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SUMMARY

Discontinuous Galerkin methods provide a means of weakly enforcing the continuity of the unknown-

field derivatives and have particular appeal in problems involving high order derivatives. This feature

has previously been successfully exploited [L. Noels and R. Radovitzky, CMAME, 2008] to develop a

formulation of linear Kirchhoff-Love shells considering only the membrane and bending responses. In

this proposed one-field method - the displacements are the only unknowns, while the displacement field

is continuous, the continuity in the displacement derivative between two elements is weakly enforced by

recurse to a discontinuous Galerkin formulation. It is the purpose of the present paper to extend this

formulation to finite deformations and non-linear elastic behaviors. While the initial linear formulation

was relying on the direct linear computation of the effective membrane stress and effective bending

couple-stress from the displacement field at the mid-surface of the shell, the non-linear formulation

considered implies the evaluation of the general stress tensor across the shell thickness, leading to a

reformulation of the internal forces of the shell. Nevertheless, since the interface terms resulting from
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2 L. NOELS

the discontinuous Galerkin method involve only the resultant couple-stress at the edges of the shells,

the extension to non-linear deformations is straightforward. Copyright c© 2008 John Wiley & Sons,

Ltd.

key words: Kirchhoff-Love shell; discontinuous Galerkin method; non-linear elasticity; finite

deformations

1. INTRODUCTION

Kirchhoff-Love assumption for shells constrains the surface normal to remain perpendicular

to the shell. This omission of the shearing allows the formulation of the problem as a one-

field displacement method [1], but leads to weak formulations involving high order derivatives.

These high-order derivative terms require polynomial approximations of the displacement field

with the same degree of continuity, which, for finite-elements methods, corresponds to the use

of shape-functions fulfilling the high-order continuity requirements.

Although Zienkiewicz and Taylor [2] introduced C1 continuous elements, their shapes and

their numbers of degrees of freedom needed put serious limitations on their usability and

scalability. Therefore, alternative one-field displacement formulations were developed in the

general 3D-case. One solution developed for Kirchhoff-Love shells is the subdivision method

based on splines approximation of the surface [1, 3].

Another solution is to enforce weakly the high-order continuity requirements by recourse to

spatially-discontinuous Galerkin (DG) methods. This weak enforcement corresponds to allow

for jumps at the inter-element boundaries, while consistency and stability of the formulation are

ensured by boundary integral terms. If, in the context of solid mechanics, DG can be developed

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 00:1–1

Prepared using nmeauth.cls



DISCONTINUOUS GALERKIN FORMULATION OF NON-LINEAR SHELLS 3

for problems involving discontinuities in the unknown field, see [4] for linear elasticity, [5–8]

for non-linear elasticity and [9] for plasticity, it has also been exploited in the case of C0

displacement unknown fields, which suffer from discontinuities in their derivative. This method

has recently been exploited for applications to beams and plates [10–12] and for theories of

damage [13,14]. In the resulting one-field formulations, the jump discontinuities can be related

to the unknown fields and to their derivatives [11], or to the derivatives alone [10,12].

Following this idea of using such a continuous one-field formulation, we have recently

developed a discontinuous Galerkin formulation for linear Kirchhoff-Love shells [15]. In this

formulation, the unknown field is continuous, and the continuity in its derivative is weakly

ensured by recurse to a DG method. Toward this end, the membrane and bending responses

are considered, while the shearing is neglected. A similar approach has also been proposed

in [16], the main difference being the use of lifting operators in [16], while the discontinuous

Galerkin method is reduced to an interior penalty method in [15].

The kinematics of the shell is described within the framework in [17, 18], but the surface

normal is assumed to remain perpendicular to the shell. This omission of the shearing allows the

formulation of the problem as a one-field displacement method as it has been previously shown

in [1]. In this proposed formulation, while the displacement field is continuous, discontinuities

in the displacement derivative between two elements are accounted for by considering the

variation in their normal direction. Consistency, optimal convergence rate and stability are

ensured by the addition of the integration on the element-boundaries of respectively the

resultant moment, its symmetric counterpart and a (sufficiently large) quadratic term. In

particular, the convergence rate of the method in the energy norm has been shown to be one

order lower than the degree of the polynomial approximation used, and the convergence rate
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4 L. NOELS

in the L2-norm has been demonstrated to be one order higher than this polynomial degree,

which motivated the use of quadratic and cubic elements, [15].

This method was also shown to reduce locking inherent to finite-element discretizations,

especially for thin structures like beams, plates or shells, for which the locking results in

excessive stiffness when the membrane and bending modes are mixed. While this is generally

solved by considering reduced integration [19,20], or by using a mixed formulation sometimes

combined with enhanced assumed strains methods [17,18,21,22], it has been shown in [15] that

when considering 4-Gauss-point bi-cubic quadrangles or 16-Gauss-point bi-cubic quadrangles,

the formulation does not suffer from locking unless the stabilization parameter weighting

quadratic terms tends to infinity.

Naturally, this discontinuous Galerkin method for linear Kirchhoff-Love shells is now

extended to finite deformations and or finite displacements. Indeed, the formulation presented

in [15] is strictly linear, and even if the one presented in [16] accounts for finite displacements

and rotations, the method has not been extended yet to non-linear material behavior. The

present paper is therefore focusing on this extension.

Since finite deformations imply modification of the shell thickness, the starting point of the

developed method is the one of Simo et al. [23] who introduced the thickness ratio as a local

unknown. As in the linear case, the surface normal is assumed to remain perpendicular to

the shell, thus omitting shearing, which allows the formulation of the problem as a one-field

displacement method. The thickness ratio is determined on all through-the-thickness Simpson

points by stating a plane-stress state. The resulting stress field is therefore integrated, with a

Simpson rule, on the thickness to evaluate the resultant membrane and bending responses of

the shell.
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DISCONTINUOUS GALERKIN FORMULATION OF NON-LINEAR SHELLS 5

Integration by parts on each shell elements of the resulting equations leads to inter-element

boundary terms due to the discontinuities in the shell normal direction. After defining a

numerical flux to replace this boundary terms, symmetrising the equations and stabilizing

the formulation by recourse to quadratic interface terms in the jumps, a new discontinuous

Galerkin formulation is obtained, which, in the linear range, reduces to the formulation

proposed in [15].

The organization of the present paper is the following. In section 2 the continuum model

for a thin body experiencing finite deformations and/or displacements is described. Focus is

restricted to the case where shell normal remains perpendicular to the mid-surface during the

deformation process. Shearing arising from the shell-thickness deformation gradient is also

neglected. The resulting one-field discontinuous Galerkin weak formulation of this problem is

presented in section 3. Although this formulation is consistent for finite deformations, stability

and convergence rate are demonstrated under the restriction of linearization of the equations.

Indeed the when linearized the set of governing equations reduces to the linear formulation

previously proposed and therefore inherits its properties. In particular, the method is stable,

provided that a quadratic term is considered and that the stabilization parameter is larger

than a constant which depends only on the polynomial approximation, and on the element

shape. Moreover, for a polynomial approximation of degree k and assuming the exact solution

belongs to Hk+1, the convergence rate of the method in the energy norm, with respect to the

mesh-size, is equal to k−1. Under the same assumption, the convergence rate in the L2-norm,

is equal to k +1 if k > 2 and is quadratic for quadratic elements. This method is implemented

by recourse to interface elements integrating the inter-elements boundary terms, and numerical

examples illustrate the excellent behavior of the method in section 4. The numerical tests are
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6 L. NOELS

conventional applications for non-linear shells proposed in numerous publications, [24–33, e.g.].

Loading applied in this papers on the structure are the most dramatic that can be found in

this literature, which demonstrated the robustness of the method to capture accurately finite

deformations, and rotations.

2. CONTINUUM MECHANICS OF KIRCHHOFF-LOVE SHELLS

In this section, the kinematics of a thin body is described, with particular attention paid to the

case of the Kirchhoff-Love assumption, which neglects the shearing across the thickness. Under

this assumption, the governing equation of the body can be rewritten in terms of resultant

stress vectors and resultant torque vectors, which depend only on the deformation of the mid-

surface of the shell. Finally, a non-linear elastic behavior is considered and is developed in the

convected basis in order to ease the strict enforcement of the plane-stress assumed state.

2.1. Kinematics of the Kirchhoff-Love shell

[Figure 1 about here.]

A thin body can be described by considering its mid-surface section as a Cosserat plane A0

and a third coordinate, representing the thickness, and belonging to the interval [hmin0; hmax0].

Subscript 0 refers to the initial thickness of the shell. In the reference frame EI , this

representation is written ξ = ξIEI , with (ξ1, ξ2) ∈ A0 , ξ3 ∈ [hmin0; hmax0], for I = 1, 2, 3 .

Hereinafter, a subscript will be used to refer to values expressed in the considered basis, while

a superscript will be used to refer to values expressed in the conjugate basis. Of course, for

the initial frame, EI = EI . Roman letters as a subscript or superscript substitute for integers

between one and three, while Greek letters substitute for integers one or two.

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 00:1–1
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DISCONTINUOUS GALERKIN FORMULATION OF NON-LINEAR SHELLS 7

The representation of the body in the inertial frame is illustrated in Fig. 1. A configuration

S of the shell is described by using ϕ
(
ξ1, ξ2

)
the mapping of the mid-surface and by the unit

vector t, which is the director of the mid-surface (‖t‖ = 1). Therefore, the position x of the

points in this configuration S can be defined by the mapping x = Φ
(
ξI

)
= ϕ (ξα)+ξ3λht (ξα).

In this last equations, λh = hmax−hmin
hmax0−hmin0

corresponds to the thickness stretch of the shell

resulting from the Cosserat plane deformation. Its introduction follows the argumentation of

Simo et al. [23].

By convention, S refers to the current configuration of the shell, while the reference

configuration S0 is obtained by the mapping Φ0. The transformation χ = Φ ◦ Φ−1
0 between

these two configurations is characterized by the two-point deformation gradient

F = ∇Φ ◦ [∇Φ0]
−1

, (1)

with a positive Jacobian.

In this last relation, the tangent map ∇Φ can be evaluated as

∇Φ = gi ⊗Ei , with (2)

gα =
∂Φ
∂ξα

= ϕ,α + ξ3λht,α + ξ3tλh,α and g3 =
∂Φ
∂ξ3

= λht , (3)

defining the convected basis. This convected basis satisfies the relation gi = ∇ΦEi, and its

conjugate basis satisfies gi = ∇Φ−T Ei. Using these last results, the deformation gradient (1)

can be rewritten

F = ϕ,α ⊗ gα
0 + ξ3λht,α ⊗ gα

0 + λht⊗ g3
0 , (4)

where the gradient of the variation of thickness, accounted for by the term ξ3λh,αt ⊗ gα
0 has

been neglected. This gradient of thickness deformation would correspond to a shearing, and
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8 L. NOELS

can therefore be omitted, since this omission introduces an error of the same order as the

Kirchhoff-Love assumption. The Jacobian of this deformation mapping is denoted by

J = det (F) =
j

j0
, with j = det (∇Φ) = g3 · (g1 ∧ g2) , (5)

while the Jacobian related to the deformation of the mid-surface is computed by

J̄ =
j̄

j̄0
, with j̄ = ‖ϕ,1 ∧ϕ,2‖ . (6)

Since the particular case of Kirchhoff-Love shells corresponds to neglect shearing

deformations, the unit vector t remains always perpendicular to ϕ,α with

t =
ϕ,1 ∧ϕ,2

‖ϕ,1 ∧ϕ,2‖
. (7)

Finally, if eijk is the permutation tensor, the gradient of the unit vector (7) can be decomposed

into

t,α =
eβγ3

j̄
ϕβα ∧ϕγ −

t

j̄
eβγ3 (ϕ,βα ∧ϕ,γ) · t . (8)

2.2. Governing equations of the shell

Following [17, 18], the integration on the thickness of the Cauchy stress tensor σ leads to the

definition of

nα =
1
j̄

∫ hmax0

hmin0

σgαdet (∇Φ) dξ3 =
1
j̄

∫ hmax0

hmin0

τgαdet (∇Φ0) dξ3 , (9)

mα =
λh

j̄
t ∧

∫ hmax0

hmin0

ξ3σgαdet (∇Φ) dξ3 =
λh

j̄
t ∧

∫ hmax0

hmin0

ξ3τgαdet (∇Φ0) dξ3

= λht ∧ m̃α , and (10)

l =
1
j̄

∫ hmax0

hmin0

σg3det (∇Φ) dξ3 =
1
j̄

∫ hmax0

hmin0

τg3det (∇Φ0) dξ3 , (11)

respectively the resultant stress vector, the resultant torque vector and the resultant across-

the-thickness stress vector. For convenience when developing the material law behavior, see
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DISCONTINUOUS GALERKIN FORMULATION OF NON-LINEAR SHELLS 9

section 2.3, these last three equations have been rewritten in terms of the Kirchhoff stress

tensor τ = Jσ.

Therefore, the governing equations of a thin body are also obtained by integrating on the

thickness the equations of force and moment equilibrium, leading to

1
j̄

(j̄nα),α + nA0 = 0 on A0 and (12)

1
j̄

(j̄m̃α),α − l + λt + m̃A0 = 0 on A0 , (13)

where λ is an undefined pressure, where nA0 is the resultant external surface traction and

where m̃A0 is the resultant external torque by unit surface. The equations correspond to

respectively (94) and (105), which are established in appendix I. Terms nA0 and m̃A0 depend

both on the body force B and on the true physical surface tractions applied to the thin body

surfaces:

nA0 =
1
j̄

[(
σg3det (∇Φ)

)hmax0

hmin0
+

∫ hmax0

hmin0

ρ0

ρ
B det (∇Φ) dξ3

]
, and (14)

m̃A0 =
1
j̄

[(
ξ3σg3det (∇Φ)

)hmax0

hmin0
+

∫ hmax0

hmin0

ξ3 ρ0

ρ
B det (∇Φ) dξ3

]
. (15)

This set of governing equations is accompanied by boundary conditions applied on the

boundary ∂A0 of the mid-surface A0. This boundary ∂A0 is decomposed into a part ∂TA0

where the unit vector is constraint t̄ and into a part ∂MA0 where the applied torque is ¯̃m,

such that

t = t̄ ∀
(
ξ1, ξ2

)
∈ ∂TA0 , (16)

m̃ανα = ¯̃m ∀
(
ξ1, ξ2

)
∈ ∂MA0 , (17)

where ν = ναϕ,α is the external normal of the mid-surface boundary (in this last expression

ϕ,α denotes, with an abuse of notation, the conjugate basis to ϕ,α). This boundary ∂A0 is

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 00:1–1
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10 L. NOELS

also decomposed into a part ∂UA0 where the position ϕ̄ is known and into a part ∂NA0 where

the traction is constrained to n̄, with

ϕ = ϕ̄ ∀
(
ξ1, ξ2

)
∈ ∂UA0 , (18)

nανα = n̄ ∀
(
ξ1, ξ2

)
∈ ∂NA0 . (19)

The decomposition of the boundary satisfies

∂TA0 ∩ ∂MA0 = 0 and ∂TA0 ∪ ∂MA0 = ∂A0 , (20)

∂UA0 ∩ ∂NA0 = 0 and ∂UA0 ∪ ∂NA0 = ∂A0 . (21)

2.3. Constitutive behavior

The set of governing Eqs. (12-13, 16-19) is completed by a constitutive law relating the

deformation to the stresses. In this paper a non-linear elastic response is assumed. Toward

this end, an energy potential per unit undeformed volume W (C) is defined and depends only

on the right Cauchy tensor C = FT F. Owing to the existence of this internal potential, the

Kirchhoff stress tensor τ can be computed on the shell thickness by

τ =
∂W

∂F
FT = PFT , (22)

where P = ∂W
∂F is the first Piola-Kirchhoff stress tensor.

Since the shell assumption corresponds to a plane-stress state in the convected basis gi, it is

convenient to develop the constitutive model in this basis, see [3]. Toward this end, the right

Cauchy tensor and the Kirchhoff stress tensor are rewritten

C = gi · gj gi
0 ⊗ gj

0 = gij gi
0 ⊗ gj

0 , (23)

τ = τ ij gi ⊗ gj = 2
∂W

∂gij

gi ⊗ gj . (24)

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 00:1–1
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DISCONTINUOUS GALERKIN FORMULATION OF NON-LINEAR SHELLS 11

The main advantage of using the Kirchhoff stress tensor becomes obvious since the plane-stress

assumption is obtained by enforcing

τ33 = 2
∂W

∂g33

= 0 , (25)

all across the shell thickness.

Since λh,α is neglected and since the Kirchhoff-Love assumption leads to t,α · t = 0, the

deformation gradient (4) has no component along α3 and 3α in the convected basis. Therefore,

for elasticity, or J2-plasticity, the Kirchhoff stress reads

τ i3 = τ3i = 0 , (26)

and resultant vectors (9-11) can be rewritten

nα =
1
j̄

∫ hmax0

hmin0

τβαgβ det (∇Φ0) dξ3 , (27)

m̃α =
1
j̄

∫ hmax0

hmin0

ξ3τβαgβ det (∇Φ0) dξ3 , and (28)

l =
1
j̄

∫ hmax0

hmin0

τ i3gidet (∇Φ0) dξ3 = 0 . (29)

The evaluations of the resultant stress vectors (9) and resultant torque vectors (10) are

performed with a 11-point Simpson integration. At each Simpson point p, Newton-Raphson

iterations are performed on the local thickness stretch λp
h to obtain the correct deformation

gradient (4), which satisfies the plane stress requirement (25). The Kirchhoff stress tensor

(24) is thus computed at each Simpson point, leading to the resultant stress vectors (9) and

resultant torque vectors (10). Finally the global thickness stretch λh is obtained by the Simpson

integration on the 11 local values λp
h.

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 00:1–1
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12 L. NOELS

3. DISCONTINUOUS GALERKIN FORMULATION

In this section, a framework for numerical approximation of the shell equations described

above based on a C0 polynomial approximation of the unknown field ϕ is proposed. In this

formulation, the resulting discontinuity in the surface director t is accounted for using a new

discontinuous Galerkin formulation.

3.1. Weak formulation of the problem

At this point, the mid-surface A0 is approximated by a discretization Ah into finite-elements

Ae, with A0 ' Ah =
⋃

e Āe. In this last equation, Āe is the union of the open domain Ae with

its boundary ∂Ae. The boundary ∂Ae of an element Ae can be common with the boundary of

Ah, with

∂UAe = ∂Ae ∩ ∂UAh , ∂TAe = ∂Ae ∩ ∂TAh ,

∂MAe = ∂Ae ∩ ∂MAh , and ∂NAe = ∂Ae ∩ ∂NAh . (30)

The remaining part of the boundary ∂Ae is shared with another finite element and is part of

the interior boundary ∂IAh, with

∂IAe = ∂Ae\∂Ah
= ∂Ae ∩ ∂IAh , with ∂IAh =

⋃
e

∂Ae \∂Ah
. (31)

Instead of seeking the exact solution ϕ, a polynomial approximation ϕh ∈ Uk
h constitutes the

solution to the finite element problem. In this work, a continuous polynomial approximation

is considered, but the derivatives of the displacement field are allowed to be discontinuous

on the element boundaries, leading to the definition of the displacement manifold and of its
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DISCONTINUOUS GALERKIN FORMULATION OF NON-LINEAR SHELLS 13

constrained counterpart

Uk
h =

{
ϕh ∈ H1 (Ah) |ϕh|Ae∈Pk ∀Ae∈Ah

}
⊂ Uf (Ah) , (32)

Uk
hc =

{
δϕ ∈ Uk

h|δϕ|∂UA0=0

}
⊂ Uf

c (Ah) , (33)

with Uf (Ah) = C0 (Ah)
⋂ ∏

e H2 (Ae) for polynomial approximations k > 1 and with Uf
c (Ah)

=
{

δϕ ∈ Uf (Ah)|δϕ|∂UA0=0

}
.

The purpose of this section is to establish a weak form of the problem stated by the set of

Eqs. (12-13, 16-19) for an approximation ϕh ∈ Uk
h. Owing to the definition of this manifold, see

Eq. (32), the displacement field and the test functions are continuous across element-interfaces

but allow for jump discontinuities in their derivative, which has to be accounted for when

establishing the new weak form of the problem.

Multiplying Eq. (12) by a test function δϕ ∈ Uk
hc and Eq. (13) by the corresponding variation

of unit vector λhδt = λht (δϕ), state the problem as finding ϕh ∈ Uk
h such that

0 =
∑

e

∫
Āe

(j̄nα (ϕh)),α · δϕdA0 +
∫
Ah

nA0 · δϕj̄dA0 +

∑
e

∫
Āe

[
(j̄m̃α (ϕh)),α − j̄l

]
· δtλhdA0 +

∫
Ah

m̃A0 · δtλhj̄dA0 ∀δϕ ∈ Uk
hc . (34)

Integration by parts of these integrals followed by the application of the Gauss theorem leads

to

0 = −
∑

e

∫
Āe

j̄nα (ϕh) · δϕ,αdA0 +
∑

e

∫
∂Ae

j̄nα (ϕh) · δϕναdA0 +
∫
Ah

nA0 · δϕj̄dA0 −

∑
e

∫
Āe

j̄m̃α (ϕh) · (δtλh),α dA0 +
∑

e

∫
∂Ae

j̄m̃α (ϕh) · δtλhναdA0 −

∑
e

∫
Āe

j̄l · δtλhdA0 +
∫
Ah

m̃A0 · δtλhj̄dA0 ∀δϕ ∈ Uk
hc . (35)

In this previous equation, test functions have been chosen as λhδt, while the variations of

tδλh have been omitted. Indeed, although this variation could lead to a missing equation,
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14 L. NOELS

in this paper, this equation is substituted by the enforcement of the plane-stress assumption

while solving the constitutive model, see section 2.3. Variation δλh will therefore be omitted

in the remaining parts of this work.

When analyzing the boundary integrals in Eq. (35), it appears that the contribution

involving the scalar product with δϕ has the same meaning as for continuous Galerkin methods.

Indeed, since δϕ ∈ C0 (Ah), and since for the exact solution nα is also continuous, the following

substitution satisfies the consistency requirement:

∑
e

∫
∂Ae

j̄nα (ϕh) · δϕναdA0 →
∫

∂Ah

j̄nα (ϕh) · δϕναdA0 . (36)

By contrast, the contribution involving the tensorial product with δt requires particular

attention since it is discontinuous across interelement boundaries. Since only the C0 continuity

is ensured across ∂IAh, jump J•K and mean 〈•〉 operators are defined on the space of the trace

TR (∂IAh) =
∏

e L2 (∂IAe) of vectors that can take multiple values on this boundary, with

J•K = •+ − •− , and (37)

〈•〉 =
1
2

(
•+ + •−

)
. (38)

In these relations the bullets represent generic vector fields with

•+ = lim
ε→0+

•
(
ξ1 + εζ1, ξ2 + εζ2

)
and (39)

•− = lim
ε→0+

•
(
ξ1 − εζ1, ξ2 − εζ2

)
, (40)

where ζα are the components of the outer unit normal ζ of Ae in the basis Eα. These operators

lead to vectors that are now belonging to L2 (∂IAh). It is worth noticing that if definition (37)

of the jump operator is not independent of the choice of the + and − sides of an element edge,

when this jump is used in combination with the outward unit normal of the − element ν−,

the formulation becomes consistent and independent on this choice. Although jump and mean

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 00:1–1

Prepared using nmeauth.cls



DISCONTINUOUS GALERKIN FORMULATION OF NON-LINEAR SHELLS 15

operators are meaningful on the interior boundary ∂IA0, jump definition can be extended to

∂TA0 with

JtK = t̄− t, JδtK = −δt and 〈m̃α〉 = m̃α on ∂TA0 . (41)

From these definitions, the boundary term dependent on δt is rewritten

∑
e

∫
∂Ae

j̄m̃α (ϕh) · δtλhναdA0 =∫
∂Ah

j̄m̃α (ϕh) · δtλhναdA0 −
∫

∂IAh

Jj̄m̃α (ϕh) · δtλhK να
−dA0 . (42)

The main idea of the discontinuous Galerkin method is to address the con-

tribution of the inter-element discontinuity terms by introducing a numerical flux

h
(
(j̄λhm̃α)+ , (j̄λhm̃α)− , ν−α

)
, leading to the substitution

∫
∂IAh

Jj̄m̃α (ϕh) · δtλhK ν−α dA0 →
∫

∂IAh

JδtK · h
(
(j̄λhm̃α)+ , (j̄λhm̃α)− , ν−α

)
dA0 . (43)

In principle, there is a significant freedom in the choice of this flux, but only a few expressions

lead to stable and consistent formulation. These expressions have to verify

h (λhj̄m̃α, j̄λhm̃α, να) = λhj̄m̃αν−α and (44)

h
(
(j̄λhm̃α)+ , (j̄λhm̃α)− , ν−α

)
= −h

(
(j̄λhm̃α)− , (j̄λhm̃α)+ , ν+

α

)
, (45)

where j̄λhm̃α is the exact continuous solution. In this paper, the following expression is

adopted

h
(
(j̄λhm̃α)+ , (j̄λhm̃α)− , ν−α

)
= ν−α 〈j̄λhm̃α〉 . (46)

Combining Eqs. (36) to (46) allows rewriting the weak form (35) as finding ϕh ∈ Uk
h such
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16 L. NOELS

that

∫
Ah

j̄nα (ϕh) · δϕ,αdA0 +
∫
Ah

j̄m̃α (ϕh) · (δtλh),α dA0 +
∫
Ah

j̄l · δtλhdA0 +∫
∂IAh∪∂TAh

JδtK · 〈j̄λhm̃α〉 ν−α d∂A0 =
∫

∂NAh

j̄n̄ · δϕdA0 +
∫

∂MAh

j̄ ¯̃m · δtλhdA0 +∫
Ah

nA0 · δϕj̄dA0 +
∫
Ah

m̃A0 · δtλhj̄dA0 ∀δϕ ∈ Uk
hc , (47)

where the boundary conditions (17) and (19), and the definition (33) have been used.

The weak enforcement of the continuity of t (ϕh) on ∂IAh ∪ ∂TAh is obtained by similar

argumentation, which results into

∫
∂IAh∪∂TAh

Jt (ϕh)K · h
(
δ (j̄λhm̃α)+ , δ (j̄λhm̃α)− , ν−α

)
d∂A0 = 0 . (48)

In this last expression, δ (j̄λhm̃α) has to be defined. As it has been demonstrated in previous

works for non-linear solid mechanics [6,7,9], this expression would actually depend on tangent

moduli of the constitutive models since expression (10) leads to

δ (j̄m̃α) =
∫ hmax0

hmin0

ξ3δ
(
PFT gα

)
det (∇Φ0) dξ3 =

∫ hmax0

hmin0

ξ3 ∂P
∂F

gα
0 ⊗ δFdet (∇Φ0) dξ3

=
∫ hmax0

hmin0

ξ3 ∂P
∂F

gα
0 ⊗

(
δϕ,α ⊗ gα

0 + ξ3λhδt,α ⊗ gα
0 + λhδt⊗ g3

0

)
det (∇Φ0) dξ3 .

(49)

But, since the purpose of this term is to ensure that Eq. (48) is energetically consistent with

(47), another form of the flux can be chosen, as long as the consistency condition remains

satisfied. Ideally this term should, when linearized, lead to a symmetric formulation and to the

same expression as the one proposed for linear elasticity [15]. An obvious choice is to consider

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 00:1–1

Prepared using nmeauth.cls



DISCONTINUOUS GALERKIN FORMULATION OF NON-LINEAR SHELLS 17

the elastic behavior proposed in [23] for elasticity with finite deformations, yielding

δ (j̄λhm̃α) = δ
(
j̄λhm̃αβϕ,β + j̄λ2

hm̃3αt
)

= j̄0Hαβγδ
m (δϕ,γ · t,δ + ϕ,γ · δt,δ) ϕ,β + j̄λhm̃α ·ϕ,β δϕ,β +

j̄0
7 ∗ E ∗ (hmax − hmin)3

240 (1 + ν)
ϕ,α

0 ·ϕ,β
0

(
δλh

λh

)
,β

t + j̄λ2
hm̃3αδt , (50)

where m̃αβ and m̃3α are respectively the components of m̃α along ϕ,β and t/λh, where

j̄λhm̃α ·ϕ,β δϕ,β , and j̄λhm̃3αδt are the geometric parts of the linearization, and where

Hαβγδ
m =

E (hmax − hmin)3

12 (1− ν2)

[
νϕ,α

0 ·ϕ,β
0 ϕ,γ

0 ·ϕ,δ
0 +

1
2

(1− ν) ϕ,α
0 ·ϕ,γ

0 ϕ,δ
0 ·ϕ,β

0 +

1
2

(1− ν) ϕ,α
0 ·ϕ,δ

0 ϕ,γ
0 ·ϕ,β

0

]
(51)

is the linearized bending stiffness. It bears emphasizes that for a complex material behavior,

in this last expression, the Young modulus E as well as the Poisson’s ratio ν are the equivalent

values obtained at the current state of deformation. As it as been pointed out in [9], the

stiffness matrix at the current state of deformation cannot be used, as for perfectly plastic

behavior it would lead to vanishing terms. Therefore linearization (50) is not only a efficient

simplification as it reduces the computational cost, but it also prevent from instabilities for

such material behaviors.

Moreover, since λh,β has been neglected in the constitutive law, see equation (4), the last

two terms of (50) related to m̃3α are omitted. Therefore, using the flux definition (46), the sum

of the weak forms (47) and (48) leads to the new statement of the problem, which is finding
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18 L. NOELS

ϕh ∈ Uk
h such that

∫
Ah

j̄nα (ϕh) · δϕ,αdA0 +
∫
Ah

j̄m̃α (ϕh) · (δtλh),α dA0 +
∫
Ah

j̄l · δtλhdA0 +∫
∂IAh∪∂TAh

JδtK · 〈j̄λhm̃α〉 ν−α d∂A0 +
∫

∂IAh∪∂TAh

Jt (ϕh)K ·

〈
j̄0Hαβγδ

m (δϕ,γ · t,δ + ϕ,γ · δt,δ) ϕ,β + j̄λhm̃α ·ϕ,β δϕ,β

〉
ν−α d∂A0

=
∫

∂NAh

j̄n̄ · δϕdA0 +
∫

∂MAh

j̄ ¯̃m · δtλhdA0 +∫
Ah

nA0 · δϕj̄dA0 +
∫
Ah

m̃A0 · δtλhj̄dA0 ∀δϕ ∈ Uk
hc . (52)

Although this formulation is consistent - consistency results from the introduction of

consistent fluxes -, the stability is not ensured. Indeed, linearization of formulation (52) leads

to an expression similar to the one obtained for linear elasticity in [15] but for a quadratic term,

which only appears in [15]. This quadratic term depends on a stabilization parameter β that

has to be chosen large enough to lead to a stable weak statement of the problem. Therefore,

after adding such a contribution, the final weak statement of the problem is finding ϕh ∈ Uk
h

such that

∫
Ah

j̄nα (ϕh) · δϕ,αdA0 +
∫
Ah

j̄m̃α (ϕh) · (δtλh),α dA0 +
∫
Ah

j̄l · δtλhdA0 +∫
∂IAh∪∂TAh

JδtK · 〈j̄λhm̃α〉 ν−α d∂A0 +
∫

∂IAh∪∂TAh

Jt (ϕh)K ·

〈
j̄0Hαβγδ

m (δϕ,γ · t,δ + ϕ,γ · δt,δ) ϕ,β + j̄λhm̃α ·ϕ,β δϕ,β

〉
ν−α d∂A0∫

∂IAh∪∂TAh

Jt (ϕh)K ·ϕ,β

〈
βj̄0Hαβγδ

m

hs

〉
JδtK ·ϕ,γν−α ν−δ d∂A0

=
∫

∂NAh

j̄n̄ · δϕdA0 +
∫

∂MAh

j̄ ¯̃m · δtλhdA0 +∫
Ah

nA0 · δϕj̄dA0 +
∫
Ah

m̃A0 · δtλhj̄dA0 ∀δϕ ∈ Uk
hc . (53)
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DISCONTINUOUS GALERKIN FORMULATION OF NON-LINEAR SHELLS 19

3.2. Numerical properties

Weak formulation (53) of the problem inherits consistency from its construction based on

the use of consistent numerical fluxes (46). Indeed, if ϕ ∈ H4 (Ah) is the exact solution of

the physical problem, it belongs to C2 (Ah), which implies, via (7), that JtK = 0 on ∂IA0, as

opposed to JδtK, and so for t,α and j̄. On the external boundary ∂TA0, JtK = t̄ − t = 0 and

JδtK = −δt. Moreover, the resultant stress vectors nα and mα, as well as the thickness ratio λh

of the exact solution are continuous across inter-element boundaries, which allows to rewrite

the weak form (53) as

∫
Ah

j̄nα · δϕ,αdA0 +
∫
Ah

j̄m̃α · (δtλh),α dA0 +
∫
Ah

j̄l · δtλhdA0 +∫
∂IAh∪∂TAh

JδtK · j̄λhm̃αν−α d∂A0 =
∫

∂NAh

j̄n̄ · δϕdA0 +
∫

∂MAh

j̄ ¯̃m · δtλhdA0 +∫
Ah

nA0 · δϕj̄dA0 +
∫
Ah

m̃A0 · δtλhj̄dA0 ∀δϕ ∈ Uk
hc . (54)

After integration by parts, on each element Ae, of the two first terms, this expression develops

as

∫
∂NAh

j̄nα · δϕναd∂A0 −
∫

∂IAh∪∂TAh

j̄nα · JδϕK ν−α d∂A0 −
∫
Ah

(j̄nα),α · δϕdA0 +∫
∂MAh

j̄m̃α · δtλhναd∂A0 −
∫

∂IAh∪∂TAh

j̄m̃α · JδtKλhν−α d∂A0 −∫
Ah

(j̄m̃α)α · δtλhdA0 +
∫
Ah

j̄l · δtλhdA0 +
∫

∂IAh∪∂TAh

JδtK · j̄λhm̃αν−α d∂A0 =∫
∂NAh

j̄n̄ · δϕdA0 +
∫

∂MAh

j̄ ¯̃m · δtλhdA0 +∫
Ah

nA0 · δϕj̄dA0 +
∫
Ah

m̃A0 · δtλhj̄dA0 ∀δϕ ∈ Uk
hc , (55)
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where the definition (33) has been used. Since JδϕK = 0, Eq. (55) corresponds to the weak

form of the set of equations

(j̄nα),α + j̄nA0 = 0 in Ah , (56)

(j̄m̃α)α − j̄l + j̄m̃A0 = λ1t in Ah , (57)

¯̃m = mανα + λ2t on ∂MAh , (58)

n̄ = nανα on ∂NAh , (59)

which correspond respectively to the governing equations (12), (13), (17) and (19), up to

undefined values λi. Consistency of the weak formulation (53) is then ensured in the non-

linear range.

Unfortunately, demonstration of the stability and convergence rate requires a linearization

of the equations. Indeed, the internal forces resulting from the use of the general constitutive

behavior described in section 2.3, do not generally lead to stability. This behavior has been

shown in [34] for solid mechanics (not related to DG methods or shell description). Therefore

new algorithms defining new stress tensors have been developed in the last 15 years to address

this issue, see [34–36] among others. These developments are beyond the scope of the present

work, and it is assumed, as for solid elements, that if the linearized form is stable, the non-linear

extension is stable enough to conduct simulations.

To demonstrate the stability of the linearized form, new definitions are introduced, see [23]

for details. First, the gradient of the unit vector is decomposed into the mid-surface convected

basis as

(λht),α = λµ
αϕ,µ + λ3

αλht . (60)
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Since λh,α is neglected, and since t,α · t = 0, this last relation can be simplified into

t,α =
λµ

α

λh
ϕ,µ and λ3

α = 0 . (61)

Similarly, in order to define the stress components, the resultant stress vectors are decomposed

in this mid-surface convected basis, as

nα = nαβϕ,β + qαλht , (62)

m̃α = m̃αβϕ,β + m̃3αλht , and (63)

l = lαϕ,α + l3λht . (64)

At this stage, nαβ and qα are still coupled with the bending of the shell [17]. However, since

σ is symmetric, expression (103) established in appendix I, which is

nα ∧ϕ,α + m̃α ∧ (λht),α + l ∧ λht = 0 , (65)

holds, and can be satisfied by enforcing the symmetry of the effective membrane stress resultant

tensor, i.e.:

ñαβϕ,α ⊗ϕ,β = nα ⊗ϕ,α + l⊗ λht− (λht),α ⊗ m̃α = ñαβϕ,β ⊗ϕ,α . (66)

From (61) and (66), effective membrane stress resultant ñij can be obtained by

ñαβ = nαβ − λβ
µm̃αµ = ñβα , (67)

ñ3α = qα − λ3
µm̃αµ = q̃α , (68)

ñα3 = lα − λα
µm̃3µ = l̃α = q̃α , and by (69)

ñ33 = l3 − λ3
µm̃3µ = l̃3 , (70)

which are respectively the membrane effective stresses, effective transverse shear, effective

symmetric shear and effective across-the-thickness stress.
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Since plane stress is assumed, since Kirchhoff-Love shells are considered, and since the

shearing resulting from λh,α is neglected, the set of Eqs. (27-29) holds and

ñ3α = q̃α = l̃α = ñ33 = l̃3 = 0 . (71)

Remaining components for a linear material are written, see [23], as

ñαβ =
E (hmax − hmin) j̄0

(1 + ν) j̄

[(
ν

1− 2ν
ϕ,α

0 ·ϕ,β
0 ϕ,γ

0 ·ϕ,δ
0 +

1
2
ϕ,α

0 ·ϕ,γ
0 ϕ,β

0 ·ϕ,δ
0 +

1
2
ϕ,α

0 ·ϕ,δ
0 ϕ,β

0 ·ϕ,γ
0

) (
1
2
ϕ,γ ·ϕ,δ −

1
2
ϕ0,γ ·ϕ0,δ

)
+

ν

1− 2ν
ϕ,α

0 ·ϕ,β
0 ε33

]
, (72)

m̃αβ =
j̄0

λhj̄
Hαβγδ

m (ϕ,γ · t,δ −ϕ0,γ · t0,δ) . (73)

Deformation ε33 is computed from the plane stress assumption, and corresponds to ε33 =

− ν
1−ν ϕ,α

0 ·ϕ,β
0

(
1
2ϕ,γ ·ϕ,δ − 1

2ϕ0,γ ·ϕ0,δ

)
, which allows to simplify expressions (72-73) into

ñαβ =
j̄0
j̄
Hαβγδ

n

(
1
2
ϕ,γ ·ϕ,δ −

1
2
ϕ0,γ ·ϕ0,δ

)
, (74)

m̃αβ =
j̄0

λhj̄
Hαβγδ

m (ϕ,γ · t,δ −ϕ0,γ · t0,δ) , (75)

where

Hαβγδ
n =

E (hmax − hmin)
(1− ν2)

[
νϕ,α

0 ·ϕ,β
0 ϕ,γ

0 ·ϕ,δ
0 +

1
2

(1− ν) ϕ,α
0 ·ϕ,γ

0 ϕ,δ
0 ·ϕ,β

0 +

1
2

(1− ν) ϕ,α
0 ·ϕ,δ

0 ϕ,γ
0 ·ϕ,β

0

]
(76)

and where Hαβγδ
m is defined by (51).

All the terms of the weak form (53) can be rewritten after using Eqs. (61 -76), assuming

small displacements

ϕh = ϕ0 + uh , (77)
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and neglecting all quadratic terms. It successively yields

∫
Ah

j̄nα · δϕ,αdA0 =
∫
Ah

j̄ñαβϕ0,β · δu,αdA0 +
∫
Ah

j̄m̃αµλβ
µϕ0,β · δu,αdA0

=
∫
Ah

j̄ñαβϕ0,β · δu,αdA0 +
∫
Ah

j̄m̃αβλht0,β · δu,αdA0

=
∫
Ah

j̄0
1
4

(
ϕ0,γ · uh,δ + ϕ0,δ · uh,γ

)
Hαβγδ

n (ϕ0,βδu,α + ϕ0,αδu,β) dA0

+
∫
Ah

j̄0
(
uh,γ · t0,δ + ϕ0,γ ·∆t,δ

)
Hαβγδ

m t0,β · δu,αdA0 , (78)

∫
Ah

j̄m̃α · (δtλh),α dA0 =
∫
Ah

j̄λhm̃αβϕ0,β · δt,αdA0

=
∫
Ah

j̄0
(
uh,γ · t0,δ + ϕ0,γ ·∆t,δ

)
Hαβγδ

m ϕ0,β · δ∆t,αdA0 ,(79)

∫
∂IAh∪∂TAh

JδtK · 〈j̄λhm̃α〉 ν−α d∂A0 =
∫

∂IAh∪∂TAh

Jδ∆tK ·
〈
j̄λhm̃αβϕ0,β

〉
ν−α d∂A0 =∫

∂IAh∪∂TAh

Jδ∆tK ·
〈
j̄0Hαβγδ

m

(
uh,γ · t0,δ + ϕ0,γ ·∆t,δ

)
ϕ0,β

〉
ν−α d∂A0 , (80)

∫
∂IAh∪∂TAh

JtK ·
〈
j̄0Hαβγδ

m (δϕ,γ · t,δ + ϕ,γ · δt,δ) ϕ,β + j̄λhm̃α ·ϕ,β δϕ,β

〉
ν−α d∂A0

=
∫

∂IAh∪∂TAh

J∆tK ·
〈
j̄0Hαβγδ

m (δu,γ · t0,δ + ϕ0,γ · δ∆t,δ) ϕ0,β

〉
ν−α d∂A0 , and to (81)

∫
∂IAh∪∂TAh

JtK ·ϕ,β

〈
βj̄0Hαβγδ

m

hs

〉
JδtK ·ϕ,γν−α ν−δ d∂A0 =∫

∂IAh∪∂TAh

J∆tK ·ϕ0,β

〈
βj̄0Hαβγδ

m

hs

〉
Jδ∆tK ·ϕ0,γν−α ν−δ d∂A0 , (82)

where ∆t = t− t0. Using these last relations, the weak formulation (53) can be linearized to

a bilinear form, which is finding uh ∈ Uk
h such that

a (uh, δu) = b (δu) ∀δu ∈ Uk
hc , (83)
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where

a (uh, δu) =∫
Ah

(
1
2
ϕ0,γ · uh,δ +

1
2
uh,γ ·ϕ0,δ

)
Hαβγδ

n

(
1
2
ϕ0,α · δu,β +

1
2
ϕ0,β · δu,α

)
j̄0dA0 +∫

Ah

(
ϕ0,γ ·∆t (uh),δ + uh,γ · t0,δ

)
Hαβγδ

m

(
ϕ0,α · δ∆t (u),β + δu,α · t0,β

)
j̄0dA0 +∫

∂IAh∪∂Ah

J∆t (uh)K ·
〈
ϕ0,γHαβγδ

m

(
ϕ0,α · δ∆t (u),β + δu,α · t0,β

)
j̄0

〉
ν−δ d∂A0 +

∫
∂IAh∪∂Ah

Jδ∆t (u)K ·
〈
ϕ0,γHαβγδ

m

(
ϕ0,α ·∆t (uh),β + uh,α · t0,β

)
j̄0

〉
ν−δ d∂A0 +

∫
∂IAh∪∂Ah

β

hs
Jδ∆tK ·ϕ0,γν−δ

〈
Hαβγδ

m j̄0
〉
J∆t (uh)K ·ϕ0,αν−β d∂A0 , (84)

and where

b (δu) =
∫
Ah

(
nA0 · δu + m̃A0 · δ∆t

)
j̄0dA0 +∫

∂NAh

n̄ · δuj̄0d∂A0 +
∫

∂MA0

¯̃m · δ∆tj̄0d∂A0 , (85)

which corresponds to the formulation proposed for linear elasticity in [15]. Although in this

work symmetry and stability terms have been added to the weak form, leading to an interior

penalty method, which prevents the formulation of being derived from a functional as it is the

case with linear shells [15], it is worth noticing that the linearized forms correspond to each

other. The present formulation inherits therefore, in the linear range, the properties of the

former. In particular, stability is ensured if the stability parameter β is larger than a constant

depending on the polynomial approximation k, and on the element shape. Assuming the exact

solution belongs to Hk+1, the convergence rate of the method in the energy norm, with respect

to the mesh-size, is equal to k−1, which justifies the use of quadratic or higher order elements.

Under the same assumption, the convergence rate in the L2-norm, is equal to k + 1 if k > 2

and is quadratic for quadratic elements.
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In the non-linear range, these properties are also expected. Let us note that the somehow

artificial introduction of symmetry and stability terms, based on a constant Hooke tensor, is

justified by the fact these terms cannot vanish with non-linear materials (e.g. perfectly plastic

materials), which could be the case when using lifting operators as it was discussed in [9].

Similar results have also been obtained for linear Kirchhoff plates, see [10,12].

As it is shown in the following section, these properties are still observed on numerical

examples involving large deformations, but they cannot be demonstrated.

4. NUMERICAL APPLICATIONS

The discontinuous Galerkin formulation presented in section 3 is implemented by recourse to

interface elements. These interfaces elements are inserted between two adjacent shell elements

and integrate the 3 interface contributions. Implementation of this interface element closely

follows the one described for linear elasticity [15] and is not repeated here.

In particular, two kinds of elements are considered:

• 9-node bi-quadratic quadrangles with 4-Gauss-point reduced integration;

• 16-node bi-cubic quadrangles with 16-Gauss-point full integration.

Indeed, if quadratic elements require EAS or reduced integration to avoid locking, cubic

elements do not suffer from this limitation.

In this work, a neo-Hookean model is considered, with

W =
(

K0

2
− G0

3

)
log2 J −G0 log J +

G0

2
(trC− 3) , (86)

where K0 and G0 are respectively the bulk and shear moduli. Therefore, the components of
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the Kirchhoff tensor (24) in the convected basis becomes

τ ij =
(

K0 −
2
3
G0

)
log J gi · gj −G0

(
gi · gj − gi

0 · g
j
0

)
. (87)

The corresponding tangent moduli is written

Cijkl =
(

K0 −
2
3
G0

)
gi · gj gk · gl −[(

K0 −
2
3
G0

)
log J −G0

] (
gi · gk gj · gl + gi · gl gj · gk

)
. (88)

Finally, it is assumed that the forces are applied on the mid-surface of the shell, see [23] for

discussion.

4.1. Pinched open hemisphere

[Figure 2 about here.]

[Table 1 about here.]

This classical example, proposed in [37], consists into an open hemisphere, with radius R,

thickness t, and an opening of a spherical sector angle θ. It is subjected to radial loads P

applied on two diametral directions, see Fig. 2a. The load is compressive in the y-direction

and tensile in x-direction. One quarter of the structure is modeled exploiting the symmetries

of the problem. Analytical deflection under the loads can be computed analytically for small

deformations (|δx| = |δy| = 0.093 [m ·N−1] P
2 .), while numerical tests have been performed for

large deformations, see [24,26,27,29–31,33, e.g.] for the geometry reported in Table I. Among

these references, 2 converged for the maximum loading or 800 N:

• The mixed Enhanced Assumed Strains formulation proposed by Bischoff and Ram [26]

and applied to 4 and 9-node quadrangles. This formulation uses 6 degrees of freedom per
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node (3 displacements, 2 rotations and the thickness).

• The mixed formulation based on mid-side rotations proposed by Areias et al. [33]. This

formulation is based on the Kirchhoff-Love assumption as for the present formulation.

The solution obtained by this method with 24 elements on each side is the reference used

to assess the accuracy of the proposed DG method.

[Figure 3 about here.]

This simulation is computed using the proposed discontinuous Galerkin formulation with

9-node bi-quadratic and 16-node bi-cubic elements. Even if due to the hemispheric shape

a regular mesh leads to distorted element, this aspect is emphasized by considering the so

called distorted mesh. It consists into quadrangular elements with spacing between two nodes

following a regular progression. So along curves parallel to plane xOy, 2 consecutive nodes near

plane xOz are localized at a distance twice smaller than 2 consecutive nodes near plane yOz.

Nodes on a meridian obey to a similarly distribution and 2 consecutive nodes near the 18o hole

are localized at a distance twice smaller than 2 consecutive nodes near plane xOy. The purpose

of such a mesh is to demonstrate that the method does not suffer from locking when elements

are distorted. Final deformed configurations for regular and distorted cubic elements are shown

in Figure 2b and c respectively, while the displacement evolutions of nodes A and B in terms of

the applied load are illustrated on Figure 3. It can be seen that the method always converges

for the maximum loading, and that it does not suffer from locking even with a distorted mesh.

On the contrary, since the mesh size is reduced near node A, which experiences the larger

bending deformation, the distorted mesh leads to a better approximation of the solution. The

results obtained with 8 cubic elements on each side are compared to results obtained with
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12 quadratic elements on each side, which leads to the same number of node on an edge.

It is observed than quadratic elements reach a slightly better approximation of the solution.

Finally, it is observed, as expected, than, contrarily to linear elasticity, the displacements of

node A and B are not equal, except in the range of small deformations (P < 10 N).

[Figure 4 about here.]

[Figure 5 about here.]

Influences of the stabilization parameter and of the mesh size on the results are also studied.

In order to ensure convergence of the simulations for a wide range of, not necessarily optimal,

parameters, the loading considered is P = 400 N, or half the previously used one, which still

leads to large deformations and rotations. Figure 4a illustrates the displacements of point A

and B for a stabilization parameter β belonging to the range [1; 104], and for two different

meshes; the first mesh has 8 bi-cubic quadrangles on each side, and the second mesh has 12

bi-cubic quadrangles on each side, which leads to the same number of nodes in both cases. As

the linear theory is predicting it, see [15], the solution is stable only when β is larger than a

polynomial-degree dependent constant. Indeed, as long as β is larger than 100 for quadratic

elements and larger than 10 for cubic elements, the solution is stable and the influence of the

stabilization parameter is limited to less than 1 %. As it is shown in Figure 4b, the mesh size

dependency is more dramatic. During this study, two mesh evolutions are considered. First,

2, 4, 8, 16 and 20 bi-cubic and then 3, 6, 12 and 24 bi-quadratic elements on each side are

successively used, and for a constant stabilization parameter β = 102. In both cases, if the

coarsest meshes capture only 70% of the deformations, the solutions always convergence when

the mesh size is reduced. Accordingly to the linear theory, the convergence rate in this L2-norm
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is one degree higher than the polynomial approximation for cubic elements and is quadratic

for quadratic elements, as illustrated by Figure 5.

4.2. Thin plate ring

[Figure 6 about here.]

[Table 2 about here.]

This example was first proposed in [24] and consists into a thin plate ring, with inner radius

Ri, outer radius Re and thickness t, with the geometry reported in Table II. This ring is cut

along a radius AB, and, on one side of this cutting, the plate is clamped, while a uniform

vertical loading q is applied on the other side, see Figure 6a. This test has widely been used

in the literature, see [25, 28, 30, 33, e.g.] to compare shells formulations when large rotations

arise.

[Figure 7 about here.]

This simulation is computed using the proposed discontinuous Galerkin formulation applied

to 9-node bi-quadratic elements. The final deformed configuration is illustrated in Figure 6b,

and the displacement evolutions of nodes A and B located at the cutting are shown in Figure

7. Although the mesh experiences large distortion during the deformation process, the solution

is in good agreement with the ones obtained in the literature, and in particular with:

• The hybrid stress formulation proposed by Sansour and Kollmann [30], for whom results

are displayed for q <3000 N·m−1 (which the maximum loading considered in this

reference).
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• The mixed formulation based on mid-side rotations proposed by Areias et al. [33], which

converges for an applied linear force reaching 12000 N·m−1.

4.3. Clamped cylinder

[Figure 8 about here.]

[Table 3 about here.]

This example consisting into a thin cylinder, with radius R, length L and thickness t, clamped

at one extremity and pinched at the other one by two diametral opposite forces P applied on

point A, see Figure 8a. This test has been considered by several authors, see [31–33, e.g.],

for the geometry reported in Table III. The solution obtained with the present formulation

is compared to the computational results obtained in [31], with 5-degree of freedom per node

linear shells, for a maximum loading of 1.6 kN.

[Figure 9 about here.]

Simulation was first conducted with 12 bi-quadratic quadrangles on each edge and for the

stabilization β = 102. Deformations obtained for P = 400, 752, 800, 1200 and 1600 N, are

respectively reported in Figures 8b-f. Particularly, for P = 752 N the two free edges of the

cylinder enter into contact. Although, the remaining part of the simulation is no longer physical,

it is usually conducted [31,33] in order to demonstrate the robustness of the method. Evolution

of point A displacement with respect to the loading is shown in Figure 9 and is compared to

a simulation using 8 bi-cubic quadrangles on each side, which leads to the same number of

degrees of freedom. Both results are comparable to the reference [31], which demonstrates the

accuracy of the new formulation and its ability to capture complex state of deformation.
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5. CONCLUSIONS

A generalization to finite deformations of the discontinuous Galerkin formulation of linear

Kirchhoff-Love shells presented previously in [15] has been developed.

Toward this end, the shell kinematics proposed by Simo et al. [23], which introduces the

thickness ratio, is simplified by neglected geometrical shearing resulting from the misalignment

of the shell section with the shell normal, but also by neglecting shearing resulting from the

deformation gradient in the shell thickness. With these assumptions, the equations governing

the shell motion can be stated in terms of the displacement field only.

The thickness stretch is computed by assuming a plane-stress state all along the shell

thickness. Numerical integration of the resulting stress tensor on the thickness is achieved by

recourse to a Simpson rule, and leads to the resultant membrane and bending stress vectors,

which constitute the bases to establish the new weak formulation of the problem.

When establishing this weak form, the discontinuities in the displacement derivative between

two elements are accounted for by considering the variation in their normal direction, leading

to inter-element boundary terms in the resulting discontinuous Galerkin weak formulation of

Kirchhoff-love shells.

After linearization of this new formulation, the set of equations reduces to the linear DG

method developed in the linear range, in which case, it has been demonstrated that these

interface terms ensure consistency, optimal convergence rate and stability of the method. In

the non-linear range, only consistency can be rigorously demonstrated, but the other numerical

properties are observed on numerical examples

Numerical examples, involving large deformations and large rotations are performed

by considering 9-node, 4-Gauss-point bi-quadratic and 16-node, 16-Gauss-point bi-cubic
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quadrangular shell elements. Agreement to results of the literature is excellent, and the method

has been shown to converge for the most severe loading used for other shell formulations.

The one-field formulation presented herein is particularly appealing and should constitute a

advantage as more complex material behaviors, involving plasticity, will be considered in the

forthcoming works.
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APPENDIX

I. THE MOMENTUM EQUATIONS

The resultant form of the momentum equations are established following argumentation in [17],

but, in section changes in the shell thickness are considered.

Toward this end, the local linear momentum equation

∇ · σ + B = 0 in S (89)

is integrated on the current configuration of the shell S, leading, after using the divergence

theorem, to ∫
∂S

σn̂ d∂S +
∫
S

B dS = 0 , (90)

where n̂ is the normal of the body in the current configuration. Nanson formula, which reads

n̂d∂S = j [∇Φ]−T
N̂dΓ, where Γ is the boundary of A0 × [hmin0; hmax0], and N̂ its outer

normal, allows to rewrite (90) as∫
∂(A0×[hmin0; hmax0])

jσ [∇Φ]−T
N̂ d∂Γ +

∫
A0×[hmin0; hmax0]

ρ0

ρ
B dA0 dξ = 0 . (91)

Since N̂ = ν on the lateral surfaces and N̂ = ±E3 on the top and bottom surfaces, this last

relation becomes ∫
∂A00

∫ hmax0

hmin0

jσgα dξ3να d∂A0 +
∫
A0

[
jσg3

]hmax0

hmin0
dA0 +∫

A0×[hmin0; hmax0]

ρ0

ρ
B dA0 dξ = 0 . (92)

Using definitions (9) and (14), and applying Gauss theorem, the resulting form of the linear

momentum equation becomes∫
∂A0

[
(j̄nα),α + j̄nA0

]
dA0 = 0 , (93)

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 00:1–1

Prepared using nmeauth.cls



DISCONTINUOUS GALERKIN FORMULATION OF NON-LINEAR SHELLS 37

which, owing to the arbitrary choice of A0
† leads to

1
j̄

(j̄nα),α + nA0 = 0 on A0 . (94)

The same technique is used on the local angular momentum equation

Φ ∧∇ · σ + Φ ∧B = 0 in S , (95)

which is also integrated on the current configuration of the shell S, leading to∫
S
Φ ∧ (∇ · σ) d∂S +

∫
S
Φ ∧B dS = 0 , (96)

which becomes, after applying divergence theorem, and if eijk is the permutation tensor:

0 =
∫
S

eijkΦj∇lσkl d∂S +
∫
S
Φ ∧B dS

=
∫
S

eijk∇l (Φjσkl) d∂S −
∫
S

∇lΦjeijkσkl d∂S +
∫
S
Φ ∧B dS

=
∫

∂S
Φ ∧ (σn̂) d∂S +

∫
S
Φ ∧B dS , (97)

since σ is symmetric. Using teh definition of Φ, and following previous developments, this last

relation is rewritten∫
∂A0

ϕ ∧
∫ hmax0

hmin0

jσgα dξ3να d∂A0 +
∫

∂A0

λht ∧
∫ hmax0

hmin0

jξ3σgα dξ3να d∂A0 +∫
A0

ϕ ∧
[
jσg3

]hmax0

hmin0
dA0 +

∫
A0

λht ∧
[
jξ3σg3

]hmax0

hmin0
dA0 +∫

A0×[hmin0; hmax0]

ρ0

ρ
ϕ ∧B dA0 dξ +

∫
A0×[hmin0; hmax0]

ρ0

ρ
ξ3λht ∧B dA0 dξ = 0 . (98)

Using definitions (9, 10, 14 and 15) allows simplifying this result into∫
∂A0

ϕ ∧ j̄nανα d∂A0 +
∫

∂A0

λht ∧ j̄m̃ανα d∂A0 +∫
A0

ϕ ∧ j̄nA0 dA0 +
∫
A0

λht ∧ j̄m̃A0 dA0 = 0 , (99)

†Rigorously, the same results hold for any arbitrary part Ã0 of the Cosserat surface A0.
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which becomes after integrating by parts and applying Gauss theorem:

0 =
∫
A0

ϕ,α ∧ j̄nα dA0 +
∫
A0

ϕ ∧ (j̄nα),α dA0 +
∫
A0

(λht),α ∧ j̄m̃α dA0 +∫
A0

λht ∧ (j̄m̃α),α dA0 +
∫
A0

ϕ ∧ j̄nA0 dA0 +
∫
A0

λht ∧ j̄m̃A0 dA0 . (100)

Finally, using (94) and considering the arbitrary nature of A0 yields

ϕ,α ∧ j̄nα + (λht),α ∧ j̄m̃α + λht ∧ (j̄m̃α),α + λht ∧ j̄m̃A0 = 0 on A0 (101)

In order to exploit the symmetric nature of σ, this tensor can be rewritten in the basis gi,

leading to

σ = σij gi ⊗ gj , (102)

which allows to rewrite σ = σT as gi ∧
(
σgi

)
= 0. Using (3) and definitions (9-11), the

integration of this relation on the thickness yields

0 =
∫ hmax0

hmin0

j
[
ϕ,α + ξ3 (λht),α

]
∧ (σgα) dξ3 +

∫ hmax0

hmin0

jλht ∧
(
σg3

)
dξ3

= ϕ,α ∧ j̄nα + (λht),α ∧ j̄m̃α + λht ∧ j̄l , (103)

which allows to rewrite (101) as

λht ∧ (j̄m̃α),α + λht ∧ j̄m̃A0 − λht ∧ j̄l = 0 on A0 , (104)

or again, if λ is an undefined pressure as

(j̄m̃α),α + j̄m̃A0 − j̄l + j̄λt = 0 on A0 . (105)
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Figure 1. Description of the different configurations of the shell.
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FIGURES 41

(a) Geometry (b) Deformation (c) Deformation

Figure 2. Study of the pinched open hemisphere: a) Geometry of the open hemisphere (only one
fourth is considered). b) Final deformation of the completed hemisphere for a regular mesh of 8 bi-
cubic quadrangular elements on each side. c) Final deformation of the completed hemisphere for a

distorted mesh of 8 bi-cubic quadrangular elements on each side.
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Figure 3. Study of the pinched open hemisphere: force-displacement evolutions of the nodes located
at the loadings. Stabilization parameter β = 102.
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FIGURES 43

(a) Constant number of elements (b) Constant β=102

Figure 4. Study of the pinched open hemisphere: a) Influence of the stabilization parameter on the
results at P=400 N, for 8 bi-cubic and 12 bi-quadratic elements on each edge. b) Influence of the mesh
size on the results at P=400 N, for bi-cubic and bi-quadratic elements on each edge, and for β=102.
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Figure 5. Study of the pinched open hemisphere: convergence rate with respect to the mesh size on
the results at P=400 N, for bi-cubic and bi-quadratic elements on each edge, and for β=102.
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(a) Geometry (b) Deformation

Figure 6. Study of the thin plate ring: a) Geometry of the initially cut ring (one side of line AB is
clamped and the other one is uniformly loaded. b) Final deformation of the test for a regular mesh of
16 bi-quadratic quadrangular elements on the circumference and 3 bi-quadratic quadrangular elements

on the edge AB.
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Figure 7. Study of the plate ring: force-displacement evolutions of the nodes located at the cutting.
Stabilization parameter β = 102.

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 00:1–1
Prepared using nmeauth.cls
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(a) Geometry (b) P = 400 N (c) P = 752 N

(d) P = 800 (e) P = 1200 N (f) P = 1600 N

Figure 8. Study of the clamped cylinder: a) Geometry of the cylinder (only one fourth is considered).
b-f) Final deformation of the test for a regular mesh of 12 bi-quadratic quadrangular elements on each

edge, and for P = 400, 752, 800, 1200 and 1600 N. Stabilization parameter β = 102.
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Figure 9. Study of the clamped cylinder: force-displacement evolutions of the nodes located at point
A. Stabilization parameter β = 102.
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Table I. Material and geometrical properties for the pinched open hemisphere test.

Property Value
Radius R = 10 m
Thickness t = 0.04 m
Opening θ = 18o

Young modulus E = 6.825×107 N·m−2

Poisson’s ratio ν = 0.3
Applied force P = 800 N
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Table II. Material and geometrical properties for the thin plate ring test.

Property Value
Internal Radius Ri = 6 m
External Radius Re = 10 m
Thickness t = 0.03 m
Young modulus E = 2.1×1010 N·m−2

Poisson’s ratio ν = 0
Applied force q = 12000 N·m−1
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Table III. Material and geometrical properties for the clamped cylinder test.

Property Value
Radius R = 1.016 m
Length L = 3.048 m
Thickness t = 0.03 m
Young modulus E = 2.0685×107 N·m−2

Poisson’s ratio ν = 0.3
Applied force P = 1600 N
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