Modelling industrial flexibility

from the electricity consumption and the human resources points of view
 \section*{\title{
Context
 \section*{\title{
Context

 What if

 What if November November

 2016

 2016 becomes becomes usual?
}} usual?
}}

Electricity price in Belgium [$€ / \mathrm{MWh}]$

- Flexibility is about exploiting those price fluctuations to lower the costs

Thus...

electrical flexibility

- Some possible answers?
- Use gas instead of electricity
- Produce less and/or later
- Don't produce
- Not possible with all processes...

Example of result

Use the machines when the prices are low

High prices: low Low prices: high consumption consumption

Price scenario

What
 limitations
 flexibility?

- Price prediction: highly dependent on weather
- Good predictions for a few days
- Useless after a week
- What about the workers?
- Schedule predictability
- Schedules that barely impact health

Overview of this talk

- InduStore
- Methodology
- Production model
- HR model
- Evaluation

InduStore

Two goals: quantify and exploit electrical flexibility
http://www.industore-project.be/

InduStore highlights energy flexibility in industrial sites

How sizeable is flexibility?

How to exploit this flexibility by optimal production planning?

How to reconcile flexibility and workers well-being?

How to bring flexibility on the energy market?

Our methodology

How to exploit electrical flexibility in industrial sites?

Three different time scales

- Hence, decompose in three steps:

- Focus on long-term planning
- Further split into production and HR

How do we exploit flexibility?

- Long term: two subproblems
- First, production: when are workers required? \rightarrow HR is a cost
- Second, HR: who works when?
\rightarrow Well-being-related constraints
- Horizon: limited by electricity price prediction

Production model

Goals:

- Estimate a production planning
- Determine when workers are needed

Production model

Determine a production planning

Production model

Determine a production planning

- Horizon?
- Long enough to have a significant order book
- Small enough to have good price predictions
-What about HR considerations?
- Workers are "just" a cost
- Roughly $1000 €$ for a team during one hour
- No specific constraint for well-being

Which level of details for the plant?

Rough model Fine model

Any process lasts $1 \mathrm{~h} \quad$ Some processes take 30 min, others 45 min

Consumption is constant with production, fixed batch size
Some stages are ignored
No wait time between processes

- A rough model is enough
- Except if a process is not well approximated
- The details are for the short-term optimisation
- Main decision variables:
- Are workers required?
shiftOn ${ }_{s} \in\{0,1\}, \forall s \in$ shifts

What does the model look like?

- Is the process on?

$$
\begin{gathered}
{\text { process } 0 n_{\mathrm{t}, \mathrm{p}} \in\{0,1\},}_{\forall t \in \text { time steps, } \forall p \in \text { processes }}
\end{gathered}
$$

-What quantity is being processed?
quantity ${ }_{t, p} \geq 0$,
$\forall t \in$ time steps, $\forall p \in$ processes

What does the model look like?

- Objective: minimise the costs

- Could have more precise consumption model: linear, quadratic, etc.
- Constraints:
- A process can be on only if workers are present processOn $\mathrm{n}_{t, p} \leq$ shiftOn $_{\mathrm{s}}$, $\forall p \in$ processes, $\forall s \in$ shifts, $\forall t \in s$
- A process can be used only if it is on; the batch size is fixed quantity $_{t, p}=$ quantity $_{p}^{\max }$ processOn $_{t, p}$,
$\forall p \in$ processes, $\forall t \in$ time steps

What does the model look like?

- Constraints:
- The processes follow each other and last one time step
quantity $_{\mathrm{t}, \mathrm{f}}=\alpha$ quantity $_{\mathrm{t}-1, \text { eaf }}$,
quantity ${ }_{\mathrm{t}, \mathrm{cc}}=$ quantity $_{\mathrm{t}-1, \mathrm{lf}}$, quantity $_{t, o u t}=$ quantity $_{\mathrm{t}-1, \mathrm{cc}}$,
$\forall t \in$ time steps
- Transformation factor between EAF and LF: some losses between the input raw material and the molten steel
- The order book must be respected
$\sum_{\tau \leq t}$ quantity $_{\tau, \text { out }} \geq$ totalOrderedQuantityUpTo ${ }_{t}$,
$\forall t \in$ time steps

HR model

Goal: assign shift to worker teams
Respect legal and well-being constraints

HR model

Assign teams to shifts

- Decision variable:
- Is a team assigned to a shift? assigned $_{s, t} \in\{0,1\}$, $\forall s \in$ shifts, $\forall t \in$ teams
- Major constraint: are workers required?

$$
\begin{gathered}
\sum_{t \in \text { teams }} \text { assigned }_{\mathrm{s}, \mathrm{t}}=\text { required }_{\mathrm{s}} \\
\forall s \in \text { shifts }
\end{gathered}
$$

Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7
Day 8	Day 9	Day 10	Day 11	Day 12	Day 13	Day 14

- Shift workers must have some rest between two shifts
- Notion of "forbidden shifts"
- If working shift s, cannot work any shift within FS

$$
\sum_{u \in \mathrm{FS}(s)} \operatorname{assigned}_{\mathrm{t}, \mathrm{u}} \leq 1-\text { assigned }_{\mathrm{t}, \mathrm{~s}}
$$

$$
\forall s \in \text { shifts }
$$

Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7							
Day 8	Day 9	Day 10	Day 11	Day 12	Day 13	Day 14		Day 15	Day 16	Day 17	Day 18	Day 19	Day 20
:---	:---	:---	:---	:---	:---								
Day 21													

- Shift workers also need aWE, i.e. a pair of days off every so often
- Detect pairs of days off
- New variable: does the team work in the given pair of days? $\operatorname{inPair}_{\mathrm{d}, \mathrm{t}} \in\{0,1\}, \forall d \in$ days $\backslash\{$ last day $\}, \forall t \in$ teams
- Detect those pairs with shifts (6 shifts for 2 days off):
inPair $_{\mathrm{d}, \mathrm{t}} \leq 1-\frac{\sum_{s \in d} \text { assigned }_{\mathrm{t}, s}}{6}, \forall d \in$ days $\backslash\{$ last day $\}, \forall t \in$ teams
- For each period of nine days, at least one pair:

$$
\sum_{\delta=d}^{d+8} \operatorname{inPair}_{\delta, \mathrm{t}} \geq 1, \forall d \in \text { days } \backslash\{9 \text { last days }\}, \forall t \in \text { teams }
$$

Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7							
Day 8	Day 9	Day 10	Day 11	Day 12	Day 13	Day 14							
:---	:---	:---	:---	:---	:---								
Day 15	Day 16	Day 17	Day 18	Day 19	Day 20								
Day 21													

- Shift workers should work no more than 50 hours per week
- Otherwise, overtime
- Overtime is still allowed, though!
- New variable: amount of overtime

$$
\text { overtime }_{t, w} \geq 0, \forall w \in \text { weeks, } \forall t \in \text { teams }
$$

- One shift lasts 8 hours

$$
\begin{gathered}
\sum_{s \in w} 8 \text { assigned }_{\mathrm{t}, \mathrm{~s}} \leq 50+\text { overtime }_{\mathrm{t}, \mathrm{w}} \\
\forall w \in \text { weeks, } \forall t \in \text { teams }
\end{gathered}
$$

HR model

Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7
Day 8	Day 9	Day 10	Day 11	Day 12	Day 13	Day 14
Day 15 Day 16 Day 17 Day 18 Day 19 Day 20 Day 21						

Assign teams to shifts

- On average, shift workers should work 38 hours per week
- The average is computed on 13 weeks
- Hard to implement:
- Production schedule for two weeks
- Constraint for 13 weeks

HR model

Assign teams to shifts

- Legal, HR-related constraints
- Minimum rest time between two work periods
- Week-end equivalent for shift work

Hard constraints

- Maximum 50 hours per week (or overtime)
- Average number of hours per week, computed over 13 weeks (in Belgium)
?
- Try to accommodate well-being:
- Warn the workers a few days before about their schedule
- Avoid changing too often what the workers are said
- Avoid overtime
-Why is the average number of hours a problem?
- Reach an average of hours over 13 weeks
- Can only work on 2 weeks!
- Production plan after one week is already not really reliable...
- Constraint absolutely needed
- Must keep flexibility for the weeks after
- Avoid too many days at the beginning
- Avoid too many days unused at the end

- Use a heuristic 2-week budget

- Try to have at least X hours, at most Y hours
- Minimise budget violation

Budget of hours

- Leaves some freedom for the current 2 weeks
- Keep margin for the weeks to come

Bounds for each time
Hours per week

- Lower bound
- Upper bound

Budget of hours

- Its implementation is straightforward: $\min \leq \sum_{s \in \text { shifts }} 8$ assigned $_{\mathrm{t}, \mathrm{s}} \leq \max$
- In practice: with slacks to avoid too quick infeasibility

Objective function

- Minimise penalisations:
- Hours overtime
- Hours outside budget (below and above)
- Number of changes against previous solution
- Each one has a different weight
- Easy to get multiple assignments

Evaluation

Three axes:

- Computation times
- Monetary gains
- Working conditions

Computation times

- These problems are easy to solve
- 13 weeks, each program with a horizon of 2 weeks
- Mill used 85% of the time
- 5 teams
- Production model:
- On average: 0.25 (maximum: 29s)
- HR model:
- On average: 0.25 (maximum: 0.3s)
- Statistics based on:
- 6 order books
- 18 price scenarios

Compare this "smart" approach to:

Monetary gains

- Two usual industrial scenarios:
- Produce during the night

Irrespective of price scenario!

- Produce during the night or the WE
- A softened version of our approach:
- Cannot reconsider shifts once they are decided

Monetary gains

Algorithm	HR cost		Electricity cost		Total cost	
Smart	974,426		752,689		1,727,114	
No change	1,023,973	+ 5.1\%	904,324	+ 16.8\%	1,928,297	+ 11.6\%
Night	1,289,920	+ 24.5%	979,200	+ 23.1\%	2,269,125	+ 31.4\%
Night and WE	1,262,530	+ 29.6\%	1,025,600	+ 26.6\%	2,288,131	+32.5\%

- Monitor several KPIs:
- Physiological KPIs
- Social KPIs
- Economical KPIs
- Major problems?
- Scarce literature for flexible shifts
- Some important notions no more make sense
- Cycle, rotation, mostly

Physiological KPIs (14 days)

Team	$\# 1$	$\# 2$	$\# 3$	$\# 4$	$\# 5$
Sequence night-rest	0	0	0	0	0
Sequence rest-night	0	0	0	0	0
Clockwise transitions (MA, AN, NM)	0	0	0	0	0
Counterclockwise transitions (AM, MN, NA)	0	0	0	0	0
No transition (MM, AA, NN)	1	3	4	1	2
Night shifts	2	3	0	2	3
Average hours per day	3.4	3.4	4.0	3.4	3.4

HR penalisation: including coefficients

Number of shifts

\square Team 1
\square Team 2
\square Team 3
\square Team 4
\square Team 5

Economical KPls (14 days)					
Team	$\# 1$	$\# 2$	$\# 3$	$\# 4$	$\# 5$
Total shifts	6	6	7	6	6
Diff. with max (\%)	14.2857	14.2857	0.	14.2857	14.2857
Total wage	6000.	6000.	7000.	6000.	6000.
Diff. with max (\%)	14.2857	14.2857	0.	14.2857	14.2857
Hourly wage	125.	125.	125.	125.	125.

Total production cost $[k €]$

HR penalisation: including coefficients

Number of shifts

Production cost day by day [k€]

Diff. w/ prev.
HR penalisation
independent terms
sol. (c: 1000)Overtime (c: 500)Above budgetBelow budget
Diff. w/ prev. sol.OvertimeAbove budgetBelow budgetTeam 1Team 2Team 3Team 4Team 5

Physiological KPIs (14 days)

Team	\#1	\#2	$\# 3$	\#4	\#5
Sequence night-rest	0	0	0	0	0
Sequence rest-night	0	0	0	0	0
Clockwise transitions (MA, AN, NM)	0	0	0	0	0
Counterclockwise transitions (AM, MN, NA)	0	0	0	0	0
No transition (MM, AA, NN)	1	3	4	1	2
Night shifts	2	3	0	2	3
Average hours per day	3.4	3.4	4.0	3.4	3.4

Economical KPIs (14 days)
Social KPIs (14 days)

Team	$\# 1$	$\# 2$	$\# 3$	$\# 4$	$\# 5$
Morning shifts	1	3	0	3	2
WE shifts	0	0	0	0	0

Team	$\# 1$	$\# 2$	$\# 3$	$\# 4$	$\# 5$
Total shifts	6	6	7	6	6
Diff. with max (\%)	14.2857	14.2857	0.	14.2857	14.2857
Total wage	6000.	6000.	7000.	6000.	6000.
Diff. with max (\%)	14.2857	14.2857	0.	14.2857	14.2857
Hourly wage	125.	125.	125.	125.	125.

\square Diff. w/ prev sol. (c: 1000) \square Overtime (c: 500) \square Above budget \square Below budget
\square Team 1
\square Team 2
\square Team 3
\square Team 4
\square Team 5

Physiological KPIs (14 days)

Team	\#1	$\# 2$	$\# 3$	$\# 4$	$\# 5$
Sequence night-rest	0	0	0	0	0
Sequence rest-night	0	0	0	0	0
Clockwise transitions (MA, AN, NM)	0	0	0	0	0
Counterclockwise transitions (AM, MN, NA)	0	0	0	0	0
No transition (MM, AA, NN)	1	3	3	1	0
Night shifts	2	3	0	1	1
Average hours per day	3.4	3.4	3.4	2.9	1.7

Social KPIs (14 days)

Team	$\# 1$	$\# 2$	$\# 3$	$\# 4$	$\# 5$
Morning shifts	1	3	0	3	1
WE shifts	0	0	0	0	0
Shift estimate changes: come (at most 7 days before)	0	0	0	0	0
Shift estimate changes: do not come (at most 7 days before)	0	0	0	0	2

Economical KPIs (14 days)					
Team	$\# 1$	$\# 2$	$\# 3$	$\# 4$	$\# 5$
Total shifts	6	6	6	5	3
Diff. with max (\%)	0.	0.	0.	16.6667	50.
Total wage	6000.	6000.	6000	5000.	3000.
Diff. with max (\%)	0.	0.	0.	16.6667	50.
Hourly wage	125.	125.	125.	125.	125.

Conclusion and future work

- From 19th-century planning to flexibility: > Could save 30% in costs!

Conclusion

- Probably not acceptable as such:
- Complete mentality change
- Workers and directors not always ready
- Objective elements to foster thinking
- Some HR flexibility not yet exploited:
- What about variable shift lengths?
- E.g., if 4 consecutive hours are very cheap

Future work: production model

- For now: fixed to 8 hours, distinction between morning/afternoon/night shifts
- Great troubles for HR analysis: even further away into the unknown!
- Price uncertainty not explicitly modelled

Future work: HR model

- Introduce fairness criteria when making teams
- May have large impact on some KPIs
- Potential performance degradation (cf. attic problem)
- First tests show that the effect on runtime is limited

Questions?

