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Design of a Resistive Brake Controller for Power System Stability Enhancement
Using Reinforcement Learning

Mevludin Glavic

Abstract—Computation of the closed-loop control laws, capable
to realize multiple switching operations of a resistive brake (RB)
aimed to enhance power system stability, is the primary topic
of this brief. The problem is formulated as a multistage deci-
sion problem and use of a model-based reinforcement learning
(RL) method, known as prioritized sweeping, to compute the
control law is considered. To illustrate the performances of the
proposed approach results obtained using the model of a synthetic
four-machine power system are given. Handling measurement
transmission delays is discussed and illustrated.

Index Terms—Closed-loop control, multiple switching, power
system stability, reinforcement learning (RL), resistive brake
(RB).

1. INTRODUCTION

ESISTIVE brake (RB) (the terms braking resistor and dy-
Rnamic brake are also in use) have been recognized and
used as a cost-effective measure for transient stability enhance-
ment for a long time [1]-[5]. The essence of the control is the
insertion of a resistance, usually at a generation bus (mainly hy-
draulic generating station), upon the clearing of a system distur-
bance.

The key problems in a RB controller design include choosing
appropriate input signal and adopting a proper control scheme
to decide when to switch ON or OFF the resistor, or so called
“switching times,” in order to meet the specific stabilization ob-
jectives [5], [6]. A comprehensive survey of early considera-
tions and implementations of mechanically switched RB is re-
ported in [5]. The prevailing approach in these early implemen-
tations was to apply only one switch of the brake for a prespec-
ified insertion time [3]—[6], and the control initiation is based
on the recognition of the prespecified system variable changes.
These variables include: generator speed, generator angle, the
system frequency, active power at generator terminals, gener-
ator voltage magnitude, or some combinations of those.

The coarse switching times control, introduction of
thyristor-switched and thyristor-controlled RBs, and ad-
vancements in RB technology gave rise to the considerations of
advanced methods application in design of a RB controllers. A
variety of approaches have been considered and proposed with
the aim of full utilization of RB potential to provide transient
damping after large disturbances. These approaches include
application of dynamic programming method [7], variable
structure control [8], [9], optimal control theory [10], [11],
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rule-based system [12], fuzzy logic control [13], and artificial
neural networks [14]. Recently, the potential of using RB to
damp power swings have been investigated [15] and the use of
multiple switching operations of the RB for a transient stability
emergency control have been reported in [16].

The advantage of automatic control strategies capable to re-
alize multiple insertions of RB has been recognized in [4] and
[7] and recently confirmed as a control strategy of the choice in
the real-life system implementation [16]. A need exists for RB
control algorithms, which are robust, closed-loop in nature, and
are more systematically designed.

In this brief, the problem of multiple switching of a thyristor-
switched resistive brake (TSRB) is formulated as a multistage
decision problem. [17] provides a formal framework to solve
this problem and in this brief its application to compute a closed-
loop control law of a TSRB with the solution of the [17] being
approximated by using a reinforcement learning (RL) algorithm
[18]-[20], the subject of increasing interest in power system
control applications [21]-[24], is considered. A TSRB is aimed
to damp electromechanical oscillations and to avoid the system
loss of synchronism taking into account limits of the brake.

The organization of the brief is as follows. RL theoretical
framework is given in Section II. In Section III, the four-ma-
chine power system model is described. The controller design
and simulation results are given in Section IV together with
the adopted way to handle communication delays. Discussion is
provided in Section V while a conclusion is given in Section VI.

II. REINFORCEMENT LEARNING

RL is a computational approach to learning from interactions
with a system or its simulation model (by trial-and-error). In
this brief, a problem how to control a TSRB is considered and
natural choice of theoretical framework to present RL is to con-
sider it as a way to learning (approximate) solutions of optimal
control problems.

A. Theoretical Framework

RL is presented here in the framework of discrete optimal
control of a deterministic nonlinear system with constant sam-
pling period. If z; represents the sampled state vector of the
system at instant ¢, u; the control action taken at ¢, then the state
vector of the system at instant ¢ + 1 is given by

Tt41 = f(l’t,ut)- (H

The RL method used in this brief belongs to the temporal dif-
ference type of methods that suppose the existence of a reward
ri(xe,ur) € R (R is the set of real numbers) associated to the
transition from z; to x4y1 while taking action u; € U, Vt €
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[0,1,2,...) (U is assumed to be finite) [18]. The discounted re-
turn R(x, ug, w1, us, . . .), which depends on the initial state x
and on the sequence of control actions uy) = (ug, u1,uz,...),
applied to the system, is defined as

oo

= Z'ytr(:vt, ut). 2)

t=0

R (w0, ugsy)

where v, (0 < v < 1), is a parameter called the discount rate.

The aim of RL methods in the framework of infinite time
horizon with discounted reward is to find, for every possible
initial state z(, a good approximation of the optimal control se-
quence uj,, (z0) that maximizes the discounted return. A policy
uy¢) 18 said to be better or equal to a policy uf{ # if its return is
greater than or equal to that of u’{ ¢y for all states. There is always
at least one policy that is better than or equal to all other poli-
cies. This is an optimal policy. In order to determine this policy,
one defines the value function V'(x)

V(z) = maxR (a: u{t}) 3)

Using the dynamic programming (DP) principle [17], it can be
proven that the value function satisfies the condition

Viz) = max (r(z,u) + 7V (f(z,v))) )

where (x,u) and f(z, u) are, respectively, the reward observed
and the next state reached when taking action » while being
in state . DP computes the value function in order to find the
optimal control with a feedback control policy. Indeed, from the
value function the following optimal feedback control policy is
deduced

u*(z) = arg max (r(z,u) + vV (f(z,u))). 5)

Alternatively, one can define so-called () function as

Q(z,u) = r(xz,u) + vV (f(z,u)). (6)

Then V() can be expressed as a function of Q(z,u)

V(z) = max Q(z,u). 7

uelU

Equation (5) can be rewritten as
u*(z) = arg max Q(z,u). (8)
ue

Equation (8) provides a straightforward way to determine the
optimal control law from the knowledge of the Q.

RL algorithms estimate the () function by interacting with the
system. From the knowledge of the () function, they can decide
by using (8) which value of the control to associate to a state
in order to maximize the discounted return (2). Unfortunately,
RL in a continuous state-space implies that the () function has
to be approximated [18]. A discretization technique is used in

this brief to approximate it because it is easy to implement and
revealed numerically stable in the simulations performed.

B. State Space Discretization

A discretization technique consists in dividing the state space
into a finite number of regions and then considering that on each
region the () function depends only on u. Then, in the RL algo-
rithms, the notion of state used is not the real state of the system
« but rather the region of the state space to which z belongs. The
letter s is used rather than z to denote the state of the system in
order to stress that refers now not to x itself but to a region of the
state space. Moreover, the finite set containing all the discretized
states of the system is denoted by S. The discretization of the
state space introduces some stochastic aspects. While being in
one region of the state space and taking an action, the region of
the state space reached at the next sampling instant is not fully
determined. The stochastic aspects introduced by the discretiza-
tion lead to suppose that Q(s, u) does not obey anymore to the
deterministic equation (6) but rather to

Q(s,u) =r(s,u) —I—'yz

s'eS

s'|s,u maXQ(s uw)  (9)

where p(s’|s,u) represents the probability to reach at the next
sampling instant the state s’ when being in the state s while
taking action wu.

Rewards 7(s,u) and probabilities p(s’|s,u) describe the
model of the discretized system. They associate to each dis-
cretized state and to each value of the control w transition
probabilities to other states and the value of a reward. As-
suming that they describe a Markov decision process (MDP),
Q(s,u) can be easily estimated using a classical DP algorithm
for solving MDP like the value iteration or the policy iteration
[18], [19]. The optimal control to associate to a state is the one
that maximizes () for this state.

RL methods either estimate the transition probabilities and
the associated rewards (model based learning methods) and then
compute the @ function, or compute directly the @@ function
without learning any model (nonmodel based learning methods)
[18]. In this brief, a model based algorithm is used because these
algorithms offer some important advantages in comparison to
nonmodel based, and those are: more efficient use of data gath-
ered, they find better policies, and handle changes in the envi-
ronment more efficiently [20].

C. Generic Model Based RL Algorithm

The algorithm is given in Table I [18], [20]. The e-greedy
method used to choose the action suggests that there is proba-
bility e that the action chosen is not necessary the one which
minimizes (), but an action taken at random. This provides the
algorithm with some exploratory behavior such that on average
each 1/e time a random action is taken.

The N function used in this algorithm does not intervene to
describe the model as such but is necessary for its updating. The
term B(0 < 8 < 1) provides the algorithm with some adaptive
behavior by giving more importance (if 5 < 1) to the last data
acquired.
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TABLE 1
GENERIC ALGORITHM FOR MODEL BASED LEARNING METHOD

Initialize Q(s,u)=0, VseS and YueU
Initialize parameters of the model:
N(s'|s,u) =0, Vs,s'eS and YueU

p(s'ls,u) =0, Vs,s'eS and YueU

r(ssu)=0, VseS and YueU
Do forever:
Observe current state s

Choose action u from s using knowledge of Q (e.g. €— greedy )
Take action # and observe s' and 7 .
Update model:

N(ils,u) < ,b’N(ils,u), VieS
r(s,u)zjes N(jls,u) +7
z‘/eS N(jls,u) +1

N(s'|s.u) « N(s'|s.u) + 1,

r(s,u) «

VieS

_ Neifs.)
pls.u) « .
s,1)

Z‘/‘ES N(j
Compute Q by solving (9)
s« '

III. DESCRIPTION OF THE TEST POWER SYSTEM, LEARNING
SCENARIOS, AND CONTROL LAW LEARNED

To illustrate capabilities of the proposed control this brief
makes use of the four-machine power system, described in
Fig. 1. Its characteristics are mainly inspired from [1].

Detailed description of the system model is given in the Ap-
pendix. While the system operates in steady-state conditions,
the generators G1, G2 (hydro) and G3, G4 (thermal) produce
approximately the same active powers (700 MW) and the two
loads L7, L10 consume, respectively, 990 and 1790 MW. The
TSBR is located at bus 6 and sized as g = 5.0 p.u. mhos on a
100-megaVoltAmpere (MVA) base.

A. Technological Underpinnings

RBs currently in use [3], [5], [7], [8] are large size brakes. The
sizing of the RB is a point of great interest. From a control point
of view, the bigger the brake the better. From an engineering
point of view, increasing the size of the brake increases its cost
and maintenance. To be viable for stability enhancement the RB
must be economical to fabricate and has low maintenance cost.

Controller design introduced in this brief permits the use
of smaller brakes with lower cost. The stability improvement
comes from multiple switching of the RB. Several technological
solutions for RB are available: bulk metallic, bulk nonmetallic,
and thick film technologies. Of the three types, thick film resis-
tors are felt to be most appropriate. They are low cost, have low
inductance, and are virtually maintenance free. Although heat
transfer can be an issue and a longer OFF time can be necessary
it is possible to use a bank of smaller RB of the same size that
can individually be switchedON during a short time period.

Advancements in communications technology (most ap-
pealing is the use of GPS technology in conjecture with phasor
measurement units [22]-[24]) allow fast and accurate collection
of the synchronized measurements across wide geographical

! 5 6 7 1 109 3 3
Gl Il [1 G3
T T
L7 L10
2 RB 4
\ G2 G4
GMI GM2

Fig. 1. Four-machine power system.
areas. This is the reason centralized control scheme is consid-
ered in proposed design methodology.

B. Learning Scenarios Description

Thelearning periodis partitioned into different scenarios. Each
scenario starts with the power system being at rest and is such
that at 10 s a short circuit (self-clearing) at bus 10 occurs. The
fault duration is chosen at random in the interval [0,350 ms]. The
scenario stops either when the instability is reached or when ¢ is
greater than 60 s. No learning is realized during the fault period.

C. Control Law Learned

The RL algorithm is used to learn an approximation of the op-
timal closed-loop control law (strictly speaking, the closed-loop
control law learned will be different from the optimal one due to
the facts that the input signal of the RL algorithm is discretized
and represents something else than the system real state). But to
each power system configuration corresponds an optimal con-
trol law. The strategy proposed here is to realize the learning by
using always the same configuration and to assess the control
law robustness to justify the use of the control law in configu-
rations that do not correspond to the one in which the learning
has been done.

IV. CONTROLLER DESIGN AND SIMULATION RESULTS

The aim is to design the controller in order to be able to con-
trol particular system mode. The mode considered is relative
motion of one group of the machines (identified by GM1 in
Fig. 1) with respect to another (GM2). The one machine-infi-
nite bus (OMIB) transformation [25] is applied to this one. The
transformation reduces dimensionality and resolve curse of di-
mensionality problem, the problem inherent to the most of RL
algorithms. Having identified the two groups of machines the
transformation proceeds as follows (let A denotes the set of ma-
chines in the group GM 1, machines 1 and 2 in Fig. 1).

* Transform the two groups into two equivalent machines,

using their corresponding partial center of angle. For
group GM 1 this results in

Saae = Mgy > Mibi (10)
keA

weare = MG, Z Mywis; Mgy = Z M, (11)
keA keA

where 0 and wy; denote the machines internal angle and
the rotor speed deviation, and M}, represents the machines
inertia. Similar expressions hold for group GM?2.
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Detailed power
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AAAAAAAA individual gen.

U‘ variables

Equivalent
Ug OMIB (updated

at each discrete
time step)

3y,

L RL algorithm

Fig. 2. RL algorithm interaction with the system model.

* Reduce the two-machine system into an equivalent OMIB
system whose machine angle and speed deviation are de-
fined by

(12)

0t = bamie — OgM2t: Wi = WGM1t — WGM2t-

The system is described by 30 variables (16 state and 14 alge-
braic, see the Appendix) that are, using OMIB transformation,
a priori reduced to a two-dimensional (2-D) signal composed
of relative angle and relative speed of the two groups of ma-
chines. Of course, the amount of information in these two vari-
ables is less than in the 30 variables but will be sufficient ac-
cording to simulations performed to obtain, after the learning, a
good quality closed-loop control law. An RL algorithm interac-
tion with the system simulation model is illustrated in Fig. 2.

At each discrete time step the RL algorithm receives a repre-
sentation of the system state (equivalent OMIB angle and speed
deviation, and these define the state for the RL algorithm). RL al-
gorithm selects an action from the set of actions available in the
state. As a consequence of taking action the algorithm receives a
numerical reward that the algorithm tries to maximize over time.

A. State Definition

It is assumed that the angle, speed deviation, electrical and
mechanical power (individual generator variables in Fig. 2, see
the Appendix) of each generator is available (they can be ei-
ther measured directly or estimated). The transmission delays
and measurement errors are neglected (this issue is discussed in
Section IV-I). The state for RL algorithm (to be differentiated
from the system state) at time ¢ is, thus, represented as
(13)

St = (5t7wt)

where 0;, w; are equivalent OMIB angle and speed deviation.

B. Reward Definition

It is critical that the rewards truly indicate what is wanted to
be accomplished, not how it is wanted to be achieved [19]. For
the particular problem considered the aim of the RL controller
is threefold: to improve damping of particular system mode, to
avoid the loss of synchronism between the generators when a
severe incident occurs, and to limit the time the RB is switched
ON. The oscillations are observable in the magnitude of the

equivalent speed deviation, and the aim of the controller is to
limit its magnitude. All these can be accomplished by defining
the reward as

—|Wt| — C - Ug,
T(Stﬂm) = { _|10t0|0 v

if |6;] < 7 rad

if |6;] > 7 rad (14

where the u; € {0, 1} (0 meaning that the brake is switched OFF
and 1 ON) and where c determines how much the fact that the brake
is ONis penalized. To strongly penalize unstable operation, a very
large negative reward (—1000) is obtained when the system has
lost synchronism. A widely used heuristic criterion for detecting
system loss of synchronism is the value of angular separation be-
tween the two groups of machines. Based on preliminary simula-
tions, for particular system this is considered to be the case when
|6:] > m rad(appreciable increase in speed deviations does not
necessarily imply that the synchronism is lost).

Observe that the equivalent OMIB angle is not included into
reward definition to avoid problems with estimating its value in
post-fault system equilibrium. For the OMIB speed deviation
there is no need to estimate its value in post-fault equilibrium
because it is a priori known that individual generator speed de-
viations are 0 if the system is in equilibrium.

C. Values of Parameters

The period between two samplings is chosen equal to 50 ms.
Large value of -y implies the algorithm will take long-term ben-
efit control actions. However, a too large value (a value close
to 1) can lead to convergence problems. Simulations carried out
have shown that v = 0.95 represents a reasonable tradeoff. The
value of parameter c in (14) is chosen as ¢ = 2.0. e-greedy factor
is set to 0.1 which means that a random action will be taken at
each tenth sampling on average. The factor ¢ is set to rather high
value to encourage the RL algorithm exploration. The equiv-
alent angle and speed are uniformly discretized in 100 values
within the intervals [—3.15,3.15] rad and [—10,10] rad/s.

D. Learned Control Policy

Fig. 3(a) shows the control laws obtained in the (6, w) plane
after 100 scenarios have been presented to the RL algorithm. In
this figure, each tile corresponds to a discretized state. The black
tiles correspond to states where the control value is 1 and the
light ones to the opposite case. Observe that after 100 iterations,
the control law still seems rather erratic, which is due to the fact
the RL algorithm has not yet converged. After 1000 scenarios
[Fig. 3(b)], on the other hand, one can observe that organized
structure has appeared in the way the tiles are distributed. At
this stage, additional learning can only bring minor changes to
the learned control law. The total number of scenarios generated
is 1000 out of which 163 were unstable.

E. Enlarging of the Stability Domain

For the 350 ms duration self-clearing fault, the uncontrolled
system loses stability 1.75 s after the fault clearance (the max-
imum fault duration it can withstand without losing stability is
215 ms), but using learned control law the controller stabilizes
the system. The evolution of the equivalent angle, speed devia-
tion, and control actions taken are represented in Fig. 4(a).
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Fig. 3. Learned control policy (¢ is expressed in rad and w in rad/s).
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Fig. 4. Evolution of 6 (rad), w (rad/s), and u for two different fault scenarios. The dashed curves represent the evolution in the case of uncontrolled system.

1) Short circuit applied near bus 7 and cleared by opening
one of the two lines connecting bus 7 to bus 10 (change
of the fault location + change in the system configura-
tion).

2) Self-clearing short circuit applied near bus 7 (change of
the fault location) with modified system prefault con-

F. Control Law Robustness

To assess robustness of the proposed control, the learned con-
trol law is used to control the system when subjected to different
fault scenarios than those used in the learning. The faults con-

sidered include the following.
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Evolution of 6 (rad) and u for prefault conditions different than during the learning.
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Fig. 6. Evolution of 6 (rad) and u for the 350-ms self-clearing fault and ¢ = 0.5.

TABLE 1I
SUMMARY OF THE SIMULATIONS FOR ROBUSTNES CHECK
Case Number of Fault duration Maximum fault duration
simulations drawn at random without loss of stability
from interval Uncontrolled Controlled
1 10 150-250 ms 141 ms 252 ms
2 10 100-320 ms 200 ms 330 ms

ditions (active power production of generators within
the group GM 1 have been increased by 20 MW).
Summary of the simulations performed is given in Table II.

The system response and actions taken are illustrated in
Fig. 4(b) for the first case with fault duration 225 ms and in
Fig. 5 for the case with changed system prefault conditions and
the fault duration 300 ms.

In spite of the change in system configuration and the system
prefault conditions, the controller succeeds to control efficiently
the system being subjected to the “unseen” scenario in all 20
simulations. Thus, the learned control law is robust to these
changes (changes usually considered in checking robustness of
power system controllers).

G. Influence of Penalizing Control Efforts

To assess the influence of parameter c on the approximation of
the optimal control law new 1000 scenarios were generated, out

of which 115 unstable, (different number of unstable scenarios
is mainly due to random choice of the fault duration) with pa-
rameter c set to 0.5. The response of the controlled system sub-
jected to the 350 ms duration self-clearing fault is represented
in Fig. 6(a) and control actions taken in Fig. 6(b).

Note that, due to lower penalization of the fact that the
brake is ON, the controller stabilizes the system using 9 brake
switches while in the case when c is set to 2.0 (Fig. 4) only
three switches were sufficient. This illustrates the main purpose
of including parameter ¢ in reward definition, i.e., by careful
choice of the value of this parameter it is possible to accom-
modate different technological constraints inherent to different
types of RB (maximum insertion time, maximum number of
consecutive switches, etc.).

H. Further Increase in Control Flexibility

One of the attractions of RL approach is the flexibility this
approach provides while designing controllers for a given
problem. In previous subsections, it is demonstrated how some
limitations can be accommodated through the proper choice
of parameter c. Another limitation can be the fact that techno-
logical solution for the brake is such that after each ON period
when the brake goes OFF must stay OFF for some time. Assume
that the time the brake must stay OFF is t,;,. This limitation
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Fig. 7. Evolution of w (rad/s) and u for the 350-ms self-clearing fault: ¢ = 2.0, transmission delay 50 ms and ¢,,,;, = 0.2 s.
can be easily incorporated into the control scheme by proper Therefore, the truncated history
reward definition and one possibility is to define the reward as ,
. Ht = (Stf‘muth;"'*,utfl) (19)
—|wi| — ¢ ug, if|6¢] < 7 rad
o u,_1=0 and constitutes a sufficient statistic for the decision process and can
r(se,us) = { —1000, if W . (15) . P ;
w=1 and tosr <tmin be considered as the new state of the controller. Further consid-
—1000, if |6¢] > 7 rad erations in [26] revealed that the reward should be defined based

This reward definition requires change of the state definition in
respect to one given by (13), and the state must be extended to
include a short history of actions taken

(16)

St = (6t7wt7ut—17ut)~

Variable t,g has to be reset to O whenever the control goes
from ON to OFF.

1. Handling Transmission Delays

The purpose of the simulation results presented in previous
subsections is to highlight the potential and flexibility in
applying RL to design the RB controller. However, the trans-
mission delays, not taken into account, are important issue that
may have detrimental effect on final controller performances.
Very recent theoretical results about MDP with delays and
asynchronous cost collection [26] offer a sound solution to this
problem. The main result of [26] is that an MDP with delays
may be reformulated as an MDP without delays with aug-
mented state space. The approach is similar to the one used in
partially observable MDP and consist in defining the controller
state from the history of measurements and actions taken. In the
presence of measurement transmission delays, the controller
cannot observe the system’s current state and, by extension, it
cannot observe the immediate reward. Instead, it observes the
state the system was in 7 (a constant transmission delay) stages
before. The history of the controller’s observations and actions

up to time step ¢ is
a7

Ht = (507u07 vy Stery Ut—7y . 7ut—l)

and defines a probability distribution over possible current states
s¢ € S. From the Markov property of the system’s state transi-
tions, it follows that [26]:

D(St|Hi) = p(8¢]805 U0y« -+ Sty Ut—ry e vy Up—1)

:p(3t|5t—'raut—‘m cee 7ut—1)-

(18)

on s;_, and Up_,.

For the particular problem considered in this brief, the state
and reward are redefined to accommodate a constant transmis-
sion delay (delay in applying control action is not considered
here) as

St
= (5t7‘r~, Wt—ry Ut—75 - - - ;Utfl) (20)
T(St—7'7 ut—’l’)
—|wi—r| = up—g, if |6—-| < 7 rad
_ u;—-—1=0 and
=y 1000, wi— =1 and togr<tmin @D
—1000, if |6;—-| > 7 rad

Note that the reward used to increase flexibility of the control
(15) is used here. The increase in the controller state dimension
requires more learning scenarios to be performed.

For particular case considered 2000 scenarios (out of which
225 were unstable) were necessary to achieve the controlled
system response [Fig. 7(a)] comparable to the one presented
in Fig. 4(a). The values of additional parameters are chosen as
tmin = 0.2 s and 7 as an integer multiple of time step (in par-
ticular case it is equal to 50 ms). The control actions taken are
illustrated in Fig. 7(b). Two brake switches are sufficient to ap-
proximately optimally stabilize the system.

V. DISCUSSION

The use of OMIB transformation resolved the curse of di-
mensionality problem by reducing system state representation
to 2-D. Consequently, one may wonder why a classical DP is
not used because the DP law itself appears to be numerically
computable. However, OMIB transformation brings a key ob-
stacle for classical DP methods to be applied to this problem:
a mathematical model of equivalent OMIB system dynamics is
not completely available, as described in the following.
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Reasoning, intuitive but with numerous practical evidences
[25], behind the concept of OMIB transformation is as follows.

1)  The most important variables to analyze and assess
power system angle stability are angles and speed de-
viations of individual generators.

2)  The loss of synchronism of a multimachine power
system originates from the irrevocable separation of
its generators into two groups, which can be replaced
by a two-machine system and then by an OMIB
equivalent.

Accuracy of this transformation, from the rigorous theory
stance, is questionable. However, numerous tests (including
real-world power systems [25]) revealed if detailed power
system model is considered (as in this brief) and the OMIB
parameters: angle and speed deviation (12) as well as equivalent
OMIB mechanical and electrical power

Pre=M|Mgy;, Y PueeMgypy >, Prji| (22)
keGM1 JEGM?2
P =M|Mgly S PauMgy, Y. Pl (23)

keGM1 jEGM?2

are updated sufficiently often (as in this brief) then OMIB (also
referred as generalized OMIB [25]) offers a good quality image
of multimachine system time evolution. In expressions (22) and
(23), M = (MayiMan2)/(Mann + Maare) denotes the
equivalent OMIB inertia coefficient. The equivalent OMIBs dy-
namics, in general, is expressed by

(24)
(25)

§=w
M- =P, — P, = f(6,w).

The generalized OMIB transformation does not make any as-
sumption about analytical relation of P, and P, on ¢ and w
and, thus, preventing use of classical DP methods to solve the
problem. When a mathematical model of the system or its ap-
proximate model dynamics is not, or is just partially, known a
possible resort, as argued in this brief, is to use RL to solve
problem posed as MDP (the fact that equivalent OMIB angle
and speed deviation contain all relevant information for deci-
sion making imply Markov property).

The four-machine power system is a synthetic system pur-
posely designed for studying power system inter-area electro-
mechanical oscillations (the system mode to be controlled) [1]
and this motivated use of the system in the brief. In the case
of a real (large) power system, the major difference, with re-
spect to the four-machine system, is identification of partic-
ular system mode to be controlled and two groups of gener-
ators that swing against each other. Extensive simulations, on
detailed power system model, of different possible system con-
tingencies, can do this. Having identified these groups and with
the help of detailed system model one exactly proceeds as de-
scribed in this brief. Successful applications of OMIB transfor-
mation on French, Hydro-Quebec, Brazilian, and Mexican sys-
tems [25], give support to the claim that the methodology advo-
cated in the brief is applicable to real power systems. Moreover,

communication delays are more pronounced in real (geograph-
ically spread) systems and handling these delays is included in
the brief with the aim of strengthening methodology practicality.

VI. CONCLUSION

Recent advancements in RB and power electronics tech-
nology seems give a new momentum in RB application in
enhancing power system stability. The main advantage of auto-
matic control strategies capable to realize multiple insertions of
RB is that they permit use of less capacity RB and alleviate not
only the first swing but also the subsequent ones. In this brief,
a design of RB controller based on RL is considered with the
aim of enhancing damping of first and subsequent swings in
the system after large disturbances through multiple switching
operations of the RB. The control law flexibility, robustness,
and enlarging of the stability domain are demonstrated using
a synthetic four-machine power system. The results observed
qualify the proposed control as effective to handle the problem
considered.

Only constant transmission delays are considered. The fu-
ture work will include random delays and further improvements
along the theoretical results from [26].

APPENDIX

Power system dynamics in general is governed by the set
of differential-algebraic equations. For four-machine power
system the dynamics of the kth (k = 1,2,3,4) generator is
described by the following differential equations (2 equations
describe generator motion, 1 exciter, and 1 automatic voltage
regulator) [1]

Sk = Wk
Mywy, = P — Dywi — Pgy
7 nli _a;dk_a;ilk , Tk
Tdquk = ,—Vk cos(bx — Or) + Efar — e
] T o
TAEfdk = - Efdk + KA Vg (26)

where

1 ;o
,_E,/Ika sin(6x — 0x) — Ty —Tqk

V2 sin(2(85, — O
7 20 g F (2(8% — k)

Pgr=

T4k, d axis and the g axis synchronous reactances;

d axis and the ¢ axis transient reactances;

q axis internal voltage behind transient reactance;
d axis transient open-circuit time constant;
exciter voltage;

mechanical power input to the generator;
damping constant;

Vi voltage magnitude at the generator terminals;

fr  voltage angle at the generator terminals.
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For kth generator (k = 1,2,3,4) the following algebraic equa-
tions (power balance equations or stator equations derived from
basic Kirchhoff’s laws) can be written:

11 / :
E’, Vi sin(6y, — O
Pk = ZBk]Vk‘/j sin(ﬂk — 9]) + ak il ,( il k)
— Lk
1=1
Tk — Tk 2 .
V7 2(0 — Ok 27
+ 207 % sin(2(0x — 6k) (27)
11
Qk = — ZBkJVkV] COS(Hk — 0])
Jj=1

n Vk2 - E(llka COS(H]C — 5k)

Typ,
Ty, — Tak 12
Zdk — gk vy 200, — 6;) — 1 28
+ 20 s 2 [cos(2(0y — 6k) ] (28)
and for other system buses (i = 4,5,...,11)
11
7j=1
11
7=1

where P; is the active power and @); is the reactive power in-
jected into the system from bus ¢, while B;; depicts ¢j element
of the system admittance matrix (due to the high ratio of re-
actance to resistance, the transmission line resistances are ne-
glected in forming the admittance matrix).

Four variables are describing dynamics of each generator and
for four generators it gives 16 state variables. Power balance or
network equations are described by two variables per system
bus (voltage magnitude and angle) and for seven buses it gives
14 algebraic variables.
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