retrieves components that are
“well-separated” in the TF plane, where the intuitive conditions to be “well-separated”
(avoiding crossings) could be defined with frequency-based formulas as in [35]. However,
the third signal clearly shows that when the components are not “well-separated” with
respect to their frequencies but are distinguishable by their amplitudes, then WIME still
manages to recover the original sources of the signal, while methods such as the EMD
or [61] cannot.

4The TF-representation by default of the IMFs extracted from the EMD is performed with
the Hilbert transform, see e.g. [71]. We used the CWT to facilitate comparison with the other
signals analyzed in this chapter.
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Figure 6.4: Left column: IMFs extracted with the EMD from the signal of sec-
tion 6.3.3. Right column: their TF representation obtained with the CWT. It
can clearly be seen that the EMD works following a decreasing-frequency based
approach, regardless the amplitudes of the components/IMFs to be extracted.
Consequently, the IMFs only match the original components piecewise.
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6.3.4 Mode-mixing problem

We now address the mode-mixing problem that occurs when a signal is made of AM-FM
components whose frequencies are relatively close to each other, i.e. the components are
not “well-separated” with respect to their frequency nor with their amplitudes. In this
example, the primary objective is not to recover exactly the original components of the
signal (such a thing is arduous whatever the method used) but rather to show that,
despite the complexity of the signal and the mixing modes, the main frequencies present
within the original components can be easily recovered with WIME while the EMD is
not able to do so. The signal f considered for that purpose is made of one AM-FM
component and three AM components (t takes integer values from 1 to 800):

f1(t) =

(

1 + 0.5 cos

(

2π

200
t

))

cos

(

2π

47
t

)

f2(t) =
ln(t)

14
cos

(

2π

31
t

)

f3(t) =

√
t

60
cos

(

2π

65
t

)

f4(t) =
t

2000
cos

(

2π

23 + cos
(

2π
1600 t

) t

)

,

so that the target frequencies to detect are respectively 1/47, 1/31, 1/65, and ≈ 1/23
Hz5.

A peculiarity of this example is that the first component clearly dominates the sig-
nal (see Figure 6.5), with a mean energy much higher than the others. This has the
effect of eclipsing the other components at first sight and, looking at the first wavelet
spectrum, it is complicated to tell which frequencies are present in the signal. In the
case of WIME though, the successive subtractions of the components unveil the less
powerful ones, as shown in Figure 6.5 and so allow to detect almost exactly the target
frequencies. The fact that hidden information may appear when dominant modes are
correctly identified and taken off the signal may be useful in real-life data analysis such
as daily temperature signals with a dominant mode of 365 days. Therefore, even though
the components retrieval is satisfying but not as accurate as in the previous examples,
substantial information can still be obtained with WIME.

As for the previous example, the EMD does not perform so well in this case. The first
four IMFs extracted with the EMD are represented in Figure 6.6. While the components
extracted with WIME are somehow close to the real ones, with the target frequencies
unquestionably recovered, the IMFs have clearly nothing in common with the original
components. With a PCC with f close to 0.93, the first IMF is almost the initial signal
itself and with estimated frequencies of ≈ 1/41, 1/75, 1/165, 1/284 Hz (instead of ≈ 1/23,
1/31, 1/47, 1/65), we can safely conclude that the EMD fails the frequency detection

5The perspicacious reader will notice (intentional) similarities with the ONI index used in
chapter 5.
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Figure 6.5: As for previous figures, the top row displays the original signal f (blue)
and the reconstructed one (red) (section 6.3.4); the other rows are, for the succes-
sive signals under consideration: |Wf (t, a)| and ridges (black line), wavelet spectra
and their segmentations (red lines), components extracted following the ridges,
original components. Even though the amplitudes of the extracted components
do not match the original ones as close as in the other cases, the period detection
skill of WIME is high. The identification of the main periods present within the
signal is effective.
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Figure 6.6: IMFs obtained with the EMD from the signal of section 6.3.4. Clearly,
they are considerably different from the original components; the first IMF itself
represents almost the whole signal. The estimated frequencies (≈ 1/41, 1/75,
1/165, 1/284 Hz) are far from the targets (≈ 1/23, 1/31, 1/47, 1/65).

Table 6.4: Extraction and reconstruction skills of WIME for the signal used in sec-
tion 6.3.4. In the third line s∗3 corresponds to IMF2 for the EMD. The components
are not recovered by the EMD, the comparison is only possible in some cases.

Signals
WIME EMD

RMSE PCC RMSE PCC
s1, f1 .205 .962 .458 .831
s2, f2 .109 .932 N/A N/A
s∗3, f3 .170 .694 .259 .462
s4, f4 .070 .902 N/A N/A
fr, f .064 .997 .068 .998

IMF1, f N/A N/A .316 .925
IMF1 + IMF2, f N/A N/A .170 .980

test. As in the previous cases, a comparison of the skills of the methods is presented in
Table 6.4, which illustrates the nice performance of WIME compared to the EMD.

6.3.5 Tolerance to noise

Finally, we perform a resistance to noise test with WIME. Given the intrinsic nature of
WIME, more precisely the CWT part which involves convolutions with a smooth kernel,
it can be expected that WIME displays some kind of natural tolerance to noise. In the
same spirit as in [35], we consider a chirp f defined on [0, 1] by

f(t) = cos(70t+ 30t2),

we generate a Gaussian white noise X of zero mean and variance 1 and we run WIME on
f , f+X, f+2X and f+3X. For the noisy signals f+nX with n > 0, the corresponding
signal-to-noise ratio (SNR) is defined as in [35] by

SNR[dB] = 10 log10

(

Var(f)

Var(nX)

)

.
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Table 6.5: Reconstruction skills of WIME in the presence of noise with the only
component extracted.

Signals SNR RMSE PCC
fr, f +X -2.792 .129 .983
fr, f + 2X -8.812 .193 .962
fr, f + 3X -12.330 .263 .929

In the present case, the SNRs considered are respectively -2.792, -8.812 and -12.330 dB,
indicating a particularly high level of noise in the last two cases. The results obtained on
these noisy signals are displayed in Figure 6.7. It can be noted that WIME successfully
extracts f from the signals despite the high level of noise, especially in the third and
fourth cases. This capacity is quantified more in detail in Table 6.5. It is important
to note that such excellent results are obtained with no extra computational cost, i.e.
WIME does not need to be adapted in any way to deal with noise. On the contrary,
the EMD is not able to properly handle such erratic signals, improved versions of this
method such as the Ensemble Empirical Mode Decomposition [153] and the Complete
Ensemble Empirical Mode Decomposition with Adaptive Noise [142] should be preferred
in this context. For the record, when performing the EMD on f +X, the IMF which is
the closer to f in terms of RMSE and PCC has a RMSE of 0.35 and a PCC of 0.869,
which is well below the results presented in Table 6.5. Therefore, the natural tolerance
to noise of WIME is part of its key assets.

6.3.6 Test on real-life signals

Electrocardiogram

In this last section, we first revisit the classic real-life example of the electrocardiogram
(ECG), as in several studies such as [35, 61]. Rather than providing an accurate recon-
struction of the signal, the point of this example is merely to show that WIME still gives
coherent components for real-life noisy data. Of course, it would be interesting to run
WIME on hundreds of ECGs from healthy and non-healthy subjects and compare the
main frequencies and components obtained, as well as their amplitudes or their varia-
tions in order to establish criteria that help the detection of particular illnesses. This is
obviously far beyond the scope of this section though.

The ECG signal analyzed in [61] is used; the results are presented in Figure 6.8. It
can be seen that the heartbeat frequency is recovered with the first component extracted
and that the third one allows an accurate detection of the heartbeat impulses. Both of
them could be used in real-life applications (e.g. measuring the time between consecutive
maxima and the intensity of the peaks), as detailed in [35]. It is important to note that
this signal, due to its Dirac-like impulses, is not really characterized as those of the form
of equation (6.1). Therefore, WIME only provides an approximation of f with AM-FM
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Figure 6.7: Top row: (left) original chirp (red) and extracted component (blue)
associated with the ridge of the TF representation of the signal (right). Remaining
rows: the same with f +X, f + 2X, f + 3X, where X is a Gaussian white noise
with zero mean and variance 1. One can see that, despite the high level of noise,
WIME is still able to retrieve the initial chirp. Moreover, it does not require any
pre/post-processing treatments nor extra computational power.
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Figure 6.8: Top: the ECG signal (left) and a polynomial trend (right) extracted as
a preprocessing of the signal. Then, the first three successive TF representations
and components obtained with WIME. It can be noted that c1 corresponds to the
heartbeat frequency and that c3 allows to identify instantly the heartbeat impulses.
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components but still manages to perform reasonably well. Be that as it may, the opinion
of a cardiologist would be useful for a proper interpretation of the results.

ONI index

As a final test, we apply WIME on the ONI index analyzed in chapter 5, which is
closer to equation (6.1) than the ECG. The components extracted with WIME are
presented in Figure 6.9 and Figure 6.10. It can be seen that WIME still gives consistent
results with this signal. The ridges extracted are not chaotic, and the components
associated are representative of the signal, with periods similar to those obtained in
chapter 5. The energy of the TF plane is drained so that the reconstruction appears
smooth but accurate: the RMSE equals 0.22 and the PCC 0.96. We recall that these
results are obtained with no pre/post-processing treatment or adaptation of WIME; it
is thus reasonable to assert that it can be used in the context of real-life data analysis.

6.4 Conclusion

We introduced a new method within the framework of time-frequency analysis termed
Wavelet-Induced Mode Extraction (WIME), whose main purpose is to extract automat-
ically the intrinsic components that form AM-FM-like signals. This technique borrows
some characteristics of excellent mode decomposition procedures while trying to resolve
some of their defects. The underlying philosophy consists in successively deriving com-
ponents from high-energy ridges of the TF plane initiated by a segmentation of the
wavelet spectrum.

When applied to toy examples, WIME displayed accurate decomposition skills. In-
deed, the components retrieval involving chirps or other non-stationary sources was
carried out almost flawlessly. Compared to the EMD, the results appeared as good in
the simple cases and better in the trickier ones chosen here. As a matter of example,
components that were well-separated with respect to their amplitude but with intersect-
ing trajectories in their TF representations were definitely recovered, while the EMD
failed to do so. Besides, when the focus was on the recapture of known frequencies in a
mode-mixing problem, WIME outperformed the EMD. It also appeared that the natural
tolerance to noise of WIME makes it suitable to study natural time series. As a matter
of example, the application to an ECG and the ONI index showed that sound results
are still obtained with real-life data.

This chapter consists in the first results that we obtained with WIME. It goes without
saying that we aim at developing this method as much as possible, studying its properties
in more detail and comparing its skills with many other techniques. Besides, we have
recently released a practical easy-to-use Scilab toolbox6 so that non-specialist researchers
get to know better wavelets and time-frequency analysis and can carry out their own
mode decomposition experiments.

6https://atoms.scilab.org/toolboxes/toolbox_WIME/0.1.0

https://atoms.scilab.org/toolboxes/toolbox_WIME/0.1.0
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Figure 6.9: Top: original ENSO signal (red) and reconstructed signal (blue). Then,
the first three successive TF representations and components obtained withWIME.
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Figure 6.10: The last three TF representations and components obtained with
WIME. Then, the difference between the original ONI signal and the reconstruc-
tion.
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Appendix

6.A Empirical Mode Decomposition

The basic idea of the EMD is simple and consists in the following steps. More details
can be found in e.g. [55, 71, 124].

1) For a signal X(t), let

m1,0(t) =
u1,0(t) + l1,0(t)

2

be the mean of its upper and lower envelopes u(t) and l(t) as determined from a
cubic-spline interpolation of local maxima and minima.

2) Compute h1,0(t) as:
h1,0(t) = X(t)−m1,0(t).

3) Now h1,0(t) is treated as the data, m1,1(t) is the mean of its upper and lower
envelopes, and the process is iterated (“sifting process”):

h1,1(t) = h1,0(t)−m1,1(t).

4) The sifting process is repeated k times, i.e.

h1,k(t) = h1,k−1(t)−m1,k(t),

until a stopping criterion is satisfied (see below).

5) Then h1,k(t) is considered as the component c1(t) of the signal and the whole
process is repeated with the rest

r1(t) = X(t)− c1(t)

instead of X(t). Get c2(t) then repeat with r2(t) = r1(t)− c2(t),...

By construction, the number of extrema is decreased when going from ri to ri+1, and
the whole decomposition is guaranteed to be completed with a finite number of modes.

The stopping criterion for the sifting process is the following. When computing
mi,j(t), also compute

ai,j(t) =
ui,j(t)− li,j(t)

2
and σi,j(t) =

∣

∣

∣

∣

mi,j(t)

ai,j(t)

∣

∣

∣

∣

.

The sifting is iterated until σ(t) < 0.05 for 95% of the total length of X(t) and σ(t) < 0.5
for the remaining 5%.







Conclusion

This thesis fits in the growing body of works that promote the use of wavelet techniques
in geosciences. In the first part, we focused on the WLM in the context of multifractal
analysis. We described the method in detail and explained carefully the differences that
occur between theory and practice. Since these differences often lead to misunderstand-
ings in the literature, we believe that chapter 1 could prove helpful for practitioners in
their research. In chapter 2, we carried out an extensive analysis of Mars topography with
the WLM. We showed that this technique is at least as useful in the one-dimensional case
as other methods. However, contrary to most of the approaches used in the literature,
its generalization to the two-dimensional case is straightforward and appeared sharp
enough to provide exploitable results on the surface roughness of Mars topography in a
2D framework. We know that this issue (the 2D analysis) is investigated by other teams,
and we thus hope that the present study can pave the way for deeper analyses and for
the characterization of the surface roughness of other celestial bodies. Then, in chap-
ter 3, we used the WLM to examine the regularity of surface air temperature recorded
in weather stations spread across Europe. This time, we showed that the WLM allowed
to connect the Hölder exponents of the stations with the associated pressure anomalies,
which was not the case with another well-known method (MFDFA). It also appeared
that the clusters of exponents obtained with the k-means algorithm were often strongly
correlated with a particular type of climate, which led us to investigate this relation in
detail. We managed to establish simple criteria that connect Hölder exponents and the
associated climate types. The results obtained were discussed and confirmed through a
blind test and also with another dataset. It kept bringing consistent information: the
different types of climates (Oceanic, Continental, Mediterranean) manifest through air
temperature variability. In addition to the possibility to investigate more connections
between other climate types in different regions of the world and their Hölder regularity,
we showed that the WLM was also able to bring accurate information that turn out
useful in a context of classification.
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In the second part, we were concerned with the CWT in the domain of time-frequency

analysis. In chapter 4, we discussed in detail the border effects problems that occur

because of the finite nature of the signals studied in practice. We provided a theoretical

approach, which was then completed with numerical experiments. We showed that the

zero-padding seemed to be the most reasonable choice in the present context but the

border effects were still hard to counteract. Therefore, we also gave an original iterative

technique that allows to limit them in the reconstruction procedure of a given signal.

For simple examples, the accuracy of the reconstruction could be made arbitrarily small.

Then, in chapter 5, we studied the ENSO signal through the CWT to extract the main

periods and components governing the signal. As for the WLM, the CWT turned out

consistent with previous works for this task. We then took it a step further and used

the components extracted to produce a forecasting procedure which predicts El Niño

and La Niña events up to three years in advance. This result is particularly encouraging

given the fact that most current models cannot make predictions more than one year

ahead. However, these have better forecasting skills at short lead times, which is the

reason why we believe our model could be used as a complement to other approaches

for forecasting ENSO. Its simplicity motivates us to keep working on it to improve its

forecasting skills. Finally, in chapter 6, the technique used to extract components from

a signal was enhanced to better handle the non-stationary behavior of AM-FM modes.

We established an algorithm called WIME that detects the ridges of maxima in the

time-frequency plane and extracts components iteratively until a stopping criterion is

met. We compared this procedure with the EMD in several situations. It appeared

that the reconstruction skills of the two methods were comparable but the information

provided by WIME was more consistent with reality in the most twisted cases. Let us

add that a Scilab toolbox has been created so that researchers can conduct their own

time-frequency experiments with WIME.

The two parts of this work seem to be independent from each other but chances

are it is actually possible to combine them. This idea comes from the fact that new

multifractal formalisms have been recently derived from a mixed use of both the EMD

and existing multifractal methods, with satisfying success rates. More precisely, some

of them (e.g. [25, 122]) consist in performing the EMD on each segment considered in

the MFDFA procedure and use the last rest as the trend to remove from the segment,

instead of a polynomial. Another technique, detailed in [146], constructs multiresolution

quantities similar to wavelet coefficients from the envelopes of the IMFs extracted with

the EMD. Each IMF is associated with a mean scale so that the coefficients can be

organized in a hierarchical way. Using the largest coefficients in exactly the same spirit

as the WLM, a structure function and a scaling function are obtained, which then leads

to usual conclusions. Consequently, it would be particularly exciting to try to adapt

such a method while staying in a wavelet context throughout the whole process: we

could first use the Morlet time-frequency approach to extract components of interest and

then switch to a Meyer multiresolution framework in which we could use a Daubechies-

based WLM on these components and on the “detrended, irregular” rest of the signal.

Hopefully we will be able to investigate this idea in detail in a near future and to come up

with an algorithm that allies two of the main uses of wavelets. It would be an exhilarating

way to honor the rich heritage left by the above-mentioned illustrious scientists.
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d’Hermite à Stieljtes du 20 mai 1893, pages 317–319. Gauthier-Villars, 1905.

[69] S.M. Hsiang, K.C. Meng, and M.A. Cane. Civil conflicts are associated with the

global climate. Nature, 476(7361):438–441, 2011.

[70] N. E. Huang and Z. Wu. A review on Hilbert-Huang transform: Method and its

applications to geophysical studies. Reviews of Geophysics, 46:RG2006, June 2008.

[71] N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.-C. Yen, C.C.

Tung, and H.H. Liu. The empirical mode decomposition and the Hilbert spectrum

for nonlinear and non-stationary time series analysis. Proceedings of the Royal

Society of London A, 454:903–995, 1998.



BIBLIOGRAPHY 151

[72] N.E. Huang, M.-L. Wu, W. Qu, S. Long, S. Shen, and J. Zhang. Applications of

Hilbert-Huang transform to non-stationary financial time series analysis. Applied

Stochastic Models in Business and Industry, 19:245–268, 2003.

[73] S. Jaffard. Wavelet techniques in multifractal analysis. Proceedings of symposia in

pure mathematics, 72:91–152, 2004.

[74] S. Jaffard, P. Abry, H. Wendt, S.G. Roux, and B. Vedel. The contribution of

wavelets in multifractal analysis. In Series in Contemporary Applied Mathematics.

Higher Education Press, World Scientific Publishing, 2009.

[75] S. Jaffard, B. Lashermes, and P. Abry. Wavelet Leaders in Multifractal Analysis,
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