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ABSTRACT

Animal breeding programs are designed to geneyidgaibrove livestock populations over
many generations to enhance farm sustainabilitycangpetitiveness. Genetic improvement is
achieved by selecting genetically superior animzdsed on estimated breeding values (EBV),
to be the parents of the next generation. These BR\calculated by solving mixed model
equations characterizing appropriate statisticahegje evaluation models. To guarantee
effective genetic selection, genetic evaluation el®dmust be tailored to the specific
characteristics of the traits and population ureleluation. This PhD thesis focused on the
development of genetic evaluation models suitatMecétegorical maternally influenced traits
and for multi-breed populations. Appropriate genmetnimal models were developed and
assessed: (1) for two categorical maternally imfbgel traits based on calving ease scores
from Walloon Holstein dairy cattle and on lamb sual data from a New Zealand sheep
population; (2) for two multi-breed populations édson milk yield records of New Zealand
purebred and crossbred dairy cattle, and on pulledome crossbred calving ease scores from
Walloon Belgian Blue and Holstein cattle. Resuftsvged that (1) fitting maternal effects was
required to avoid biasing the EBV, and there waslaar advantage in using non-linear mixed
models instead of linear mixed models for the geraetalysis of the two categorical maternal
traits studied; (2) breed-dependent EBV could bdenased using the proposed multi-breed
models, and that combining purebred and crossbetd dad a positive influence on the
accuracy of the EBV of purebred animals. Finallgrtf the research presented in this thesis
contributed to the development of the genetic eatadn systems currently used in Walloon

Region of Belgium and in New Zealand.
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RESUME

Les programmes de sélection animale sont concusgméliorer génétiquement les animaux
d’élevage au fil des générations afin de renforeerdurabilité et la compétitivité des
exploitations agricoles. L’amélioration génétiquet ebtenue en sélectionnant — sur base de
valeurs d'élevage estimées — des animaux génétiepuesupérieurs comme parents de la
prochaine génération. Ces valeurs d’élevage essirmget calculées en résolvant les équations
du modéle mixte caractérisant des modeles statestiappropriés d’évaluation génétique.
Afin de garantir une sélection génétique efficdes,modéles d’évaluation génétique doivent
étre adaptés aux caractéristiques spécifiquesatasteres et de la population a évaluer. Cette
these de doctorat s’est concentrée sur le déveaioppede modeles d’évaluation génétique
adaptés aux caractéres maternels et aux populatiotisraces d’animaux d’élevage. Des
modeles d’évaluation génétique ont été développésstés: (1) pour deux caractéeres discrets
maternellement influencés a partir de donnéesivetata la facilit¢ de vélage des bovins
laitiers wallons de race Holstein, et de donnédatives a la survie des agneaux d'une
population de moutons de Nouvelle-Zélande; (2) pmux populations multi-races a partir de
données de production laitiere de bovins laitiarsspet croisés de Nouvelle-Zélande, et de
données relatives a la facilité de vélage de bowablons de race Holstein et Blanc Bleu
Belge et de leurs croisés. Les résultats ont mo(t)égqu’il était nécessaire de tenir compte
des effets maternels afin de ne pas biaiser lesikad’élevage estimées, et qu'il N’y avait pas
d’avantage particulier a utiliser des modeles nsixt@n-linéaires plutdt que des modeles
mixtes linéaires pour I'évaluation génétique dasxdearactéeres discrets maternels étudiés; (2)
gue des valeurs d’élevage dépendantes de la raoeipat étre estimées au moyen des
modéles multi-races développés, et que la comlunailes données d’animaux purs et croisés
avait une influence positive sur la précision datewrs d’élevage des animaux purs. Enfin, il
est important de signaler qu’'une partie de la netteeprésentée dans cette thése a contribué
au développement de systémes d’évaluation génétitjlieés en Région Wallonne et en

Nouvelle-Zélande.
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GENERAL INTRODUCTION

CONTEXT

Animal breeding aims to genetically improve livestqopulations by selecting and mating
the best individuals as parents of the next geilg®tin order to increase sustainability and
long-term economic profitability of livestock proction (e.g. reducing the production costs,

improving animal health and welfare). A large vayrief statistical techniques, strategies and

methods have been developed to achieve this goal.

Genetic selection based on estimated breeding va(i#V) is the most important
contribution to performance improvement of livegtagnimals (Havensteiret al, 2003).
These EBV, which are traditionally based on thewkedge of phenotypic observations and
pedigree information, make possible the comparguhthe ranking of animals between them,

thereby to select the ones with the highest gemnatiat.

There has been considerable work in the last dscaml@dapt genetic evaluation models,
computational methods and software to the specifi@racteristics of each trait/population
evaluated. Also, since the early 2000s, the inclusif molecular information, such as single
nucleotide polymorphism (SNP), has become incrgasiimportant in animal breeding.
Currently, most developments are focusing on arragmh called “genomic selection” or
more properly “genomic prediction” (Meuwissenal, 2001; Hayeet al, 2009; VanRadeat

al., 2011). In this method dense SNP panels allowntodlso phenotypes and SNP genotypes
to predict the genetic merit of animals, thus Iagdio a new approach to predict genetic

merits based also on molecular information combinigld phenotypes and pedigrees.

However, these advances do not change the fundamssiie that genetic evaluation models
and methods need to be adjusted to existing nekebseeders and emerging issues. Some
examples where practical solutions are requiredtlaegenetic evaluation of discrete traits
(e.g.disease susceptibility, litter size, reproductiagts), the genetic evaluation of maternally
influenced traits €.g. birth or weaning weight, calving ease, viabilitygnd the genetic
evaluation of animals in multi-breed and crosslpepgulations. The present document focuses

particularly on the development of genetic evatratsystems for genetic evaluation of
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maternally influenced traits, as well as for gemetivaluation of animals in multi-breed

populations.

Maternally influenced traits are traits that arBuenced not only by the individual itself, but
also by its mother. The effects linked to the rdedrindividual are, in general, called direct
effects. Direct effects can be due to the gendscdnualso be non-genetie.¢.animal specific
environment). The effects linked to the mother areggeneral, called maternal effects and can
be considered as the genetic and non-geneticyabflimother to provide, in a broad sense, a
suitable environment to her offspring (Willham, 237 Non-genetic effects are the not
transmitted part of the contribution (environmdny)the mother. These effects are often called
maternal environmental effects, even if they ondpresent the non-genetic part of the
maternal environment. However, the part that carirbiesmitted is called maternal genetic
effects. Many traits of interest in livestock pratlan, such as for example calving ease in
cattle, lamb survival to weaning, or early growthits in beef and swine, are affected by
maternal effects (Dematawena and Berger, 1997; kawand Wu, 2011). Consequently,
genetic evaluation systems of maternally influentads have to account for these maternal
effects, in addition to those associated to theéviddal itself (.e. direct effects) in order to
estimate unbiased EBV needed by breeders and pmrddior their selection and mating

decisions.

Usually, genetic improvement programs of livestarkimals may involve two different
breeding strategies that might be combined: 1)ctiele of best animals within breeds or
populations,i.e. pure (or straight) breeding systems, and 2) usiegbest breeds or breed
combination through crossbreeding systems. Vefferdit crossbreeding systems exist, some
focusing on creating animals with improved germpigsto be transmitted to the next
generations, others to produce production animalombinations of both. Crossbreeding is
widely used in pig, poultry and beef cattle productsystems (Yang and Jiang, 2005;
Dufrasne, 2014; Theunisseh al, 2014). These production systems rely heavily ererosis
and breed complementarity effects to improve praditg and efficiency of production in the
crossbred offspring (Hansen, 2006). Crossbreedirigps taurusdairy breeds with locaBos

indicus cattle is also a well-documented strategy to endamdk production in tropical
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climates (Galukandet al, 2013). In contrast, in temperate climates, cnessfing in dairy
cattle has not been widespread, except in New HAdalghere about 46% of cows are
crossbreds (New Zealand Dairy Statistics 2014-T&g rationale behind the fact that pure
breeding systems are most commonly used for daitfedn most temperate countries is due
in large part because of the increasing global danmse of Holstein cattle in the dairy
industry (Weigel and Barlass, 2003). However, fevesal years, trends in milk pricing, as
well as increasing health, fertility, calving ammhgjevity performance concerns for most of the
high-producing dairy breed®.g. Heinset al, 2006; Pritcharcet al, 2013), have led dairy
breeders and producers to become more interestld imse of crossbreeding (Sgrenseal,
2008). Furthermore, increasing levels of inbreedifthin those breeds (Croquet al, 2006;
Miglior et al, 2008) have also contributed to the growing irdene crossbreeding across the
world (Sgrenseet al, 2008). Most genetic evaluation systems in daétyl€ compare animals
only within breed (Interbull, 2016), accordingly deal only on purebred information and
ignoring information from crossbred animals. Howeeaits that are evaluated in purebred
populations may be genetically different from saat the crossbred level because the genetic
correlations between purebred and crossbred peafurenare usually estimated to be less than
one €.g.Zumbackhet al, 2006; Mulderet al, 2016). Thus, the genetic merit estimated only on
purebred performance is not a good predictor ofoperance in crossbreeding. Therefore,
genetic evaluation systems need to be adaptedrnbine purebred and crossbred data to
improve selection of purebred parents for perforream crossbreeding (Wei and van der
Werf, 1994; VanRadeat al, 2007).
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THIS THESIS

The overall aim of this thesis is to present genetialuation systems developed to improve

genetic selection of livestock animals:

1. For categorical maternally influenced traits;

2. In multi-breed populations composed of purebred@ondsbred animals.
This thesis is a compilation of published scieatfapers and is structured as follows.

First, an overview of the mixed model methodologgdi in the context of animal breeding

and genetic selection is presented (Chapter II).

Then, Chapter IIl focuses on the development ofeglerevaluation systems for categorical
maternally influenced traits using appropriate mekemodels based on 1) calving ease scores
from Walloon Holstein dairy cattle (Chapters llahd I111.2) and 2) data of lamb survival to

weaning from New Zealand sheep (Chapters 111.3).

In Chapter 1ll.1, linear and threshold maternaln@adi models to analyse calving ease scores
from the Holstein dairy cattle in the Walloon Regiof Belgium are firstly assessed and
compared in terms of predictive ability while examg and discussing the correlation
between direct and maternal additive genetic effe€hen, Chapter 11.2 focuses on the
implementation in routine of the genetic evaluatiorpredict the EBVi(e. genetic merit) of

Walloon Holstein dairy cattle for calving ease pemfiance.

In Chapter 1l11.3, different maternal animal mod#&sanalyse lamb survival to weaning data
are compared in terms of predictive ability. Thtle benefits of using generalized linear
models rather than linear models as well as inolydhaternal environmental effects in the

genetic evaluation model are explored.

Then, Chapter IV focuses on the development of tgeegaluation models adapted to multi-
breed populations composed of purebred and crassbrienals using 1) first-lactation milk
yield data of New Zealand dairy cattle where crosstiing is common (Chapter IV.1) and 2)
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calving ease scores from purebred and crossbretaémnof both dominant cattle breeds in the

Walloon Region of Belgium: the Holstein and BelgBine breeds (Chapter 1V.2).

In Chapter IV.1, a multi-breed model based on aoamregression test-day model combining
purebred and crossbred data is proposed to moffietatit additive genetic effects according
to breed composition. Genetic parameters estimiayetthis multi-breed model are compared
to estimates from within breeds using a single-tbreendom regression test-day model.
Furthermore, usefulness of this kind of complicataddom regression test-day model is
investigated.

Chapter IV.2 examines the usefulness and feagildfita joint genetic evaluation system for
calving ease combining data from purebred and bredsanimals. For this purpose, two
multi-breed random regression maternal models udiffigrent functions of breed proportions
as random regression predictors are assessed amoak in terms of goodness of fit.
Likewise, a comparison of genetic parameters estidhavithin and across breeds is carried
out. Furthermore, the potential gain of reliabilioy EBV for purebred sires when combining

purebred and crossbred data is checked.

Finally, Chapter V presents a general discussiotthef results obtained through previous
chapters. Several aspects related to the accuratgféiciency of genetic selection based on
EBV are discussed: 1) the quantity and quality loénmotypic data that are the basis of any
genetic/genomic evaluation systems, 2) the adequécthe statistical genetic evaluation

model to guarantee an accurate estimation of gepatameters and EBV. Thus, models for
categorical traits, maternally influenced traitsldar multi-breed populations are discussed.

Also, general conclusions and future perspectiveséarch are addressed.
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FRAMEWORK

This thesis was initiated in the context of thealegment and implementation of the genetic
evaluation systems of Walloon dairy cattle undex framework of the “Convention de
collaboration technique et scientifique dans lereades évaluations génétiques bovines
laitieres pour la Wallonie”, jointly managed by tiMumerical Genetics, Genomics and
Modeling Group from Agriculture, Bio-engineeringda@hemistry Department of Gembloux
Agro-Bio Tech, University of Liege (ULg-GxABT; Gerldux, Belgium) and the Walloon
Breeding Association (awé asbl, Ciney, Belgium) &ty funded by the Public Service of
Wallonia (Service Public de Wallonie — Directionr@éale Opérationnelle de I'Agriculture,
des Ressources naturelles et de 'Environnemehg.alm of this convention was to develop
management and selection tools, chiefly through eékmation of the genetic merit of
animals, to support dairy farmers in their breedilegisions. The main part of the research
was undertaken at Gembloux Agro-Bio Tech, understigervision of Prof. Nicolas Gengler,
on data collected and provided by the awé. A pé#rthe research was realised at the
AgResearch Limited, Invermay Agricultural Centre dddiel, New Zealand), under the
supervision of Dr. Julie Everett-Hincks and BenaAitvray, on data provided by Sheep
Improvement Limited (Christchurch, New Zealand).isThesearch was partly funded by a
grant from the ULg. Lastly, our collaboration withe Livestock Improvement Corporation

(LIC, Hamilton, New Zealand) allowed the work oniZealand dairy cattle data.
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CHAPTER |I. OVERVIEW OF MIXED MODEL METHODOLOGY

USED IN ANIMAL BREEDING AND GENETICS






OUTLINE

Animal breeding is often concerned with variatiartraits of interest of offspring as
supposed inherited from their sires and dams. Relsexs in the field of quantitative
genetics have been mainly involved with on-farmnaali recording procedures
gathering data that have hierarchical structureaated with various levels of
variation. One of the most important contributidasperformance improvement is
the genetic selection based on estimated breedilugs, which are the solutions of
mixed model equations. Obviously, the mixed modelcsure depends on the trait
to be evaluated and the population to be analybed;enabling to provide accurate
breeding values for a given trait in a given popata Therefore, the purpose of this
chapter is to review general concepts of mixed risoae applied to animal breeding
and genetic selection.






OVERVIEW OF MIXED MODEL METHODOLOGY

INTRODUCTION

Animal breeding is a powerful tool that allows lees and also producers to select superior
animals to reduce production costsg(milk, meat, eggs, wool), to improve animal healtidl
welfare, thus to increase farm sustainability othex generations by improving the genetic
merit of livestock. Genetic selection makes a mogtortant contribution to performance
improvement (Havensteiet al, 2003). Animals with the highest genetic merit seéected on
the basis of accurate values, called “estimateéding values” (EBV) or “genetic values”,
which allow the comparison and the classificatiéramimals. Today, these EBV are mostly
derived from the solutions of mixed model equatigh®E) established by Henderson in
1973.

THE GENERAL LINEAR MIXED MODEL

Henderson adapted theories of linear mixed modaetgiaintitative genetic. The term “mixed
model” refers to the use of both fixed and randdi@ces in the same analysis model. In many
genetic applications, a linear mixed model is assirand can be represented in matrix

notation as follows:

y=Xb+Zu+e (1)

in which y is the vector of phenotypic observations on thégrand animals of interedt; is
the vector of unknown fixed effects that influerthe phenotypic observations; is the vector
of unknown random effects that influence the phgpiotobservationse is the vector of the
unknown residual effects; an and Z are the known incidence matrices relating

observations to corresponding fixed and randonteffeespectively.
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The fixed and random effects allow modelling thgpeotations and the variability of the

phenotypic observationsy() respectively. Thus, the expectations and varsrnaey are

assumed to be:

E(y)=E(Xb) asE(u)=E(e)=0 )

var(y) = var(Xb + Zu +€)

= var(Xb) + var(Zu +€) asvar(Xb)=0

=Zvar(u)Z' + var(e) + Z cov(u,e) + cov(e,u) Z’ (3)
=ZGZ'+R +Z cov(u,e) +cov(e,u)Z’ asvar(u) = G andvar(e) =R
=7ZGZ'+R=V ascov(u,e) = cov(e,u)=0

The resolution of model (1) using Best Linear Usbih EstimatorBL UE) and Best Linear
Unbiased PredictiorBL UP) equations provides the following solutions foe fixed (B) and
random effectiﬂ) (Henderson, 1973; Henderson, 1975):

b=(xVvix)'xVviy (4)
0=GZ'V™(y-Xb) (5)

The solutions of equations (4) and (5) requireitiverse of the covariance matrix, which is

usually too large to be inverted. However, Hender€075) offered a method for jointly

obtainingB and 0 in the form of his MME. Thus; these equations &lpw estimating
solutions of fixed effects and predicting solutidos random effects simultaneously without

the need for computiny ™. The MME for model (1) are:

XRIX  XR?*z |b|_[XRYy ©)
Z’R7'z ZR'Z+G| 0| |ZRYy

where R is the covariance matrix for residual effects &ads the covariance matrix for

random effects as shown previously in (3). Theseakgns are of order equal to the number
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of elements irb andu, which is usually much less than the number ofmelats iny, and

therefore, are more practical to solve. Also, thegeations require the inverse Rfrather
thanV, both of which are of the same order, BRuis generally diagonal or has a more simple
structure tharv . Likewise, the inverse db is needed, which is of order equal to the number
of elements inu. The ability to compute the inverse Gf depends on the model and the

definition of the random effects.

The MME structure displayed in (6) is expandablenany ways. Both vectots andu may
contain one or more factors depending on the sitnathe vectob may include several fixed
effects such as age at birth, herd-year-seasoirtbf humber of times milked, size of litter,
breed composition and possibly other identifiabigi®nmental factors. Likewise, vectar
may include several random effects, such as aramélpermanent environmental effeag(
a repeatability model) or such as animal and mateeffects é.g. a maternal model). Of
course, this leads to a more complex structur& pso more difficulties to inverG . In the
same way, the vectgr could contain phenotypic observations for sevératrelated) traits,
and consequently would contain several animal and environmentata referring to the
different traits as is the case in a multiple-tratidel. In addition, th&k matrix could reflect
correlations between residuals or different rediduariances for different groups of
observations €.g. multiple-trait model). Therefore, in the estabisnt of a linear mixed
model, not only fixed effects have to be definedt blso the covariance structure of the

random and residual effects.
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SIMPLE ANIMAL MODEL

The simple linear mixed model used in animal bregds the single-trait animal model with
only one random effect; hereafter this simple masle€alled “the simple animal model”. The
term “animal model” can be used when there is amalneffect as random effect involved in
phenotypic observations, meaning that an EBV (geetic value) is fitted for each animal.
The term “single-trait” refers to the fact that mails have only phenotypic observations on
one trait. Thus, in the simple animal model, onkedl and animal random effects influence
the phenotypic observations from a single traite Phinciple of this model is to apply MME
to include all relatives — with or without phenoitypbservations — to evaluate simultaneously
dams and sires enhancing the accuracy of genetit oh@nimals. This is possible by the use
of the additive genetic (or numerator) relationshiptrix. The simple animal model can be

expressed in matrix notation as follows:

y=Xb+Za+e (7)

In this model, assuming purely additive gene acfien assuming that only the genetic parts
are passed from parents to progeny), the perforenah@n animal is described genetically
according to the value of its additive genetic effee. its EBV. The unknown vectaa in (7)

contains the animals’ additive effects, which ateed as random effects. The vectgrsb,

and e as well as the incidence matric¥sand Z were previously described in (1). The

variances of the random and residual effects fravdeh(7) are assumed to be:

al_|Agz 0 |_[G O
Va{e}_ 0 lo? _{0 R} (®)

whereG is the covariance matrix for the additive effeats is equal toA o> beingA the

additive relationship matrix anc!a2 the variance due to the additive effed®s;is the residual

covariance matrix, in which residual effects anegéneral, assumed independently distributed
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with the variance0§ ; and| is an identity matrix. Moreover, additive effeaad residual

effects are usually assumed uncorrelated.

By factoring outR™ from both sides of the MME (6) and replacifigby a, the MME for

the simple animal model (7) are:

X'X X'z b| [Xy
Z'Z ZZ+AA lal |z ©)
NE! y
2

, o,
with A, =—=-.

a

The vectora in (9) contains solutions for the additive effects. the EBV on which breeders
can operate for selecting animals with the beseemerit. The equations in (9) require the
inverse of A . An efficient and feasible method, even for lagg®pulations, to compute
directly the inverse oA (i.e. A™) have been presented by (Henderson, 1976) andagQua
1976).

Of course, this simple animal model is a simplifeggbroach and can be easily extended to
include animals’ additive random effects for seléraits .g. multiple-trait animal model),
maternal random effect&.¢. maternal animal model), non-additive genetic randeffects,
such as dominance and epistagig.(non-additive animal model), repeated observatmms

individuals €.g.repeatability animal model) and so on.

ANIMAL MODEL WITH GENETIC GROUPS

As stated previously, an animal model requires tmahplete pedigrees are known for all
animals with or without observations. However, geee information on each animal may not
be traceable back to a base population due todac&cording and/or movement of animals
from one owner to another (in the same or diffecenintries). Thus, in any pedigree file there

are always animals whose parents are unknown @imgis
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In an animal model, the use of relationship magixonsiders these animals with unknown
parents as being sampled from arbitrarily defin@egebpopulation. Members of this base
population are assumed to originate from a singtgd population with an average EBV of

zero and a common additive variance aff. In this population, all the individuals are

randomly mating, such that they are unrelated th esther and non-inbred. However, the
assumption that all animals with unknown parentsi&€drom one single large population is
rarely true in practical applications. Indeed, & wnow that animals without known parents
were actually sampled from populations with différgenetic means because of, for instance,
selection intensity or parents’ country of origithen the model must account for the
subpopulation structure and allow for different exjed values of base population animals. A
way to deal with this is to create genetic groupd mclude their effects in the model. Doing
this avoids the assumption that animals with unkmgarents all come from a single large
base population and allows taking into accounted#iices in genetic means between

populations.

Several grouping strategies were propoged.Thompson, 1979; Famué al, 1983) but the
grouping strategy developed by Robinson (1986),a9{&988) and Westedt al. (1988) has
generally been adopted. In this strategy, a gemgtiap for each animal is derived from the
genetic group effects of the animal's ancestorsekoh known animal with unknown parents,
phantom parents without observations are createdaa@ assigned to appropriate genetic
groups. Obviously, there are many ways to assigmfam parents to genetic groups. They
can be assigned for instance by sex, birth yeae{ticountry of origin, breed, and intensity of
selection (selection path). The proper definitibthe genetic groups as well as their fitting as
fixed or random effects will depend on the knowledd the data and the intended purpose of

the analysis.

If genetic group effects are added to the simplmahmodel (7), model becomes as:
y=Xb+ZQg+Za+e (10)

whereg is the vector of genetic group effects, which espnt the average genetic merit of

the phantom animals selected to be parents to tescendants that do have phenotypic
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observations available, arf@d is a matrix containing the proportion of gene cdittion from
genetic groups to the animals. The vectgrsb, a and e and matricesX and Z were

described in (7).

With model (10) the EBV of an animal is equal te thean of its group plus its individually
specific deviation from the groupe. vector of EBVs = (i = Q@+ a. From model (10), the

corresponding MME are:

X'X  X'ZQ X'z b X'y
lelx Q’Z’ZQ Q'Z’Z gz Q'Z'y (11)
Z’X  722Q Z'Z+A'A|a| | zy
2
with A, =Z¢ .
0.

Q

Thanks to QP transformation (Quaas and Pollak, 198& MME in (11) can be modified so
that Qg +a can be computed directly as the following MME:

X'X 0 X'z b X'y
0 QATQA, -QA™, g |=| 0] @2
Z'X -ATQA, Z'Z+A7A | Qg+al |z

Furthermore, procedures developed by Westelal. (1988) enable to write directly the

elements of the inverse of relationship matrix uiihg genetic groupsi.¢. Q'A™Q, and

-Q'A™) to be computed directly using Henderson’s rukésnderson, 1976).
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REPEATABILITY ANIMAL MODEL

When multiple phenotypic observations on the sarai¢ &are recorded on the same animal,
such as litter size in successive pregnancies bk yigld records in successive lactations, a
second random effect needs to be introduced, fdr aaimal with observations, in the simple

animal model (7) to account for shared environmeeftacts. Hence, the model becomes,
y=Xb+Zat+Z p+e (13)

wherep is the vector of permanent environmental effectd aon-additive genetic effects;
and Z . is the known incidence matrix relating phenotypibservations to permanent
environmental effects. It is important to emphasiset Z , = Z if each animal has a
permanent environmental effect as well as an addigffect. If there are animals without
observations and if their EBV are also desired thgp# Z and Z ,.<Z in size becausg&

needs to be augmented for animals without obsengtibut that are included in the additive

relationship matrix.

In model (13), the permanent environmental anddtedieffects for different animals are, in
general, assumed to be uncorrelated. In additibns usually assumed that there is no
correlation between additive and permanent envieartal effects for the same animal, as well
as between residual and permanent environmentatteff Therefore, the variances of both
random effects and residual effects from model ¢E8) be written as follows:

varpl=| 0 log’, O (14)

where Jée is the variance due to permanent environmentaktsf and the other terms were

defined in (8).
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Thus, the model illustrated in (13) is an extendsdohple animal model that is called

repeatability animal model and its corresponding Bb&n be written as:

X'X X'Z X'Z,, b| [ Xy
Z'X  Z2'Z+A™, 27, al=| zy | (15)
z' X z'"Z 2" Z o+ | P |20y
0.2
with 4, as defined in (9) and, = 0_; .

pe

The vectorp in (15) contains solutions for the permanent eminental effects. For an

animal, this solution represents the environmeinfalences but also, if not accounted for in
the model, the non-additive effects that are prapehe animal and affect its performance for
life.

The basic assumption of a repeatability model & thpeated observations were regarded as
expression of the same trait over time. A genaiditatation of 1 is assumed between repeated
observations. Thus, it should be made clear thany situation with multiple phenotypic
observations for the same animal, it must be decideether these observations are repeated
measurements over time or are measurements onediffgpossibly correlated traitsg. with

a genetic correlation between observations less thaln the first case, a repeatability model,

while in the second case, a multiple-trait modehityy should be preferred.
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ANIMAL MODEL WITH MULTIPLE GENETIC RANDOM EFFECTS

The above models and MME can be extended to acéountultiple genetic random effects.
Additional genetic random effects such as mateefifgicts, associative effects, non-additive
effects can be fitted in the previous models. la tontext of this thesis, only models with
maternal effects are detailed below and models matiradditive effects are briefly introduce

thereafter. Of course, there are other potentialefsofitting multiple genetic random effects.

MATERNAL ANIMAL MODEL

As explained previously, the performance of an\mtlial depends on its additive genetic
value and a random environmental deviation (permiaeevironmental effects and/or residual
effects); however its performance may also be eutliy influenced by its mother other than
through the genes she transmits on it (Willham,2)9These indirect influences on the
performance of an individual are called materntda$ and can be considered as the ability of
dams to provide, in a broad sense, a suitable @mvient to their progenies. Maternal effects
are strictly environmental for the progeny, but dawve both genetic and environmental
components. Similar to the genetic component ofiratividual, the maternal genetic
component can be divided into additive and non{addi(dominance, epistasis) effects
(Willham, 1963). It is the maternal additive genetomponent of the dam that is passed on to
all of her offspring, but it is expressed only whte female offspring have progeny of their
own. The environmental part may be partitioned pgomanent and temporary environmental
(especially in sheep and swine) components in soases, such as multiple litters with
multiple offspring by litter for the same dam (B&an2006). Additionally, the environmental

part may also include the maternal non-additivea# of the dam.

In summary, the dam may contribute in two wayshi performance of the offspring: first,
through her direct additive effects passed to tioggny (.e. sample half of the dam’s nuclear
genes) and second, through her ability to providaitable environment.é. genes of the dam
responsible for the maternal effects) (Willham, 29 Tonsequently, in animal selection, and

especially in dam lines, it is important to consitleese maternal effects in models used for
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genetic evaluation of traits influenced by thosleat such as calving ease in dairy and beef
cattle, birth weight and early growth in beef @athd swine, or lamb survival to weaning and
weaning weight in sheep for instance. Furtherm@eoring maternal effects can bias the
estimation of direct genetic effects. Willham (19@B8esented a general quantitative genetic
model for traits influenced by these maternal eéffee which the sum of direct effects due to
the individual and maternal effects due to its motbontribute to the trait. This Willham’s
model is readily incorporated into a mixed-modahiework, allowing the estimation of direct

additive as well as maternal additive and enviromale=ffects (Quaas and Pollak, 1981).

In matrix notation, the Willham’s model for matellganfluenced traits can be written as:
y=Xb+Z,a+Z m+Wp_  +e (16)

in which a andm are vectors of direct and maternal additive randdfacts, respectively.

The vectora has the same definition than in (7). The veqbgrcontains the maternal

environmental random effects which may include @aremt and temporary environmental

effects, but also the maternal non-additive effedtthe dam. The known incidence matrices
Z,, Z.,andW relate phenotypic observationg)(to direct additive, maternal additive and

permanent environmental effects, respectively. Vértorsb and e and the known incidence
matrix X were described previously in (7). In the Willham®del (16), direct and maternal
additive effects can be correlated within an animia¢reas the environmental effect of its dam
and its direct additive effect are usually assurn@de uncorrelated as well as with its
maternal additive effect. Therefore, the varianaesandom and residual effects from model

(16) can be written as follows:

a Ag? Ao, O 0
m| |Aog,, Ag:? O 0

var = ) @an
P 0 0 1d%, O

e 0 0 0 lg?
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where g7 and g2 are the direct and maternal additive variancespeetively; o, is the

direct-maternal additive covariancéﬁm is the variance due to the maternal environmental

random effects; and the other terms were defing€8)in

The genetic covarianceo(,,) plays a key role in the interpretation of estieshtgenetic

parameters and the prediction of response to sate¢dowever, this covariance is suggested
to be sensitive to estimation bias (Robinson, 18¥glenet al, 2012). A number of theories
were proposed to explain the origin of this biasestimates of direct-maternal genetic
covariances. These theories range from ignoredr@mwiental dam-offspring covariances
(Koerhuis and Thompson, 1997; Bijma, 2006) to uonaoted contemporary groups
(Robinson, 1996; Dodenhoét al, 1999; Gutiérrezt al, 2006). This bias could also be due
to the impact of data structure as the direct additomponent is estimated from a single
observation per animal, whereas maternal effeqier® on the number of progeny per dam,
the number of dams with recorded performance, aednumber of generation of recorded
data (Clémengt al, 2001; Maniatis and Pollott, 2003).

The model illustrated in (16) is an extended animadel accounting for the maternal effects
and that can be called maternal animal model. TMEMor a maternal animal model can be

written as:
[ XX X'Z, X'z, X'W b X'y
Z\X ZZ,+AT, Z,Z. +AT, Z\W al |zZy 18
Z'X Z'Z +AA Z'Z +AT Z''W ml | Zy (18)
| WX W'z, W'z, W'W + 12, | P | W'y
[ 2 11 12 i i 11 12
with G, = g, O'Zm _[ 9 O . Gl= 921 922 I 921 922 and
_aam a-m 921 gZZ g g /1am /1m g g
o;
j“Pm:0_2
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NON-ADDITIVE ANIMAL MODEL

Only purely additive gene action has been consttierehe animal models presented above.
However, these models can be extended to includeadditive gene action by adding an
additional genetic random effect. Non-additive deneffects are the interactions among
alleles both within and across gene lagé.(dominance and epistasis effects respectively).
These non-additive effects tend to be highly conftad with others, such as permanent
environmental or maternal environmental effects.t Bvhen non-additive effects are
significant, ignoring them in the animal model abuhake the estimation of additive effects

less accurates.g.in the case of genetic evaluation of animals inudti-breed population.

The MME for non-additive animal model can be setruthe same way as that for an additive
animal model in the case of a maternal animal mddelever, the addition of non-additive
effects in model (7) requires the setting up of @n-additive relationship matrixi.€.
dominance or epistatic relationship matrix) whishmore difficult to invert, especially in the
case of large data sets. Though, methods for cangpdirectly the inverse of a non-additive
relationship matrix have been developed by Hoesclaid VanRaden (1991) for the
dominance relationship matrix and by VanRaden amesdhele (1991) for the epistatic
relationship matrix.
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MULTIPLE-TRAIT ANIMAL MODEL

A multiple-trait animal model is an extension oethimple animal model but can also be
considered as a case of model fitting multiple gerrandom effects, as seen in the previous
sections, just applied to different groups of résoftraits). In a multiple-trait model, several

traits can be analysed simultaneously taking catical (if exists) between traits into account.

Therefore, multiple-trait models can provide mocewaacy as all information from correlated

traits is used (van der Werf, 2002).

For ease of presentation, assume two correlatéd & available for simultaneous analysis
under animal model. When animals are ordered wittgints, the bivariate animal model for
the two traits in matrix notation is:

oo lalle 2lakz] e
Y, 0 X,|b, 0 Z,]4& €
in which for theith trait (=1 or 2),Yy, is the vector of phenotypic observatioflis;is the

vector of unknown fixed effectsy, is the vector of unknown animal’'s additive random

effects; € is the vector of the unknown residual effects, afjdand Z, are the known

incidence matrices relating observations to coordmg fixed and random additive effects,

respectively.

It is assumed that the covariance matrices foradditive effects and for the residual effects

are defined, respectively, as:

al gllA ngA o 0

val®|=|%A @A OO {GODA 0 }:[G 0} (20)
e 0 0 ryl ryl 0 R, Ul 0 R
€, 0 0 ryl 1yl

where G, is the covariance matrix for the additive effegtth each element defined ag;, =

additive variance for direct effects for trait d,, = g,, = additive covariance between both
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traits; g,, =additive variance for direct effects for trait &; is the numerator relationship
matrix among animals as in (8) is the Kronecker producR, is the matrix of residual

covariances with each element defined gs= variance for residual effects for trait 1;

I, =T,, = residual covariance between both traits;= variance for residual effects for trait

2; andl is an identity matrix. As previously mentionedsidrals for a given trait measured
on different individuals are, in general, assun@edé uncorrelated; this is not necessarily the
case for different traits measured on the samevichaial. Indeed, the phenotypic correlation
between traits is often the result of correlatietween genetic but also environmental effects.
It is also important to notice that the matrix e$idual covariances shown in (20) is applicable
when there are no missing observations for any. ttainot, the inverse of the residual

covariance matrixR becomes a bit trickier.

Finally, the MME for the multiple-trait animal moldgescribed in (19) may be written as:

XU, XX, Xirtiz, X!rz, b, | [xi(ry, +r'?y,)
XorX, Xyr?X,  Xur¥z, Xor?z, b, |_| X4y, +r?y,) e
Z;_rllxl Z;rlZXz Z;_rllzl"'gllA_l Z;LrIZZZ_'_ngA—l é:l Z;_ rllyl+r12y2)
ZyoPX, Zor?X, ZytZ, +gPAT Zur?Z,+g?At A, | | 2,0y, +r2y,)

whereg’ andr’ are elements o6;* andR;?, respectively. In (21), it can be seen that both
genetic and environmental correlations betweentstrare used simultaneously to take
selection bias into account. i¥?, r?, g** and g** are set to zero, the bivariate MME reduces

to a simple combination of two single-trait anal/since the two traits become uncorrelated
and there is no flow of information from one tri@tthe other.

In the bivariate animal model (19), the two traat® assumed to have the same model in
common. However, the two traits might be affectgddliferent fixed or random effects and

so should be fitted with different models. Somenais may be represented yn but not in
y,, or vice-versa. The multiple-trait animal model(i®) can be set up to analyse more than

two correlated traits and becomes a multivariatenah model leading to more complex

31



CHAPTER Il

matricesG andR, and then more complex MME. A common applicatidnultiple-trait
animal model is in evaluation of linear type traMoreover, one of the analysed traits can be
a maternally influenced trait, making covariancecure and MME further complicated.

THE NON-LINEAR MIXED MODEL

In animal production, usually traits are expressedcontinuous or on discrete scales. Traits,
such as milk yield, body weight, height, are gelherexpressed and recorded on a continuous
scale and are assumed to be normally distributestr&e scales can be ordered or not, using
binary or more than two categories and therefotenofalled categorical scales. Not ordered
discrete scales can be transformed to multiplé-Bgstems (yes-no), but are exceptional.
Usual traits such as calving ease, survival, dessasceptibility, type scores are examples of
traits expressed and recorded in ordered discegggyaries. Some ordered discrete trastg.(
number of piglets born) are counting products orilar items and therefore special cases of
continuous distributionsi.€. two piglets is equal to exactly two times one g@igl others
however do not display any apparently continuousnplypic distribution €.9g. a more
difficult calving is not two times more difficulhin an easy one). These traits are, in general,

called categorical or threshold traits.

Theoretically, statistical genetic analyses basetinear mixed models — as those presented in
the previous sections — are generally unsuitable discrete traits since most of the

assumptions required are violated (Thompson, 16&7&)ola, 1982).

In the early 1980s, non-linear models were develdyased on Wright's threshold concept for
analysis of categorical traits in animal breedi@gafola, 1982; Gianola and Foulley, 1983;
Harville and Mee, 1984; Gilmowt al, 1985). Models based on the threshold conceptusatco
for the categorical nature of the trait by assumangunderlying continuous variable called
liability with truncation points +.e. the thresholds — that determine the categori@svittich

the phenotypic observations may fall (Wright, 1964anola, 1982). With these models, it is
possible to scale categorical phenotypic obsematigo as to conform to intervals of the

continuous distribution and then applying lineardeis on the scaled data.
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The most commonly known non-linear models basedhenthreshold concept and used to
analyse categorical traits in animal breeding aee deneralized mixed linear models using
link function and the (ordinal) threshold models.

GENERALIZED LINEAR MIXED MODELS

Generalized linear mixed models (or GLMMs) can besidered as an extension of linear
mixed models that can be used to analyse trails avihon-normal distribution. Moreover,
GLMMs are models in which the independent variakfies. fixed and random effects)
explain, indirectly through a function, the meantlud dependent variable. This is in contrast
to classical linear mixed models in which the inglegient variables explain the dependent

variable or its mean directly.
The GLMMs can be written in matrix notation as:
g(p) = Xb + Zu (22)

wherep = E(y) is the expectation or mean of the dependent Marigland g(.) is the link
function allowing the mean of the dependent vaggktio be related to the linear combination

of the fixed and random effects excluding the nesisl. The choice of link function depends
upon the distribution of the dependent variablee Thost common link functions used in
animal breeding are the logistic (logit model), &san (probit model) as well as the Poisson

regression (Poisson model).

From (22), the mean is:
p=g"(Xb+Zu) (23)

where g™(.) is the inverse link function, which is a functitivat transformsXb + Zu back to
the mean. Thus, observations of the categoricébiagry can be expressed as:
y=g"(Xb+Zu)+e (24)

wheree is a vector of random errors that can have aibligton other than normal.
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THE (ORDINAL) THRESHOLD MODEL

Threshold models are strongly related to GLMMs, éeer the literature is not always very
consistent in the way they are considered speasgdscof GLMMs or not.

The (ordinal) threshold model is appropriate fodeved categorical traits with more than 2
categories, as long as there are enough obsersatoeach category. Again, the threshold
model postulates a liability () for each phenotypic observation, such that theeonked
categorical variable takes valyeif t,, <L <t,, wheret,, andt; are thresholds, and
j=1.2,...,) indexes the categories to which a phenotypic elsien belongs (Gianola,
1982). The basic theory of (ordinal) threshold moadigh reference to animal breeding has
been given by Gianola and Foulley (1983), and Hareind Mee (1984). In matrix notation,
the (ordinal) threshold model can be written as:

L=Xb+Zu+e (25)

whereL is a vector of unobserved liabilities on a norsedle. The conditional probability,

given the effects, that observations fall in catgg@an be written as:
P(ylb,u) = ®|t, -(Xb +Zu)|-o]t,, - (Xb+Zu)] (26)

wherey is the vector of observed phenotypic observatafithe categorical traitqb(.) is the
normal cumulative distribution function artd, and t; are vectors with the; , andt;
thresholds, respectively. The thresholds mustfgatiso =t, <t, <...<t; =. Sincel is not

observed, it is not possible to solve forusing the usual MME (6). The solution to a
threshold model is non-linear in computational ctaxipy, and there must be back and forth
calculations of thresholds and effects in the moudlelil convergence of the system of
equations stabilizes. Strategies for solving thoestMME have been proposed by Gianola
and Foulley (1983) and Misztat al. (1989).
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APPLICATIONS OF MIXED MODEL METHODOLOGY

Theoretical aspects of most mixed models useddoetic evaluations in livestock production
have been summarized in the previous sectionsofAtthese models can be used as they are
but can also be adapted in various ways dependiog the structure of the data, analysis
final goal and according to the encountered probldtereafter, two examples of applications
of mixed model methodology are provided and disedss

TEST-DAY ANIMAL MODELS

Several traits of interest in animal productiontegss are measured repeatedly over time, for
instance, bodyweight and yield traiesq. milk, eggs, wool).

In dairy cattle production systems, these repeatedsurements over time.¢. milk yield, fat
and protein contents, somatic cell score) are affyiceferred to as test-day¥ D) production
records since they are specific to a particulairtgsiay, such tests usually being distributed
over the whole lactation. These measurements dlect=dl by milk recording organizations
around the world and they conventionally have besed in aggregated forms as lactation
records in a lactation model, such as traditiol®&l-8ay approaches.

So as to address some problems encountered witha¢ketion models, statistical models
analysing directly TD records have been introdu¢tdk and Schaeffer, 1993; Swalve, 1998).
A test-day modelTDM) is defined as a statistical procedure which atersi all genetic and
environmental effects directly on TD basis allowimgfter modelling of factors affecting the
performance of cow over the lactation and then ipbssgreater accuracy of genetic
evaluations (Ptak and Schaeffer, 1993; Jamretzéd, 1997).

There are numerous advantages of using TDM compartédthe traditional use of lactation

models. The main advantage is its ability to actéomntime-dependent variation in the course
of lactation (Swalve, 2000). It allows the enviraemts specific to individual TD to be better
taken into account, resulting in an improved accyiref evaluations. Furthermore, the use of

extended records for culled cows and for recorgeagress is not more required, and TDM is
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better suited to predict daily production, to deteatliers, thereby helping decision-making
for management purposes (Mayee¢sl, 2004). There is also an economic advantage to use
TDM due to its ability to include data from differterecording schemes: some herds may only
contribute milk yield while in others fat and primieontents are also sampled (Jamretikl,
1997).

Based on Swalve (1998), TDM may generally be sépdran two classes: The use of TD
records in a one-step method directly providing ERV dairy production, and two-step
methods that apply some correction for environmegfti@cts on the TD level but perform

evaluations on records or residuals combined #ftefirst step.

TWO-STEP TEST-DAY MODEL

In two-step TDM, the first step consists of a po#idn step where the TD records are adjusted
for TD environment such as, for example, herd TBea$, age-season effects, stage of
lactation or milking frequency. These adjusted Téxards are then combined into full
lactation records weighting the individual TD retaaccording to the correlations among
them. The second step consists of a step of amalysing the current animal model
procedures; thus it is an indirect use of TD resadi produce EBV for dairy production
(Swalve, 2000; Gengler, 2002).

A two-step TDM was performed in New Zealand fron®8until 2007 in an across-breed
genetic evaluation system for production traitsN&w Zealand dairy cattle (Harrest al,
1996). Australia€.g.Joneset al, 1990) and North-eastern United Stateg.(Stantonet al,
1992; Van Tasse#t al, 1992) used also two-step TDM in the past.

ONE-STEP TEST-DAY MODEL

One-step TDM makes a direct use of TD records byhining the first and the second steps
of two-step TDM (Gengler, 2002). One-step TDM hawsen derived from repeatability
animal models under which TD records within lactatare taken as repeated measurements
on the same trait, and a permanent environment@ctefaccounts for environmental

similarities between different TD within the sanaethtion. Two approaches in one-step TDM
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can be distinguished depending upon whether othawe are cow specific regression effects;
i.e. whether or not the one-step TDM allows the modglibf the cow specific lactation shape
functions by using random regressions (Swalve, p@&h of these approaches are discussed

below.

Fixed regression test-day model

In the fixed regression approach, the lactatiorveus considered as a fixed effect and the
random component of the model are specified agditivnal repeatability animal model. The
curvilinear pattern of lactation curve is fittedafixed effect by several coefficients of a fixed
regression of yield on days in milO(M) or rather a function of these DIM.{. Wilmink’s
function, Legendre polynomiall’hese regressions are typically nested within sigsels of
fixed effects to account for different lactationeel shapes for groups of animals which may
be defined for instance, by years of birth, paritymber, age and season of calving within
parities (Ptak and Schaeffer, 1993). Thus, witixad regression TDM, the phenotypic shape
of the lactation curve is assumed to be the samalfa@ows, being the height of the curve

different from cow to cow.

As in a repeatability animal model, genetic vadatand permanent environmental variation
in the course of lactation are assumed be constatithence the genetic and permanent
environmental correlations between yields at odfeDIM are assumed constant and close to
one regardless of time elapsing between TD recoHiswever, several studies have

demonstrated that correlation between TD recordsedse as interval between TD increases
(Ptak and Schaeffer, 1993; Swalve, 1995). Thergfibre assumption that the variances of

random effects are homogenous throughout the iactaias difficult to justify.
Random regression test-day model

Random regression models are useful for modelliragtst that change gradually and
continually with time and are measured repeatediyingividuals, such as TD production
records in dairy cattle. Accordingly, Schaeffer abDékkers (1994) extended the fixed
regression model for the analysis of TD recordslairy cattle by using random regression
coefficients for each individual random factae(additive, permanent environmental effects
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and for any other random effects). In this appro#od lactation curve for an individual cow
could be seen as two sets of regressions on DIkédFiegressions for all cows belonging to
the same subclasses of fixed effects, as explabege, describe the phenotypic shape for
that cow, and the random regressions for a cowritbesthe deviation from this phenotypic
shape, allowing cows to have differently shapedatean curves (Jamrozikt al, 1997).
Therefore, with a random regression TDM, each cawltave its own lactation curve, its own

shape.

With random regression TDM, the shape of the lamaturve is assumed to be also
influenced by genetic and permanent environmeatalom effects. Random regression TDM
can accommodate changes in the genetic and pertremgronmental covariance structure of
TD records during the lactation by fitting funct®af times (Jensen, 2001). Similarly, genetic
and permanent environmental correlations betweerrédords at different DIM can be less
than one. Moreover, as the genetic merit of anviddal is allowed to change for any day in
the lactation, random regression TDM offer the opputy to express EBV as curves of
genetic merit (Schaeffer and Dekkers, 1994; Swa&l060). Furthermore, the genetic variance
and “genetic yields” for each single day of ladatican be estimated and used to define
suitable criteria of persistencie. a trait of economic importance due to its impactfeed
costs, health, and fertility (Gengler, 1996).

The matrix notation of a random regression TDM usey be written as:
y=Xb+QZa+Q_ Z p+e (27)

wherey is the vector of TD recorddy is a vector of fixed effects, which are independshn
the time scale for the TD records, and fixed regjogs coefficients; and andp are here

vectors of random regression coefficients for ahiagditive and permanent environmental
effects, respectively is the vector of the unknown residual effects; ahéndZ are the

known incidence matrices. The matrid®sand Q ,, contains the covariates associated with

DIM. Covariates are, in general, simple functioisDdM such as polynomials, orthogonal

polynomials é.9.Legendre polynomials), splines or parametersahteon functions, such as

38



OVERVIEW OF MIXED MODEL METHODOLOGY

Wilmink’s function (Wilmink, 1987) or Ali and Schéer’s function (Ali and Schaeffer, 1987)
for example. The most used functions are the Legepdlynomials because they make no
assumption about the shape of curve and are easppty. In addition, they describe
efficiently the evolution of milk yield during a omlete lactation of dairy cows in different
management conditions (Gengétral, 1999; Brotherstonet al,, 2000).

With the random regression TDM illustrated in (2(Re covariance matrices for the random
effects are assumed defined as:

al [AOG, © 0
var| p | = 0 0P, 0 (28)
e 0 0 I10R,

in which G, is here the covariance matrix of the additive ¢ieneandom regression
coefficients; P, is the covariance matrix of the permanent enviremta random regression

coefficients; R, is a matrix of residual variances; is the additive relationship matrixj is

the Kronecker product; and is an identity matrix.

A random regression TDM used with a multiple-temitmal model was introduced for genetic
evaluation of milk production traits in Canada lph&efferet al. (2000). Since then, random
regression TDM have become the models of choicgdaetic evaluation of production traits
in dairy cattle. Several ways of the methodologyenaeen used for genetic evaluation of
production traits in dairy cattle. Most applicatoof random regression TDM have been
multiple trait systems, in which multiple charasteand multiple lactations are considered
together €.g. Auvray and Gengler, 2002; Muet al, 2007; Konstantinowet al, 2009).
Random regression TDM can also be applied in ewatuations across countries systeng(
Emmerlinget al, 2002; de Roost al, 2004), which adds further complexity to the apgli
random regression TDM.

However, even if random regression models are widséd in dairy cattle, they are also used
in other areas of animal breedingd. dairy sheep, egg production, growth traits), amelyt
can be also extended to include random regresdmnsnaternal genetic and maternal
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permanent environmental effects for instance. Aewgvabout the numerous applications of

random regression models in animal breeding wagged by Schaeffer (2004).

GENETIC EVALUATION IN CROSSBREEDING: MULTI-BREED MODELS

Crossbreeding is the method of mating individuadenf different lines, breeds or populations
to produce crossbred offspring. Crossbreeding iplieg to capitalise on breed (line)
complementarity and heterosis. Breed (line) complatarity allows bringing together
desirable characteristics from different pure bseedlines that are difficult to select together
because of genetic antagonisms (Bidanel, 1992¢rbigts, also known as hybrid vigour, is the
increase in performance above what is expecteddbasethe parents of the crossbred
offspring. Heterosis is a non-additive effect daedominance effects.§. interactions within
loci) and epistasis effects . interaction between loci) and so its importancpethes upon
the genetic distance between the parental breddan(@®, 1992; Swan and Kinghorn, 1992).
Crossbreeding can also provide an opportunity tkemmogress in one generation that would
require generations of selection to obtain it aad &llow the introduction of a new breed in a
herd (Bidanel, 1992).

Crossbreeding is broadly used in beef cattle, swamel poultry production systems.d.
Pollak and Quaas, 1998; Lutaagtal, 2002; Yang and Jiang, 2005; IdarEscricheet al,
2011). These species rely heavily on the heterasts breed complementarity effects to
improve productivity and efficiency of productiom the crossbred offspring (Hansen, 2006).
In dairy cattle, crossbreeding betwdgos taurusdairy breeds and loc#os indicuscattle is
common in tropical climates (Cunningham and Syrsi&87; McDowellet al, 1996), where
high-producing dairy breeds are less adapted tertkgonment than local breeds. In contrast,
in temperate climates, crossbreeding in dairy €adttlnot used extensively except in New
Zealand (Sgrensegt al, 2008). Pure breeding systems in dairy cattleiradeed widespread
in most temperate countries, largely due to theaathge of Holstein cattle in milk volume
and the strong historical influence of purebredetezs and breed associations (Cunningham
and Syrstad, 1987; Weigel and Barlass, 2003).
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Nevertheless, for several years, dairy produceds leeders from most western countries
have become increasingly interested in crossbrgeaépects for several reasons. First, the
breeding goals of these countries have evolve@daent years, and animal selection is now
based on economic indexes that do not include prdguction and conformation traits, but
also consider functional traits such as femaleilitgrt health, calving ease, and longevity
(Miglior et al, 2005; Nielsenet al, 2006; Oltenacu and Broom; 2010). Although the
functional traits are often still secondary to mpield, they play an important role in
increasing economic profit by reducing farm codtcAllister, 2002). This evolution is
mainly due to the increasing deterioration of thectional traits over the years within most
major dairy breedse(g. Kadarmideeret al, 2000; Heinset al, 2006a; Sgrensest al, 2008;
Walshet al, 2011). It results from the high selection pressum milk yield traits and genetic
antagonisms between dairy production and functitraéts, as well as the intensification of
dairy production systems (Boettcher, 2005; Walshl, 2011). Thus, this economic emphasis
on functional traits combined with crossbreeding/rha helpful to overcome these problems
of decreasing functionality in dairy herds whileintaining a good milk production (Sgrensen
et al, 2008). Several studies have indeed stated tlasioreeding had more influence on
functional traits than on production (Heiges al, 2006b; Blottneret al, 2011; Heinset al,
2012). Second, inbreeding rates are growing rapidlynost of the high-producing dairy
breeds due to efficient genetic selection progréers. Sarenseret al, 2005; Croqueet al,
2006; Miglior et al, 2008) and crossbreeding may be useful to redbeeimpact of
inbreeding depression by using all available genetsources and taking advantage of the
increase of heterozygosity (Weigel and Barlass326fansen, 2006). Third, the trends in milk
pricing favouring high fat and protein content hasecouraged some milk producers to
consider crossbreeding as a way to enhance milkenticontents, and this has enhanced the
ability of other breeds and breed crosses to coenpith Holsteins on an economic basis,
especially in those countries where a great emphasigiven to the cheese industry
(VvanRaden and Sanders, 2003; Dal Zett@l, 2007). Finally, a greater income can be also
obtained from selling crossbred calves as compgrgairebred dairy calves, especially with
beef x dairy crossbred calves that have good neadtifes (Wolfovét al, 2007; Penaset al,

2009). A common European practice is to insemidatey and dual-purpose cows with semen
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derived from beef bulls if the calves will not bsed for milk production in the dairy farms
(Dal Zottoet al, 2009).

Most genetic evaluations carried out in livestockduction compare animals only within
breed, based on purebred information, so excludwigrmation from crossbred animals.
Often, in crossbreeding programs, purebred siressalected among sires of a given breed
after the breed has been selected for the progidma. same applies to the selection of
purebred dams. Therefore, it is assumed that therpgance of crossbred progeny from the
selected parents are predictable based on the#bpd progeny and purebred relativies,
assuming a correlation close to 1 between puredéneldcrossbred performance (Newman and
Reverter, 2000). This is not the case for all lisek species and for all traits of economic
importance. Indeed, genetic correlations less tharbetween purebred and crossbred
performance were pointed out for economically intgot traits, for instance, by Newmen

al. (2002) in beef, by Zumbacost al. (2006) in pigs or by Wei and van der Werf (199%) i
poultry. Genetic correlation between purebred armksbred performance decreases with
increasing non-additive effects (particularly doamine) or gene frequency difference between
parental populations (Wet al, 1991). Besides, environmental differences magtéetween
purebred and crossbred animals. For example, im@mal swine production, crossbreds are
usually raised in environments of lower quality rthéhose of purebreds concerning
management, hygiene status and space per pig.forerdifferences between purebred and
crossbred performance may also reflect genotypenwyronment interactions (Bryaet al,
2007; Dufrasnet al, 2011). Thus, performance of purebred parentdeam poor predictor of
performance of their crossbred progeny due to geaatl environmental differences between

purebreds and crossbreds (l&&fscricheet al, 2011).

Since the final goal of a crossbreeding progranallgfocuses on an increase of the crossbred
performance, there is an interest to evaluate bredsperformance jointly with purebred
performance to perform combined crossbred-purelseddction (Wei and van der Werf,
1994). To this end, linear mixed models used faoretje evaluation within breeds have been
extended to accommodate information from animaldiftérent breeds (purebred animals) but

also information from crossbred animals, therebgbéng a joint evaluation of purebreds
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(from different breeds/lines) and crossbreds as aslan across-breed selection and mating
programs. In the scientific literature, these typemodels are mainly termed as “multi-breed
models” but they may be referred to as “acrossebreedels”, “crossbred models” or even
“combined crossbred-purebred models”. Hereafter téhm “multi-breed model” will only be

used throughout this section.

Multi-breed models allow evaluating purebred ansnadore accurately for performance in
crossbreeding compared to strictly single-breedvithin-breed models due to the use all
available progeny information (Lutaagaal, 2001; VanRadert al, 2007). Consequently, a
re-ranking of purebred candidates to selection @l as a greater response to selection may
occur when a combined crossbred-purebred evaluaiperformed (Wei and van der Werf,
1994; Ibakz-Escricheet al, 2011). Another benefit of the multi-breed modslghat breed
differences and heterosis are routinely estimated apdated (VanRadeat al, 2007).
Naturally, these models rely heavily on accuratoming of phenotypic observations and
pedigrees of crossbred animals, which can be diffto collect routinely in some casesd.
crossbred animals reared under industrial envirem)rend so could increase the investment
in the selection programs (Dekkers, 2007). Furtloeensuch models hold for only a limited
number of generations and genetic parameters, ascborrelation between purebred and
crossbred performance, in the model should be é&writyi updated (Wei and van der Werf,
1994).

Multi-breed genetic evaluation models permit diregcimparison of animals of various breed
compositions and therefore allow genetic improvenremulti-breed populations. The multi-
breed models have been mainly developed for gemsttuations in swine and beef cattle
populations where the use of crossbreeding is mastspread. Most of these multi-breed
models involve the simultaneous adjustment of fixdfibcts and the estimation of breed
differences and breed interactioresg( heterosis, dominance, recombination loss), as agll
animals’ EBV. The inclusion of those breed effeatsl interactions (especially heterosis
effects) prevents biased estimates of genetic peteasrand therefore, avoids a bias in the
estimation of EBV (Van Der Werf and De Boer, 1989).
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In the following sub-sections, multi-breed modeis presented into two main approaches: the
single-trait approach, in which observations onepued and crossbred animals are regarded
as coming from the same trait, and the multiplé-tapproach, in which observations on

purebred and crossbred animals are consideregasase but correlated traits.

SINGLE-TRAIT APPROACH

Several methods are available to model breed addiind breed interactions mean effects for
performance of crossbred animals in a multi-breedieh (Van Vleck, 1997) using a single-
trait approach. For instance, genetic groups pewd excellent mechanism to incorporate
breed mean effects into a multi-breed model. Thoknown parent groups defined separately
by breed or by breed composition can be fitted mimal model evaluations taking into
account genetic means across breeds’ chareggsArnold et al, 1992; VanRadert al,
2007; Sancheet al, 2008). These groups can also be used for fitivegheterosis mean
effects by defining groups separately by breed dpations €.g. Sdnchezet al, 2008).
Models with genetic groups have been discusseceearla previous section. Regressions on
breed composition and regressions on heterozygtyaityions can be also a good alternative
for fitting breed and heterotic mean effects, resipely, in a multi-breed modek(g. Pollak
and Quaas, 1998; Legared al, 2007). Likewise, breed and heterotic mean effeets be
accounted for by using estimates from the scienliterature to pre-adjust records, providing
that the published estimates are reliable and egigk to the population being evaluatedy(
Sullivanet al, 1999).

To estimate accurately animals’ genetic merit,sitimportant to properly model additive
covariances between relatives to use most effigigregrformance recorded on relatives in
genetic evaluation. The covariance theory for a&bpred population cannot be applied in the
case of a multi-breed population. Since a multeldrpopulation is composed of several breed
groups, each of which can be formed by purebrednalsi or by crossbred animals, the
assumption that additive (co)variances are equalsadreeds groups is not really appropriate
although some studies made this assumption (PahakQuaas, 1998; Sullivast al, 1999;
Legarraet al, 2007; Sancheet al, 2008). Due to the heterogeneity of additive (eojpnces
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across breed groups, the additive covariance m@Bikcannot be expressed Aw? as it is

usually assumed in the simple animal model. Theeefthe useful method developed by
Henderson (1976) and Quaas (1976) to construatttiirdne inverse of the relationship matrix
(A™) cannot be used for a multi-breed population. ®aldvith this, variance adjustment
factors can be used on phenotypic data to adjuitnees separately by breed to make genetic
variance equal to that from a breed or a populatioimterest. Thus, the Henderson’s method
can be used to construct directy’ to perform genetic evaluation as in a conventional
within-breed genetic evaluation. For instance, #dgistment method is currently used in the
genetic evaluations of US mixed-breed dairy cattipulations to make genetic variance equal
to Holstein base cows (VanRadetal, 2007).

However, procedures to compute diredBy and G ™ with heterogeneous variances across
breed groups for multi-breed populations have h@eposed by Elzo (1986). He computed
the additive variance for a crossbred group asightexd mean of the additive variances of the
parental pure breeds plus one half of the covaeidetween parents, where each weight is the
proportion of the corresponding pure breed in thessbred. This procedure was used by
Arnold et al. (1992) to account for heterogeneity of varianaesrag breed groups in a multi-
breed beef cattle population. In contrast, étoal. (1993) showed that this method did not
always lead to the correct additive variance fassbred animals because it did not account
for segregation variances. The segregation variandde amount by which the additive
variance in the second generation (F2) breed gexgeeds that in the first generation (F1)
breed group and is due to the differences in alllquencies between the parental pure
breeds (Lande, 1981). Therefore, kb al. (1993) proposed an approach to incorporate
segregation variance in the construction@ffor a multi-breed population comprising an
arbitrary number of pure breeds and all crosseslving these breeds, under a model with
additive inheritance and multiple unlinked loci. odeding to their approach, the additive
variance of animal in a multi-breed population under the previous ditons can be

computed as:
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— 5 i 2 1 5 C Ny k £k 2
Var(a) =3 f,07 +2 Covlay a)+ 2>, Y(1) 1)+ 1515) o7, (29)

p=1 p=l p>p

where P is the number of breeds involved in the founderegation, f:) is the proportion of
genes of the animal coming from breed, j andk are the sire and the dam of animal

ek _ : : :
f f, (f f;) are the proportion of genes of the sire (dam)ingnfrom breedp andp’,

. 2
respectively,o,

is the additive variance of breqy and o—f,p. is the segregation variance
between breedp andp’. Except for terms involving the segregation vares) expression
(29) is equivalent to the expression given by K|2886) for the additive variance of a
crossbred individual. Thus, Elzo’s formula giveg ttame value of additive variance for a
crossbred individual than (29) only when both ptseare purebreds since the segregations
terms are equal to zero fon Erossbreds. If additive variance of a crossbrenahnis
computed as described in (29), the same rulesrgaufebred populations (Henderson, 1976)
can be used to obtain covariances between crosselatives. So, the additive covariance

between two crossbred related animaladi’ can be computed as:
Cov(a,a)= % [Cov(aj .a,)+Cov(a,.a)| (30)

which is the average covariance between additilgegafor animal’ and the parentsandk

of animali. Lo et al (1993) provided rules to build a single additoavariance matrixG in
which each animal is allowed to have unique breedposition and each breed has individual
genetic variance. Furthermore, these authors aispoped an efficient method to calculate
directly G™, closely derived from the conventional rules tatail A™. This particular
definition of G allows a multi-breed population to be analysedaasonventional animal

model (7) and then can be used in conventional @MaME.
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Nonetheless, due to the blending of breed-speaifid segregation variances int® (29),
some difficulties can be encountered to estimategémetic (co)variance components for the
multi-breed animal models (Birchmeiet al, 2002; Cardoso and Tempelman, 2004) and
when (co)variance components are estimated, itshysectice can be numerically expensive.
In response to this problem, Garcia-Cortés and T2006) proposed to decompo&e by
source of variability as following:

G=2 A0+ D> A0y 31)
p

p pp

where A/ and A , are the partial additive relationship matrices daepure breeds and

segregation terms, respectlvelzyf, is the additive variance of breqy and o, is the

segregation variance between breedsdp’. The covariance structure of additive values (
the relationships matrices) is built externally iasa conventional animal model (8), thus
supplying a much simpler formulation for geneticiaace components estimation, which is

easy to assimilate with the estimation techniqwedl@ble in general purpose software.

As a result, a multi-breed animal model using #pscific decomposition o can be written

as:

y:Xb+Zzap +Zzzaw’+e (32)
P

p pp

wherea, anda,, are vectors of additive valueise{ EBV) split by origin of variability. The

vectorsy, b, ande and the known incidence matric¥sand Z were described in (7). The

multi-breed animal model displayed in (32) is, #iere, a conventional animal model with
multiple genetic random effects such as that deedrin “Maternal animal model” section but

there is no covariance between these genetic efie¢B2).
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Assuming a case with two pure breeds (breeds ABanthe model (32) becomes:
y=Xb+Za,+Za; +Za,; +e (33)

in which a, , a; and a,; are the additive values split by origin of varlapi The

corresponding MME can be written as:

X'X X'z X'Z X'Z b X'y
Z'X Z'Z+A7, z'z z.z a, | _|zy
Z'X z'Z Z'Z+AM, z'Z a, | |2y (34)
Z'X z'z zz ZZ+Abe A, ] |2y

2

: o,
with 4, =—%
0’)(

As illustrated in (34), each single EB\&) is split into its breed-specific componenés, (and
ag) and breed segregation componeat,) being each of these components random effects

with specific relationship matriced ,, Agand A ,;, respectively. These components are

assumed to be uncorrelated.

The main difference between the model proposeddrgi@ Cortés and Toro (2006) and other
models involving, for instance, permanent environtakeffects (14), is the particular nature
of the partial relationship matrices. In fact, t@mplete additive values in the conventional
animal model are replaced by the partial additiaéues (32-34). The required inverses of
these partial additive relationship matrices in)(®&n be directly obtained by slightly
changing the conventional method to compéfe (Quaas, 1976). The adapted algorithms to
construct directly the inverse of the partial nelaship matrices were provided by Garcia-
Cortés and Toro (2006).

The equivalence of this model (32) with the additone proposed by Lo at. (1993) for
evaluating multi-breed populations has been shompirgcally by Garcia-Cortés and Toro
(2006) and also by Munilla Leguizamon and CantétL(®, which they provided the formal
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derivation using a Bayesian approach. In additibe,latter showed how to extend the model

(32) to include maternal effects.

MULTIPLE-TRAIT APPROACH

As genetic correlations between purebred and credsperformance are lower than 1 for
several economically important traits, a straightfard way to combine performance of
purebred animals with crossbred relatives infororatiould be the use of multiple-trait model
as seen previously, in which purebred and crosgbeeidrmance are treated as different traits

with genetic correlation between them (Swan andgKarn, 1992).

For a two-breed terminal crossbreeding system, &vei van der Werf (1994) described a
combined crossbred and purebred selection methatry s multiple-trait approactvia
reduced animal model. This model, which containso tadditive effects, considers
performance of purebred animals from breeds A arahd@®those from their terminal crosses
AB as three different traits with genetic corredatibetween purebred and crossbred animals.
Thus, the model proposed by Wei and van der W&%4) can be written in matrix notation

as:
a'A
Ya] [Xa 0 07[by] [Z, 0 0 0 " e,
ys 5| 0 X, O ||bg|+|0 0 Z, O QABJ’eB (35)
yAB 0 0 x AB bAB o Z AAB 0 Z B,AB a ° eAB
B,

wherey,andy, are vectors of phenotypic observations for pumdbreom breed A and B,
respectively;y ., is the vector of phenotypic observations for doosds;b,, b, andb,; are
vectors of unknown fixed effects;, anda, are vectors of additive effects of animals in
breed A and B, respectively,,, and a;,; are vectors of additive effects of animals

originating from breed A and B, respectively, foossbred performance;,, e, ande,; are

vectors of residual effectsX and Z are incidence matrices relating observations to
corresponding effects. The use of separate fixExtisfenables capturing the general level of
heterosis in crossbreds. Under a reduced animakimpdrformance of crossbred animals
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(y,) are written in (35) as function of their parentfiditive effects for crossbred
performance i(e. a,,; and a;,;) because the additive values of crossbreds areohot

interest, since not used for breeding in the caserminal crossbreeding system.

This multi-breed model (35) provides two EBV forchapurebred animal: one related to

mating within breedife. a, or a;) and another related to mating to another bregadduce
the crossi(e. a, ,5.0r a5 ,5). Both these EBV are different but correlated hg telationship

between purebred and crossbred performance. Thelratsh assumes different variances in
the two pure breeds and in the crossbreds, whiatften the case in practice, and it also
assumes different covariances among half-sib gralggsendent of the breed of the common
parent. Furthermore, this model allows for low dmneed-specific genetic correlation between
the additive effects of purebreds and crossbredacel the covariance matrix for the additive

effects G) in (35) is assumed to be:

aA JiAA A JAABA A 0 0
G=va aAAB — UAABAA U,ZAB/AAA 20 0 - GA DAA 0 (3(
ag 0 0 OggAs  OpasPs 0 G, UA;
aB,AB 0 0 UB,ABA B JiB/BA B

where 02, and 05, are the additive variances of breed A and B, respsy; o2, and
O%g s are additive variance of breed A and B allelesrivssbreds (AB), respectivelg;, ,q
and oy ., are additive covariances between purebred patantseed A and B and their

crossbred (AB) progenyA , and A are additive relationship matrices for breed A &d
respectively; ands , and G, are the additive covariance matrices of the peelanimals for

breed A and B, respectively.
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The covariance matrix for residualR § in (35) is assumed to be a diagonal matrix:

e.]| |gid O 0
R=vane, |=| 0 o3l O (37)
s 0 0 J

where d?,, o>, and g2, are the residual variances for the three breedpgr¢A, B or AB),

respectively. Residual effects are uncorrelatecdse an individual can only belong to one of
these three groups.

Since crossbreeding also allows exploiting non4adalivariability, like dominance for
instance, and that genetic correlations betweealped and crossbred performance are also
influenced by dominance level, Let al. (1997) have extended the multi-breed model
proposed by Wei and van der Werf (1994) to accdontdominance covariances. Adding
dominance effects into the model (35), it furthdds one equation for each individual in
breed group A, one for each individual in B, ané éor each full-sib family in AB (Leet al,
1997). Their model accounts for all additive andnd@nce covariances when crossbreds are
limited to R, which is the case in a two-breed terminal crassthing system. Therefore, this
model is much simpler in comparison to the modelalbtypes of crossbreds. In fact, theory
involving covariances of multi-way crosses undemdwnce is very complicated because, in
this situation, 25 parameters are needed to mbdsktgenetic covariances between purebred
and crossbred animals, and the model complexitgases as more breeds are involved in the
crossbreeding system (lat al, 1995). While the number of required parametersdsiced to

9 to model genetic covariances (6 additive and B-additive parameters) with the multi-
breed model proposed by I al. (1997) for a two-breed terminal crossbreedingesysivith

no inbreeding.

In comparison with the use of single-breed modwd, use of a multi-breed model as defined
by Lo et al. (1997) is very worthwhile when the interest isbioth purebred and crossbred
evaluations i(e. when genetic correlations between purebred anssbred performance are

low), and when the amount of crossbred informatielative to purebred information is
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substantial. This model is also interesting whemesdraits are recorded on purebreds and

others are only recorded on crossbreds (Lutaagh, 2002).

CONCLUSIONS

Theoretical features of most linear and non-lineaxked models commonly used in the
context of animal breeding and genetic selectiomehbeen summarized in this paper.
Obviously, all of these mixed models can be seinugifferent ways depending upon the trait
to be evaluated, the population to be analysedfitaégoal of the analysis, but also based on
the encountered problems. Thus, it is importargraperly define the analysis model that will
be used thereafter as genetic evaluation modetdeide accurate and useful values of the

genetic merit of animals, and hence ensure aneitigenetic selection system.
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CHAPTER |I1. DEVELOPMENT OF GENETIC EVALUATION

SYSTEMS FOR MATERNALLY INFLUENCED TRAITS






OUTLINE

As discussed in Chapter Il, when traits are infagghnot only by the genotype
and/or the environment of the individual itself,tkalso by either the genotype
and/or environment from its mother, these traits @enoted as being maternally
influenced traits, i.e. traits influenced by matdraffects. All of these effects need
to be considered in models used for the genetituatran of those maternally
influenced traits. It was stated in Chapter Il tthet maternal animal model enables
the estimation of direct additive genetic as wellnaaternal additive genetic and
environmental effects affecting those traits. Astfstep in the research strategy of
this thesis, this chapter focused on the developmigenetic evaluation systems
for maternally influenced traits using appropriateaternal animal models to
provide accurate and useful breeding values fon ldditive effects. To this end,
two studies were undertaken on two maternally eried traits: the first was
conducted using data of calving ease scores frorlowvaHolstein dairy cattle
(Chapters 1lIl.1 and Ill.2), and the second was cetell using data of lamb
survival to weaning from New Zealand sheep (Chalpit&).






CHAPTER |II1.1 GENETIC PARAMETERS FOR DIRECT AND
MATERNAL CALVING EASE IN WALLOON DAIRY CATTLE

BASED ON LINEAR AND THRESHOLD MODELS

Based on: Vanderick, S., T. Troch, A. Gillon, G. @leux, and N. Gengler. 2014. Genetic
parameters for direct and maternal calving ease \WMalloon dairy cattle based on linear and
threshold models. J. Anim. Breed. Genet. 131:513152






OUTLINE

Calving ease is an important functional trait inrgl@attle because it is related to
the production, fertility and general health durithg subsequent lactation, and
hence can affect negatively economic profitabifitgomplications arise at calving
time. Until recently, there was no genetic evalhmatdf this trait in Wallonia.
Therefore; there was an obvious consensus thanhetigeevaluation system for
calving ease in Walloon dairy cattle was neededc#lging ease is a maternally
influenced trait two individuals need to be consadk the cow and her caife. the
maternal and the direct effects of calving easepeetively. Thus, a maternal
animal model as described in Chapter Il was reduikdoreover, according to the
categorical nature of this trait, theoreticallytheeshold model is more appropriate
than linear model, though in practice it seemsedhetittle to be gained by its use.
Therefore, the objective of the present chapter wasssess the use of linear and
threshold maternal animal models to analyse caleasge scores from the Holstein
dairy cattle in the Walloon Region of Belgium. Ejréco) variance components
and derived genetic parameters for direct and malteadditive effects were
estimated by using linear and threshold maternah@rmodels. Then, the relative
merits of models were compared in terms of preckcability.



ABSTRACT

Calving ease scores from Holstein dairy cattle he ¥Walloon Region of Belgium were
analysed using univariate linear and threshold ahimodels. Variance components and
derived genetic parameters were estimated fromta 2 including 33 155 calving records.
Included in the models were season, herd and sealbk age of dam classesgroup of
calvings interaction as fixed effects, herd/ear of calving, maternal permanent environment
and animal direct and maternal additive geneti@aadom effects. Models were fitted with the
genetic correlation between direct and maternalti@ddgenetic effects either estimated or
constrained to zero. Direct heritability (h?) falwing ease was about 8% with linear models
and about 12% with threshold models. Maternal &bilities were about 2% and 4%,
respectively. Genetic correlation between direct amaternal additive effects was found to be
not significantly different from zero. Models wetempared in terms of goodness of fit and
predictive ability. Criteria of comparison such m&an squared error, correlation between
observed and predicted calving ease scores asawelletween estimated breeding values
(EBV) were estimated from 85 118 calving recordie Tresults provided few differences
between linear and threshold models even thougtelations between EBV from subsets of
data for sires with progeny from linear model wé&&%6 and 23 % greater for direct and
maternal genetic effects, respectively, than froneshold model. For the purpose of genetic
evaluation for calving ease in Walloon Holsteinrgaiattle, the linear animal model without

covariance between direct and maternal additivec&ffwas found to be the best choice.

Keywords: dystocia, animal model, Holstein, heritability
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INTRODUCTION

All dairy cows must give birth in order to beginoducing milk. In most cases, calving
proceeds normally but problems may happen beforudng the calving and cause various
problems. The major problem is dystocia which maydbfined as calving difficulty resulting
from prolonged spontaneous calving or prolongedeawere assisted extraction. Mee (2008)
provides a good review of the different types o$tdgia and their associated risk factors in
dairy cattle. Calving complications impact prodanti fertility, and cow and calf morbidity
and mortality and thus can negatively affect ecangonofitability in dairy herds (Dekkers,
1994; Dematawena and Berger, 1997; Lépez de Mawetal, 2007b; Eaglert al, 2011).
Calving-related infections affect also indirectlyrhan health as they require increased use of
antibiotics, leading potentially to microbial rdsisce. Besides, animal welfare is
compromised by these calving complications and sasemer acceptability of dairy

production systems (Mee, 2008).

Calving ease measures the presence or absencestotidyand its intensity. This trait is
generally scored on a categorical scale by thedereehich makes it more sensitive to
subjectivity (Dekkers, 1994). Furthermore, thisittig affected by two additive genetic
components, the calf's contribution (direct effeety. arising from size, birth weight,

hormonal balance...) and the dam’s contribution (nmafleeffect;e.g. arising from pelvic

opening, uterine influence of the dam on her cdifith weight...). The direct additive effect
is expressed only once, when the calf is born, edeerthe maternal additive effect is

expressed several times, each time a cow calves.

From a theoretical point of view, threshold modate preferred over linear models as a
method for genetic analysis of such categoricaitstrdisplaying a discrete probability
distribution (Gianola, 1982) and this was confirnvath simulated data by Hoeschele (1988).
However, several studies in sheep, beef and daitijecusing field data found no clear
advantage of threshold over linear models (Welled &ianola, 1989; Olesest al, 1994;
Matos et al, 1997; Varoneet al, 1999; Ramirez-Valverdet al, 2001; Phocas and Laloég,
2003). Some of these studies reported greater catmmal requirements with threshold than
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with linear models. This might explain why most thfe routine genetic evaluations of
categorical calving traits are based on linear rsodkmterbull, 2013) although such data
violate the assumption of normality. Calving tragie evaluated with a threshold approach
only in France, Italy and the USA (Ducrocq, 200@n@vesiet al, 2003; Wigganst al,
2003).

Models used for routine genetic evaluation of caiviease range from sire (-maternal
grandsire) models to animal models in univariatanitiple-trait form that either allow a
covariance between direct and maternal genetictsffa fix this covariance to zero (Interbull,
2013). Many threshold models are implemented aseleawith sire-maternal grandsire effects
to avoid convergence problems and biased estimafigenetic parameters due to the well-
known extreme category problem, particularly in phesence of numerous fixed effect classes
(Luo et al, 2001). However, because some cows with calveiegnds that also have their own
direct calving records as a calf, an animal modstnss more appropriate to include
information on the cows themselves and so geneditestly EBV for direct and maternal

effects for bulls and cows.

The purpose of this research was to compare linadr threshold animal models for the
prediction of EBV for calving ease and to estimtdte genetic parameters for direct and
maternal additive effects for calving ease in thalldén Holstein dairy cattle. Models were
compared on the basis of their predictive abiliiesletermine the most suitable model for

current Walloon data.
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MATERIALS AND METHODS

DATA

In the Walloon Region of Belgium, calving ease ¢sred by dairy breeders on a voluntary
basis and collected by the Walloon Breeding Assmtiag AWE). Calving ease scores range
from 1 to 4 (1. caesarean and embryotomy, 2. hatll . easy pull, and 4. normal). The
original data set comprised 138 144 calving rec@md presented a typical distribution of
calving ease; most of the records fell into catggb(69%) and few records into category 1
(approximately 1%). From this original data setptdata sets were created, one for the
(co)variance components estimation (data set |) @mel for the validation/comparison of
models (data set Il). Records from Holstein calves between 2000 and 2012 were used for

this research and data editing was almost iderfiicddoth data sets.

Data were edited to remove all suspect recordsctwhicluded records with out-of-range
values for calving ease or missing information teddato the factors in the statistical model,
including animal identification, birth date, herdentification, calving date, parity number,
calving scores and sex of calf. Only records omlsifborn calves were used. Records were
limited to first five parities. Calving age of damsas restricted to be between 21 and 48
months for primiparous (1st parity) cows and betw8& and 142 months for multiparous
(2nd to 5th parities) cows. Percentage of recoodsidms outside these ages was relatively
small (<0.2%). Data quality depends highly on déirgeders’ own judgement to assign scores
for calving ease. Therefore, only herds with adéad deviation for scores >0.05 were kept to
avoid herds where breeders put all scores in thee gategory. In addition to all the general

edits, some specific edits were applied to each skt

For the data set I, all calves had to have siredamd identified and every dam had to have a
calving record in first parity. Herds displayinggethan four first calvings on average per year
were deleted. In each herd, only data from contisucalvings per dam were keptd.if a
dam displayed records from its first, second andtfocalvings only records from first and
second calvings were kept). A final edit requiredawerage more than one calving per dam

per herd. The objective was to create a reliabta dat without unnecessarily reducing the

71



CHAPTER I11.1

available data. The final data set | included rdsdrom 33 155 calves born in 492 Walloon
herds from 2215 sires, 25 240 dams and 2031 méatgraadsires. The total number of

animals including ancestors without records was320

For the data set Il, all calves had to have oniy d#entified and herds had to display at least,
on average, four calvings per year calculated fthenfirst two parities. The final data set Il
included records from 85 118 calves originatingrfr862 Walloon herds, from 3148 sires, 62
265 dams and 3352 maternal grandsires. The totabauof animals in the pedigree was 233
882.

For both data sets, calving ages of dam were divid® eleven classes: 21-24, 25-26, 27—
28, 29-30, 31-35, 36-38, 39-48, 49-56, 57-65, 6@&n81lmore than 81 months at calving.
Calving seasons were divided into four seasonstewseason from January to March, spring
season from April to June, summer season from tdulyeptember and autumn season from

October to December.

MODELS OF ANALYSIS

All the fitted models included the three followifiged effects: season effects, herd effects
and combined effects of sex of calf by age of désses by group of parities (two groups:

first parity and the 2nd to the 5th parity).
Univariate Linear Animal Model

Calving ease was modelled as a continuous trait:

Yee =XB+Z,h+Z a+Z m+Z p+e (38)

wherey.. is a vector of observed calving ease scogeis, a vector of fixed effectd) is a

vector of random herd year of calving effects which were included to aadt for the
variability in the frequency of dystocia among lesahd years within herds, is a vector of
random direct additive genetic effects; is a vector of random maternal additive genetic

effects,p is a vector of random permanent maternal envirowaheeffects;X , Z,,, Z,, Z,,
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andZ, are incidences matrices linking observations waspective effects; anel is a vector

of residual effects. There might be some statispcablems and convergence issues with the
estimation of fixed herc year of calving with a threshold model when deghvith herdx
year of small size or with some scores not regsldre. the extreme category problem). A
random herdk year effect was fitted to avoid this problem (Mazt al, 1989). Even if this

issue is less a problem in linear models, the saméom herd« year effect was kept.

Model indicated as Model L1 was fitted with an estied genetic correlation between direct
and maternal additive genetic effects. Model indidaas Model L2 was fitted with a genetic

correlation between genetic effects constrainezeto.
Univariate Threshold Animal Model

The same fixed and random effects as in the limeadel were considered, but this model
assumed the existence of an underlying unobservabiaal variable - that is, a liabilityL() -

modelling the response of calving ease with thiewahg distribution:

f@gq:fjuw$nzﬂ[uu<muwazn

+H(t <L <t,)1(Yeg =2) (39)
+I(t, <L <t3)|(yCEi =3)

1L > 1) (Yer, =4)
where y.. are the observed calving ease scared, andt; are thresholds that categorize the

four categories of response ahds an indicator function that takes value 1 if ttwndition
specified is true and 0 otherwise. A response givan category is observed, if the actual

value of liability falls between the thresholdsidefg the appropriate category.

Just as Wanget al. (1997), threshold$, andt, were assumed to be known afdwas

assumed to be unknown in order to simplify the damgscheme rather than the one defined

by setting the residual variance of the categotti@at to one. Therefore, the valuestpfand
t, were based on the observed frequencies of cabasg scores in the considered categories,

and residual variance was assumed to be unknown.
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Model indicated as Model T1 was fitted with an mstied genetic correlation between direct
and maternal additive genetic effects. Model indideas Model T2 was fitted with a genetic

correlation between genetic effects constrainezkto.

Variance components were estimated based on tre s#dtl, for the four models by a
Bayesian approach using the Gibbs sampling algorithith flat priors for (co)variances.
Gibbs sampling was used to obtain the marginal epst distribution for variance
components of each random effect from the modeh fA®0 000 samples, after discarding
50 000 samples as the burn-in period. The statyostage was confirmed by graphical
inspection of plots of sampled valuesiterations. Every fifth sample was retained to catep
mean and standard deviation of the marginal pastaistribution. The estimation and the
post-Gibbs analysis were performed using prograislk provided by Ignacy Misztal
(Misztal et al, 2002).

COMPARISON OF MODELS

Models were compared on their goodness of fit lad an their ability to predict ‘future data’.
For this purpose, the entire data set Il was spid two parts. One-half of the calving ease
records was randomly set to missing in the firsadaibset and the remaining one-half was set
to missing in the second data subset. So, eacingaiase record was only present in one of
the two subsets. For these two subsets, directvatdrnal EBV and expectations of calving
ease score were computed with a BLUP approachifead and threshold models. This

strategy was repeated five times in order to gestésetsthat is five paired subsets.

Within each model and for each of the ten data eisbsnean square errors (MSE) were
computed between expectations from the predictisteilution and the observed calving ease

records which had been randomly set to missing.

74



LINEAR AND THRESHOLD MATERNAL MODELS FOR CALVING EASE

The MSE was defined for linear model as:

n 2

MSE= %Z(yCEi - 9CEi) (40)

i=1

where y.. and Y. correspond to the observed and predicted calvinge escores,

respectively;nis the number of data points in a data subset.

With the threshold model, MSE was computed, baseldopez de Maturanet al, (2009) as:

n ncat 2
MSE = %(2 Yeei — 2 CX PCij (41)

i=1 Cc=1

where the probabilityR,) that observationfalls in categoryC was computed as:

PCi - q{tc _ALCEi j _ CD( tC—l j LCEij (42)
g,

0- e

e

with ®() is the cumulative distribution function of a noinzariable evaluated dt); 1. is the

inferred value of the appropriate threshold, dngd is the posterior mean of the liability to

calving ease for an individual

Within each model and for each of the ten data esbsPearson’s correlation between

observed and predicted scores was calculated as:

. co Y
e See) = e Tes)

Yee ~ Yee

where cov(y.e, Je) is the estimate of covariance between the wbdeand predicted calving
ease scores and, and o are the estimates of standard deviations of okseand

predicted calving ease scores, respectively.
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Three groups of sires with progeny were createea@pg on their accuracy as follows: low:
sires >0< 50 progeny, medium: sires >50100 progeny and high: sires >100 progeny. For
each of these three groups of sires, correlatietsden sire EBV were calculated for each of
the five paired data subsets within each model ideo to assess model prediction
performance. A higher correlation estimate implee@etter stability of the model to predict

EBYV for animals whose records were randomly setising.

Finally, Spearman’s rank correlations were complsetveen sire EBV estimated from linear

model and from threshold model for sires with proge
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RESULTS AND DISCUSSION

The descriptive statistics of the data set | anth dset Il are displayed in Table 1.

Disproportionate sex ratios were observed in regothere were fewer male calves than
female calves in both data sets. Further investigasuggested there may be a bias in
recording of the sex of the calf, as some breedester to record female calves than male
calves due to the difference in value between seraatl a female calf in dairy cattle. This

recording bias in the number of female and maleesakcan lead to an underreporting of
difficulty to calve (score < 4) since the calvinfjroale calves is known to be more difficult

(Mee, 2008).

Table 1. Summary of edited data set used to estimate (dajya@ components (data set 1) and
edited data set used for validation of models (datdl)

Data set | Data set Il
Item No. of Percentage No. of Percentage
observations observations
Final data file 33155 - 85118 -
Female calves 26 177 78.9 66 511 78.1
Male calves 6978 21.1 18 511 21.9
Final pedigree file 120 374 - 233 882 -
Herds 492 - 862 -
Sires with progeny records 2215 - 3148 -
> 0< 50 progeny 2067 - 2785 -
> 50<100 progeny 90 - 180 -
> 100 progeny 58 - 183 -
Dams 25 240 - 62 265 -
Maternal grandsires 2031 - 3352 -
Calving ease
1. Caesarean and embryotomy 443 1.3 781 0.9
2. Hard pull 2179 6.6 4006 4.7
3. Easy pull 10 114 30.5 23 461 27.6
4. Normal 20 419 61.6 56 870 66.8
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(CO)VARIANCE COMPONENTS AND DERIVED GENETIC PARAMETERS

Results for the (co)variance components and demegrbtic parameters are reported in Table
2. Parameters generally were significantly différieam zero because posterior means were
more than two posterior standard deviations fromo,zexcept for genetic correlation between
direct and maternal additive genetic effects fordeloL1 and Model T1life. models fitted

with an estimated genetic correlation).

Table 2. Posterior mean (PM) and posterior standard dewia{leSD) of (co)variance
components and related genetic parameters estimétedach of four models

Model L Model L2 Model TE Model T2
Parametér PM PSD PM PSD PM PSD PM PSD
Oﬁ 0.042 0.002 0.042 0.002 0.146 .012 0.146 0.012
Oﬁ 0.027 0.004 0.028 0.004 0.085 0.015 0.082 0.013
Uri 0.008 0.003 0.009 0.002 0.027 0.008 0.024 0.008
02p 0.018 0.004 0.017 0.005 0.035 0.012 0.034 0.010
ol 0.269 0.005 0.269 0.005 0.411 0.049 0.413 0.048
r,(a,m) 0.088 0.194 - - -0.071 0.190 - -
h,j 0.074 0.012 0.078 0.012 0.121 0.024 0.117 0.020
hri 0.023 0.007 0.024 0.007 0.039 0.012 0.034 0.011
C, 12% 12% 21% 21%
C, 5% 5% 5% 5%
C. 74% 74% 59% 59%

&Model L1 is the linear animal model with estimatemlariance, Model L2 is the linear animal modelhwit
covariance constrained to zero, Model T1 is theghold animal model with estimated covariance aoddélT?2
is the threshold animal model with covariance a@mséd to zero

® The termsaﬁ is the herdx year of calving variancea's is the direct additive genetic varianc@iis the
maternal additive genetic varianaafﬁ is the permanent maternal environmental varianﬁejs the residual

variance, (J(a m) is the genetic correlation between direct and mateeffects,h: and hri are the direct and the
maternal heritabilities, respectivelZ, ,C and C, are the herdk year of calving fraction, permanent maternal
environmental fraction and residual fraction in geenotypic variance, respectively.
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The additive genetic variance due to direct effeeis greater than that due to maternal effects
for all models. On average, direct heritabilitiesrevapproximately three to four times as large
as maternal heritabilities. All heritabilities estited with all models were within the range of
previously published estimates of this trait inrganattle, which ranged from 0.03 to 0.17 for
direct h2 and from 0.02 to 0.12 for maternal h? [[dfeand Gianola, 1989; Steinboek al,
2003; Wigganset al, 2003; Lopez de Maturanat al, 2007a; Eagleret al, 2012). These
estimates are not directly comparable becauseffefeint models (animalssire and maternal
grandsire, lineavsthreshold, univariatgs bivariate) that were used. However, most previous

estimates tended to show that direct h? was gré&sdermaternal h2.

Effects of herdx year of calving represent differences among hart$ years of calving
which can be partly due to differences in subjectseoring of calving ease. Fitting hetd
year effects as random allows more effective us¢hefdata when applying the threshold
model. The herck year of calving effects represented 12 and 21%h@fphenotypic variance
for the linear and threshold models, respectivelifich was the largest contributor to the

phenotypic variance after the residual effectsgiid 59%).

The maternal permanent environment effects reptesedo of the phenotypic variance in
each model and were greater than the genetic nahteffiects. Preliminary analyses based on
the current data showed that maternal genetic veggatended to be overestimated by models
that ignored permanent environmental effects. Estsof variance components and derived
genetic parameters were similar within model tylr@eér vs threshold). A positive genetic
correlation was found with Model L1 and a negatwe with Model T1 but in both cases the
genetic correlation was not significant. Thereforeseemed more appropriate to consider no
genetic correlation between direct and maternalti@ddgenetic effects in the subsequent
stage of this study.

The analysis of calving ease with linear modelsldgé variance estimates that were
consistently smaller than those obtained with tho&b models. Particularly, variance of herd
x year of calving effects showed a marked decrease threshold models to linear models.
Threshold model h? estimates were greater thaarime®del h? estimates (0.1$20.078 and
0.034 vs 0.024 for direct and maternal heritabilities, redpely) but these heritabilities
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cannot be directly compared since they were estidhain different scales; on a visible
probability scale and on an underlying normal sclde linear and threshold models,
respectively. Furthermore, h2 estimates are freqpelependent when a linear model is used
to fit categorical traits. Dempster and Lerner (@O%roposed transformations to make
heritabilities comparable. As reported by sevetadies, higher heritabilities are usually

expected with threshold models than linear modails ét al, 1999; Phocas and Laloé&, 2003).

The best fit of the model, measured by the pergentd residual variance in the phenotypic
variance, was achieved for threshold models, appately 59% against 74% with linear

models.

COMPARISON OF MODELS

The MSE for Model L2 and Model T2 used to prediet talving ease records set to missing
in the ten data subsets is provided in Table 3. doavith the smaller MSE had better
predictive ability. In general, MSE was similar ftwoth models with only very small
differences. Based on the average MSE, the thréshotlel did not perform better than linear
model (0.294vs 0.293). These results were consistent with thodeirmdd by Varonaet al.
(1999) who also used differences in MSE as a aiteior comparison of models. They found
small differences between univariate linear andghold models based on field and simulated

data in beef cattle.

Table 3 also displays Pearson’s correlation esémbetween observed and predicted calving
ease scores by Models L2 and T2 for the ten sub&asilar to MSE, differences in

correlation between models were very small. Forsablsets, the threshold model performed
slightly better than the linear model (0.5@620.497). These results were expected since the

threshold model is considered as being strateggiiodel to fit such categorical traits.
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Table 3. Mean squared error (MSE) and Pearson's correlasbmates between observed and
predicted calving ease scores for Model L2 and M@&@dor the ten replicates

MSE Correlation
Subset Model L2 Model TZ Model L2 Model T2
1 0.292 0.292 0.497 0.502
2 0.296 0.297 0.493 0.497
3 0.295 0.294 0.497 0.503
4 0.292 0.293 0.495 0.499
5 0.291 0.292 0.501 0.507
6 0.294 0.295 0.494 0.498
7 0.293 0.293 0.494 0.500
8 0.292 0.293 0.501 0.506
9 0.292 0.292 0.494 0.500
10 0.294 0.294 0.499 0.505
Average 0.293 0.294 0.497 0.502

Model L2 is the linear animal model with covariarcamstrained to zero and Model T2 is the threshwoidhal
model with covariance constrained to zero

Table 4 contains the average correlation estimédseen the five paired data subsets for
genetic direct and maternal calving ease EBV frood# L2 and Model T2 considering sires
with 50 or fewer progeny (low-accuracy sires), sitgith between 51 and 100 progeny
(medium-accuracy sires), and sires with more th@d frogeny (high-accuracy sires). The
differences between linear and threshold modelsedsed as the number of progeny records
available for sires increased, especially for ddfeces between sire EBV for maternal effects.
So, if the number of calving records per sire mitied, differences in the ranking of sires
might occur using the linears threshold model. For all groups of sires, greateretations
were observed with Model L2 than with Model T2 tbrect and maternal genetic effects. On
average, correlations from the linear model wereadd@ 23% higher than from the threshold
model for direct and maternal EBV, respectivelyu3hthe linear model appeared to have a
higher stability for predicting EBV of animals wheosecords were randomly set to missing.

These results were not in line with those obtaimeteef cattle by Ramirez-Valverds al.
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(2001) who found a better stability with a threshapproach. As expected, lower accuracy

was observed for maternal effects.

Table 4. Average, standard deviation (SD), minimum and maxmof correlation estimates
between split data sétfor calving ease breeding values of sires wittgpry (N=3148) from
Model L2 and Model T2

Model LZ

Direct genetic effect Maternal genetic effect

Category Mean SD Min Max Mean SD Min Max

Sires > (< 50 0.635 0.028 0.604 0.663 0.465 0.057 0.369 ©60.50
Sires > 50100 0.647 0.047 0.605 0.698 0.369 0.037 0.329 0.407
Sires > 100 0.689 0.030 0.644 0.721 0.394 0.073 0.290 0.460

Model TZ

Sires > (< 50 0.507 0.030 0.475 0.536 0.360 0.047 0.279 20.39
Sires > 50100 0.549 0.057 0478 0.610 0.282 0.032 0.238 0.316
Sires > 100 0.599 0.038 0538 0.634 0.334 0.069 0.226 0.406

2In five paired data subsets.

P Sires > < 50: sires with 50 or fewer progeny records in diéa sires > 50<100: sires with 51-100 progeny
records in data file, sires > 100: sires with mituien 100 progeny records in data file.

¢ Model L2 is the linear animal model with covariarmnstrained to zero and Model T2 is the threshalthal
model with covariance constrained to zero

The most likely reasons for the linear model shawnéonsistently better results could be due
to the fact that in the threshold model additigreameters (thresholds) needs to be estimated
leading potentially to lower estimation accuracespecially for animal models. The threshold
model fitted slightly better, explained more vaganhowever, EBV were less stable between

paired subsets especially for maternal additiveegierffects.

Fitting herdx year effect as random can lead to biased estinwtdsBV (Visscher and
Goddard, 1993). Phocas and Laloé (2003) statedwhah a non-random association exists

between sires and contemporary groups, the cdoelaetween true and predicted EBV can
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be affected. However, it is unsure to what deghée rion-random association has to exist to

create this behaviour.

Spearman’s rank correlations between sire EBV fikdmalel L2 and Model T2 were 0.972 and
0.971 for direct and maternal calving ease EBVpeesvely, indicating that the ranking of
sires were nearly identical between the lineartaedhreshold models. This was in agreement
with results from similar comparisons involving @gorical traits in cattle (Wellest al, 1988;
Clutteret al, 1989; Ramirez-Valverdet al, 2001) and in sheep (Olesenal, 1994; Matost

al., 1997).

CONCLUSIONS

(Co)variance components and derived genetic pasamfgdr calving ease were estimated with
univariate linear and threshold animal models. @irect-maternal genetic correlation was
positive for the linear model and negative for ttieeshold model, but neither was
significantly different from zero. The h? estimat@ere consistent with those found in other
studies on calving ease in dairy cattle. The thokesmodels showed a better goodness of fit
than linear models. However, in terms of predicabdity, no clear advantage of the threshold
models over the linear models was found with oda.daAccordingly, it would be preferable
and more technically feasible to use a linear mealgderform genetic evaluation of calving
ease. Thus, the linear animal model without conagabetween direct and maternal additive
genetic effectsife. Model L2) would be the model of choice to impler#re routine genetic

evaluation of calving ease for the Walloon dairitlea

ACKNOWLEDGMENTS

The Ministry of Agriculture of the Walloon Regiori Belgium (Service Public de Wallonie,
Direction générale opérationnelle “Agriculture, Ragrces naturelles et Environnement) is
acknowledged for its financial support. The authgratefully acknowledge the technical

support provided by the Walloon Breeding Assocrat{€iney, Belgium). Computational

83



CHAPTER I11.1

resources have been provided by the ConsortiunEdagpements de Calcul Intensif (CECI)
funded by the National Fund for Scientific ResedfelR.S.-FNRS, Brussels, Belgium) under
Grant No. 2.5020.11. The authors are grateful éoaghonymous reviewers for their helpful

suggestions and comments on the manuscript.

LITERATURE CITED

Canavesi, F., S. Biffani, and A.B. Samoré. 2003visteg the genetic evaluation for calving
ease in the Italian Holstein Friesian. InterbulllB80:82.

Clutter, A.C., P.J. Berger, and J.M. Mattison. 1988reshold model analysis of dystocia in
dairy cattle when progeny information is limitedD&iry Sci. 72:3264-3272.

Dekkers, J.C.M. 1994. Optimal breeding strategaschlving ease. J. Dairy Sci. 77:3441—
3453.

Dematawena, C.M.B., and P.J. Berger. 1997. Efféaystocia on yield, fertility, and cow
losses and an economic evaluation of dystocia sdoreHolsteins. J. Dairy Sci. 80:754—
761.

Dempster, E.R., and I.M. Lerner. 1950. Heritabibfythreshold characters. Genetics. 35:212.

Ducrocq, V. 2000. Calving ease evaluation of Fredelry bulls with a heteroskedastic
threshold model with direct and maternal effecigerbull Bull. 25:123.

Eaglen, S.A.E., M.P. Coffey, J.A. Woolliams, R. Mey and E. Wall. 2011. Phenotypic
effects of calving ease on the subsequent feralitgt milk production of dam and calf in
UK Holstein-Friesian heifers. J. Dairy Sci. 94:545%323. doi:10.3168/jds.2010-4040.

Eaglen, S.A.E., M.P. Coffey, J.A. Woolliams, andvizall. 2012. Evaluating alternate models
to estimate genetic parameters of calving traitdnited Kingdom Holstein-Friesian dairy
cattle. Genet. Sel. Evol. 44:1-13.

Gianola, D. 1982. Theory and analysis of thresloblaracters. J. Anim. Sci. 54:1079-1096.

Hoeschele, 1. 1988. Comparison of “Maximum A-PasterEstimation” and “Quasi Best
Linear Unbiased Prediction” with threshold charestd. Anim. Breed. Genet. 105:337—
361. doi:10.1111/j.1439-0388.1988.tb00307.X.

Interbull. 2013. Description of National Geneticdlivations Systems for dairy cattle traits as
applied in different Interbull member countries.

Lépez de Maturana, E.L., D. Gianola, G.J.M. Rosd, I&.A. Weigel. 2009. Predictive ability
of models for calving difficulty in US Holsteins. Anim. Breed. Genet. 126:179-188.
doi:10.1111/j.1439-0388.2008.00792.x.

Lépez de Maturana, E.L., A. Legarra, L. Varona, &dJgarte. 2007a. Analysis of Fertility
and Dystocia in Holsteins Using Recursive Model$iamdle Censored and Categorical
Data. J. Dairy Sci. 90:2012—-2024. doi:10.3168/j0852442.

Lépez de Maturana, E.L., E. Ugarte, and O. GonzRleado. 2007b. Impact of Calving Ease
on Functional Longevity and Herd Amortization Costs Basque Holsteins Using
Survival Analysis. J. Dairy Sci. 90:4451-4457. 86i3168/jds.2006-734.

84



LINEAR AND THRESHOLD MATERNAL MODELS FOR CALVING EASE

Luo, M.F., P.J. Boettcher, J.C.M. Dekkers, and L3Rhaeffer. 1999. Bayesian analysis for
estimation of genetic parameters of calving easkesaitibirth for Canadian Holsteins. J.
Dairy Sci. 82:1848—e1.

Luo, M.F., P.J. Boettcher, L.R. Schaeffer, and M.(Dekkers. 2001. Bayesian inference for
categorical traits with an application to varianm@mponent estimation. J. Dairy Sci.
84:694-704.

Matos, C.A., D.L. Thomas, D. Gianola, M. Perez-Bog¢iand L.D. Young. 1997. Genetic
analysis of discrete reproductive traits in shesimgilinear and non-linear models: 1.
Goodness of fit and predictive ability. J. Animi.St%:88-94.

Mee, J.F. 2008. Prevalence and risk factors fotodyes in dairy cattle: A review. Vet. J.
176:93-101. doi:10.1016/j.tvjl.2007.12.032.

Misztal, 1., D. Gianola, and J.L. Foulley. 1989.muuting aspects of a non-linear method of
sire evaluation for categorical data. J. Dairy 32i1557-1568.

Misztal, 1., S. Tsuruta, B. Auvray, and J.M. Led02. BLUPF90 and related programs
(BGF90). Montpellier, France. 743-744.

Olesen, I., M. Perez-Enciso, D. Gianola, and D homas. 1994. A comparison of normal and
nonnormal mixed models for number of lambs borMNorwegian sheep. J. Anim. Sci.
72:1166-1173.

Phocas, F., and D. Laloé. 2003. Evaluation modeld genetic parameters for calving
difficulty in beef cattle. J. Anim. Sci. 81:933-938

Ramirez-Valverde, R., I. Misztal, and J.K. Bertra@@01. Comparison of threshold linear
and animalvs sire models for predicting direct and maternal gieneffects on calving
difficulty in beef cattle. J. Anim. Sci. 79:333-338

Steinbock, L., A. Nasholm, B. Berglund, K. Johamssand J. Philipsson. 2003. Genetic
effects on stillbirth and calving difficulty in Swesh Holsteins at first and second calving.
J. Dairy Sci. 86:2228-2235.

Varona, L., I. Misztal, and J.K. Bertrand. 1999rdshold-linear versus linear-linear analysis
of birth weight and calving ease using an animatleioll. Comparison of models. J.
Anim. Sci. 77:2003-2007.

Visscher, P.M., and M.E. Goddard. 1993. Fixed amttiom contemporary groups. J. Dairy
Sci. 76:1444-1454.

Wang, C.S., R.L. Quaas, and E.J. Pollak. 1997. 8ageanalysis of calving ease scores and
birth weights. Genet. Sel. Evol. 29:117.

Weller, J.1., and D. Gianola. 1989. Models for genanalysis of dystocia and calf mortality.
J. Dairy Sci. 72:2633—-2643.

Weller, J.1., I. Misztal, and D. Gianola. 1988. @#a analysis of dystocia and calf mortality in
Israeli-Holsteins by threshold and linear model®adiry Sci. 71:2491-2501.

Wiggans, G.R., |. Misztal, and C.P. Van Tassell.020 Calving Ease (Co)Variance
Components for a Sire-Maternal Grandsire ThresMudel. J. Dairy Sci. 86:1845-1848.

85






CHAPTER II1.2 GENETIC EVALUATION OF CALVING EASE FOR

WALLOON HOLSTEIN DAIRY CATTLE

Based on: Vanderick, S., T. Troch, A. Gillon, G. @ileux, P. Faux, and N. Gengler. 2013.
Genetic evaluation of calving ease for Walloon Ht dairy cattle. NTERBULL Bull. 47:32-37.






OUTLINE

Results presented in the Chapter Ill.1 providedl@wie that there was no clear
advantage to use a threshold maternal animal nratdleér than a linear maternal
animal model to evaluate calving ease for Walloaistdin dairy cattle. However,
in terms of technically feasibility, the linear neddseemed more suitable to
implement the routine genetic evaluation of calvemge for the Walloon dairy
cattle, thereby enabling to participate to the ot international evaluations for
this trait. Therefore, this chapter addressed thplamentation in routine of this
model for the genetic evaluation of calving easprtivide, to Walloon breeders and
producers, useful breeding values for direct antemal effects of calving ease for
their Holstein animals in order to help them initlselection and mating decisions.



ABSTRACT

Calving complications have an incidence on the epwoa profitability of dairy herds. In the
Walloon Region of Belgium, calving ease data recmyds being done on voluntary basis
since 2000. This allows now the implementation ajemetic evaluation of Holstein dairy
cattle addressing the need of dairy breeders tctséulls in order to reduce frequency of
calving problems. Calving ease scores were analysew) univariate linear animal models,
which were fitted with the genetic correlation beem direct and maternal additive genetic
effects either estimated or constrained to zeraiaviae components and related genetic
parameters were estimated from a data set inclu@n@55 calving records. Included in the
models were fixed season effects, fixed herd effand fixed sex of calk age of dam classes
x group of calvings interaction effects, random hergear of calving effects, random
maternal permanent environment effects, and randomnal direct and maternal additive
genetic effects. For both models, direct and materaritabilities for calving ease were about
8 and 2%, respectively. Genetic correlation betwaiesct and maternal additive effects was
found to be non-significantly different from zer8o, a linear animal model with genetic
correlation between direct and maternal effectstamed to zero was adopted for the routine
genetic evaluation of calving ease for Walloon loisdairy cattle. This model was validated
by Interbull in January 2013 and, since April 20i8e Walloon Region of Belgium has
officially participated to the international MACE&uation for calving traits.

Keywords: calving ease, animal model, Holstein
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INTRODUCTION

Calving complications impact production, fertiliznd cow and calf morbidity and mortality
and affect negatively economic profitability in daherds (Dematawena and Berger, 1997;
Eaglenet al, 2011). Calving ease measures the presence anaeé calving problems and
their intensities. This trait is generally scoredl @ categorical scale by the breeder, what

makes it more sensitive to subjectivity (Dekke@94).

Additionally, calving ease is affected by two additgenetic components, the ability of the
calf to be easily born (direct effect) and the igpibf the dam to easily give birth (maternal
effect). The direct effect is expressed only ovekeen the calf is born whereas the maternal

effect is expressed several times, each time acabves.

Considering the categorical nature of the tradnfra theoretical point of view, application of
a threshold model is the correct choice (Giano®82), whereas, from a practical point of
view, linear model is a more easily applicable chdiVaroneaet al, 1999; Ramirez-Valverde

et al, 2001; Phocas and Laloé&, 2003). This is evidermethe fact that different Interbull

members use a linear approach for the genetic awaitu of categorical calving traits

(Interbull, 2013).

The aim of this research was to estimate the genmtrameters for direct and maternal
additive effects based on a linear animal modeltan@port the implementation of a routine

genetic evaluation for calving ease in the Wallbtwistein dairy cattle.
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MATERIALS AND METHODS

DATA MATERIAL FOR CALVING EVALUATION

Calving ease is scored by dairy breeders on valyriiasis and collected by the Walloon
Breeding Association (AWE). Calving ease scoregednfrom 1 to 4 (1=caesarean and
embryotomy, 2=hard pull, 3=easy pull, and 4=norm&he original data set comprised 138
144 calving records and presented a typical digiobh of CE; most of the records fell into
category 4 (69%) and few records into categoryobiia1%o).

Records from Holstein calves born between 2000 201® were used. Edits were done for
out-of-range values for calving ease and records wiissing information related to the
factors in the statistical model, were removed. tild births and calf without dam known
were excluded. Records were limited to first fivaripes. Age at calving must be 21-48
months for heifers {i parity) and 31-142 months for cows 8" parities) with specific
limits depending on parity. Since dairy breeders teir own judgment to assign scores for
calving ease, data quality depends highly on thEmerefore, herds with a standard deviation
for scores smaller than 0.05 were deleted in amlewoid herds where breeders put all scores
in the same category. Herds had to report at leaaijerage, four calvings per year calculated
on the first two parities. The full data set con&al calving ease records from 85 118 calves
born from 62 265 dams in 862 herds. Pedigree data extracted from the database used for
the official Walloon genetic evaluations. The finmdigree file included 233 882 animals.

More details in Table 5.

ESTIMATION OF (CO)VARIANCE COMPONENTS AND RELATED PARAMETERS

To ensure an appropriate data structure for thanpater estimation, some extra edits were
applied. Calves were required to have known sickdams were required to display a calving
ease record in 1st parity. Only data from contirsucalvings per dam were kepgtd.if a dam
displayed calving ease records from its first, selcand fourth calving only calving ease
records from first and second calving were kepgrdd had to display at least, in average,

four calvings per year calculated on the 1st pattly. A final edit required in average more
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than one calving per dam per herd in order to attwédpresence of herds where only heifers
were recorded. Based on these edits, in ordertimage (co)variance components, calving
ease records from 33 155 calves born from 25 24@sdmd 2215 sires in 492 Walloon herds
were used. The final pedigree contained 120 37dhalsi Table 5 displays characteristics of
this data set.

Table 5. Characteristics of full and variance componenteation (VCE) data sets

Full data set VCE data set
N % N %
Calving ease records 85118 33155
Female calves 66 511 78.1 26 177 78.9
Male calves 18 511 21.9 6978 21.1
Herds 862 492
Sires with progeny records 3148 2215
Dams 62 265 25 240
Final pedigree file 233 882 120 374
Calving ease scores
1. Caesarean and embryotomy 781 0.9 443 1.3
2. Hard pull 4006 4.7 2179 6.6
3. Easy pull 23 461 27.6 10 114 30.5
4. Normal 56 870 66.8 20 419 61.6
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MODELS FOR CALVING EASE EVALUATION

Preliminary analyses were carried out using gereraar model procedure of SAS. Different
linear models were fitted aiming to identify fixedfects that affected variation of calving

scores.

The ultimate model included the fixed effects cds®n (4 classes), herd and sex of ga#ge
of dam classes (11 classesyroup of parities (2 classes® parity and 3*-5" parities). These
effects were included in the following univariateelar animal model; where calving ease was

modelled as continuous trait; to estimate (co)vex@acomponents:
yCE:xB+Zhh+Zaa+me+pr+e (44)

wherep is a vector of fixed effectd) is a vector of random hexgear of calving effectsa

is a vector of random direct additive genetic éfgm is a vector of random maternal

additive genetic effectyy is a vector of random permanent maternal environaheffects,
X, 2, Z,, Z, andZ jare known incidences matrices linking data withpeesive effects,

and e are the residuals. This model was fitted with glkeetic correlation between direct and
maternal additive genetic effects either estimatedonstrained to null; called Model L1 and

Model L2, respectively, in the remainder of thippa

Procedures based on a Bayesian approach usingibbe &mpling algorithm were used to
estimates (co)variance components and related igeparameters by using programs

gratefully provided by Ignacy Misztal (Misztat al, 2002). No genetic grouping was used.

GENETIC EVALUATION SYSTEM

For routine genetic evaluation of calving ease, uh#ariate linear animal model (44) was
applied on the full data set and solved by spargersion. Estimated breeding values (EBV)
of calving ease were expressed in expected difteein percentage of “normal” calving.
Reliability (REL) of EBV was defined as the squamrelation between true and predicted

EBV. It was estimated based on the diagonal elesnehtthe mixed model equations, as
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shown by Henderson (1984). Prediction Error Varaf(REV) given by direct inversion of the
coefficient matrix allowed the estimation of coireeliabilities:
o> -PEV,

REL = gz (45)

X

where g7 is the additive genetic variance for genetic congmt x (i.e. direct or maternal

effect).

RESULTS AND DISCUSSION

ESTIMATES OF (CO)VARIANCE COMPONENTS AND OF RELATED GENETIC
PARAMETERS

Results for the (co)variance components, relatetetye parameters, and fraction part of
variances in phenotypic variance for Model L1 anddeél L2, are reported in Table 6.
Parameters can generally be considered as significdifferent from zero, posterior means
being greater than twice the posterior standardatiem, except for genetic correlation

between direct and maternal additive genetic effemtModel L1.

The additive genetic variance due to direct effees greater than that due to maternal effects
for both models. Indeed, heritabilities for direttects were nearly four times higher than for
maternal effects. Heritabilities estimates wereh@ range of previously published estimates
of this trait in dairy cattle, which ranged fron08.to 0.17 for direct heritability (h?) and from
0.02 to 0.12 for maternal h? (Weller and Gianol@89; Steinbocket al, 2003; Lépez de
Maturanaet al, 2007; Eagleret al, 2012).

The herdx year of calving effects represented 12% of thenphgic variance, which was the
largest contributor to the phenotypic varianceratte residual effects (74%). Effects of herd
x year of calving take into account biological difeces among herds and years of calving

but also subjectivity of calving ease scores.
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The maternal permanent environment effects reptededo of the phenotypic variance in

each model and were greater than the genetic natefiects. Preliminary analyses to this
study have established that maternal genetic vaid@nded to be overestimated by models
taking not into account the existence of a matepsmmanent environment effects. Hence,
most of the observed variability due to the matkeeffacts was found to be of a non (additive)
genetic origin. As a special care was taken to upful data for variance component
estimation €.g. maximizing repeated calvings), this result shootd be an artefact of the

sparseness of repeated records used.

Table 6. Posterior mean (PM) and posterior standard dewia{leSD) of (co)variance
components and related genetic parameters

Model L1 Model L2
Parametér PM PSD PM PSD
o’ 0.042 0.002 0.042 0.002
o’ 0.027 0.004 0.028 0.004
o2 0.008 0.003 0.009 0.002
ol 0.018 0.004 0.017 0.005
o’ 0.269 0.005 0.269 0.005
r.(a,m 0.088 0.194 - -
h? 0.074 0.012 0.078 0.012
h2 0.023 0.007 0.024 0.007
C, 12% 12%
C, 5% 5%
C 74% 74%

)

% The termsaﬁ is the herdx year of calving varlanceqi is the direct additive genetic varianag,,, is the
maternal additive genetic varianoef) is the permanent maternal environmental variamﬁe’s the residual

variance,l; (a,n) is the genetic correlation between direct and mateeffects.C,), Cp and C, are the herck

year of calving fraction, permanent maternal envinental fraction and residual fraction in the phgpiz
variance, respectively.
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Estimates of variance components and related gepatameters were similar between Model
L1 and Model L2; though genetic correlation betwelrect and maternal additive genetic
effects was estimated or constrained to zero, atiig that the value of this correlation had no
large influence. Although a low positive genetiaretation was estimated between genetic
effects with Model L1, it seemed more relevant@aasider no genetic correlation according to

its posterior standard deviation.

GENETIC EVALUATION RESULTS

According to previous statements, Model L2 was iadpbn the full data set. Figure 1 shows
genetic trends of direct and maternal EBV of Hatsi#&l bulls. Those bulls were required to

have a minimal REL of 0.35.
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Figure 1. Genetic trends of direct and maternal breedingeslf calving ease in Holstein
bulls with a minimal REL of 0.35

In Figure 1, the number of bulls was 1171 and 202frect and maternal EBV, respectively.

Mean, standard deviation, minimum and maximum e§éhbulls’ EBV are shown in Table 7.
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Few bulls did meet the REL requirement for mategeatetic effect and so there were not

enough bulls to provide reasonable results afterth year of 2002.

Table 7. Descriptive statistics of direct and maternal aadvease breeding values for bulls
from trends

Mean SD Min Max
Direct calving ease -5.11 9.21 -40.09 30.66
Maternal calving ease -6.55 8.64 -31.10 18.47

There were clear positive genetic trends for bdfieces although there was no genetic
evaluation system of calving ease for Walloon damstle. As currently the testing of young
sires is extremely limited in the Walloon RegionB#lgium this reflects the preselection done

in exporting countries before these sires are used.

Figure 2 shows that similar genetic trends wereeptesl in Holstein cows and calves.
Animals used to realise these trends were reqtirédve a minimal REL of 0.15. This can be
explained by the fact that foreign scale calvinfpimation for used sires was known before
and most likely used by breeders. Even if thisrimfation was suboptimal it allowed avoiding

sires with major calving problems.
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Figure 2. Genetic trends of direct and maternal breedingeslor calving ease in Holstein
cows and calves with a minimal REL of 0.15

Based on these results using Model L2, Region Whallaf Belgium participated in Interbull
January 2013 MACE test run for Holstein breed. Madewas validated with Interbull trend
validation method Ill. Genetic correlations withhet countries were estimated for direct and
maternal genetic effects of CE. On average, couttryelation was 0.62 for direct calving
ease and 0.64 for maternal calving ease, respBctiMee highest country correlation was with
Switzerland Red and White Holstein (0.73) for direalving ease and with Germany (0.75)

for maternal calving ease, respectively.
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CONCLUSIONS

A univariate linear animal model was developedréartine genetic evaluation of calving ease
for Walloon Holstein dairy cattle. No relevant géaeorrelation between direct and maternal
effects on ease of calving was found. Model L2 tt@sefore implemented in routine in April

2013 to provide, to Walloon dairy breeders and poeds, EBV of calving ease for Holstein
cattle.
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OUTLINE

The second maternally influenced trait studied laash survival to weaning using
data provided by the New Zealand sheep industrg Jénetic improvement of
this trait has become increasingly important beeausrtality in lambs causes
substantial economic loss as well as animal welfareerns. A genetic evaluation
system of this trait existed already; however, as research indicated the need
to review the genetic evaluation model to incre#seaccuracy and, thus, for
improving the rate of genetic gain of lamb survit@lweaning to reduce lamb
mortality rate. Therefore, the main objective ofstithapter was to examine
different maternal animal models to analyse lamtvigal data. The benefits to
apply or not a logit transformation of the lambwsual data were also examined
due to the discrete nature of this trait. The (adance components and the
derived genetic parameters for lamb survival to e were estimated using
different linear and logistic maternal animal madélhen, maternal effects and
genetic correlations were investigated and modetsewassessed in terms of
predictive ability. Another issue addressed in tfiapter was to define new rules
for data inclusion and exclusion in the geneticlysis of lamb survival to
weaning. Data used in this chapter were provide&Htwep Improvement Limited
(SIL), Christchurch, New Zealand.



ABSTRACT

Previous research identified that a review of theent industry New Zealand lamb survival
trait was necessary as its recording accuracy whant on farmers notifying their Sheep
Improvement Limited bureau of lamb deaths. Thisgpapports the decision rules and genetic
parameters for a new lamb survival trait for thenN2ealand sheep industry. These rules
define the new lamb survival trait (NEWSUR) usiagnb birth fate (BFATE) codes and the
presence/absence of lamb weight measurementsni®@&riate animal models were tested and
used to estimate variance or covariance comporamisthe resulting direct and maternal
heritabilities for NEWSUR. The models differed imretway they adjust for the effect of day of
birth, the exclusion or inclusion of a litter (daméar of birth) random effect and the
application or not of a logit transformation of theenotypes. For both the linear and logistic
methods, models including the random effect okditprovided the best fit for NEWSUR
according to log-likelihood values. Log-likelihooflsr the linear and logistic models cannot
be compared, therefore a cross-validation method used to assess whether the logit
transformation was appropriate by analysing theliptiwe ability of the models. The mean
square errors were slightly lower for the lineampared to the logistic model and therefore
the linear model was recommended for industry Uike. heritability (h?) attributed to direct
effects ranged from 2 to 5.5%. A direct h? of 5.B8%ulted from a linear model without litter
effect and omitting the effect of day of birth omrgval, whereas a direct h? of 2% resulted
from the logistic model fitting a random litter ett. The h? attributed to maternal genetic
effects ranged from 1.9 to 7.7%. A maternal genktiof 7.7% resulted from the logistic
model omitting the litter effect, whereas a mategemetic h? of 1.9% resulted from the linear
model fitting a random litter effect. The additioh the litter random effect decreased the
maternal heritabilities substantially in all cassesd was recommended for industry use to
avoid overestimation of the maternal genetic vagarSIL has implemented NEWSUR and
the associated genetic evaluation model based fmrmation described in this paper.
Industry-wide implementation will enable sheep de¥s to produce more accurate genetic

evaluations to their commercial clients.

Keywords: lamb survival, maternal genetics, litter effdatritability.
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INTRODUCTION

Lambing percentage is one of the most significaaits affecting profitability on New Zealand
sheep farms (Hawkins and Wu, 2011). Since the ea890s, lambing percentage has
increased at about 1% per year from a relativelblst level of approximately 100%
(McDermottet al, 2008). As lambing percentage increases, the ptiopoof ewes having

twin and triplet litters increases. Lamb mortaligte in multiples is higher than in singles,
with triplets being particularly susceptible (Eviéldincks and Dodds, 2008). Improving lamb

survival has become increasingly important to tieevN ealand sheep industry.

Lamb survival is a complex trait influenced by diregenetic, maternal genetic and
environmental effects (Brieet al, 2014). Low h2 estimates have been reported aa@oss
number of studies meaning that lamb survival islpneinantly controlled by environmental

factors, limiting its genetic improvement (Amer al@pson, 2003; Safaet al, 2005).

Sheep Improvement Ltd (SIL; http://www.sil.co.nig),New Zealand's national sheep genetic
evaluation system and records lamb survival to \wephut genetic progress has been limited

due to the low h? of the trait and also due todimeent method of farmer recording.

The objectives of this paper are 3-fold: first, review the current SIL lamb survival trait
(SILSUR) and develop a more accurate and consigteztorded lamb survival trait (new
lamb survival trait [NEWSUR for industry implementation; second, to definevraecision
rules for data inclusion and exclusion in SIL genet/aluation system; and lastly, to revise
the genetic evaluation model, estimate variancepom@nts and investigate maternal genetic
effects and correlations to produce estimated lmgadlues (EBV) for NEWSUR.

This research will allow SIL to adopt an improveshgtic evaluation for lamb survival, which
will in turn increase the rate of genetic gain tigb the design of appropriate animal breeding

programs to reduce lamb mortality rates.
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MATERIALS AND METHODS

DATA

Animal performance records were extracted from3Hhenational sheep recording database in
October 2011 and consisted of 3 427 496 lamb rectian between 1990 and 2010 from 596
performance recorded flocks. These flocks covearsge of breeds and crosses (2 breed
combinations), but are predominantly Romney, CoaflwoPerendale, Texel, and some

composites (defined as a combination of 3 or moeeds; Price, 2000).

LAMB SURVIVAL TRAIT DEFINITIONS

Lamb survival is recorded as a binary trait in Slambs that survive to weaning are given a
“1” and those that die are given a “0”. However 8i& system relies on notification from the
sheep breeder that a lamb has died by assigningtla fate (BFATE) code (Table 8);

otherwise, they are assumed alive at weaning.

Table 8. Sheep Improvement Limited lamb birth fate (BFATBles

BFATE code Description
E Embryo transfer progeny
F Fostered
H Hand-reared
J Born dead
J3 Died within 3 days of birth (autopsy)
K Died between birth and rearing
L Al progeny
M Died of misadventure
P Born dead - premature (autopsy)
R Born dead - rotten (autopsy)
1 Died between rearing and weaning
4 Culled at birth (alive but not tagged)
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Rules to define SILSUR are described in Figure @nls without BFATE record are
considered alive and lambs with a BFATE recordamesidered dead except for lambs with
BFATE “E” (embryo transfer progeny), “L” (Al proggh “M” (died of misadventure) or “4”
(culled at birth). Lambs with BFATE “E” or BFATE “Lare treated similarly to lambs
without BFATE, because those birth fates have fecebn genetic merit. Survival of lambs
with BFATE “M” are set to missing so they are reradvfrom the analysis and lambs with

BFATE “4” are lambs alive but not tagged.

Does lamb have a BFATE code?

YES
NO

Does lamb have ‘M’ in its BFATE code?

No\

Does lamb have a BFATE
YES code (H, F, J, J3, K, 1...)
except ‘4’7

MISSING (NA) DEAD (0) ALIVE (1)
1% 14% 85%

Figure 3. The current Sheep Improvement Limited lamb survivait. BFATE= lamb birth
fate; M = died of misadventure; H = hand reared; fbstered; J = born dead; J3 = died within
3 days of birth (autopsy); K = died between birttd aearing; 1 = died between rearing and
weaning; 4 = culled at birth (alive but not tagged = not available.

Besides, SILSUR data rules exclude records whexartban lamb survival for a flock and
year of birth is <55 0r93% as it is assumed that farmer recording errave ttargely led to
survival rates below and above these limits. (Thesebe referred to as “survival limits”

throughout the remainder of this document). Morepw®me flocks have had their data
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permanently excluded for particular years with kndasues. Proportions of survival reported
in Figure 3 were observed after application ofsbevival limits.

The definition of NEWSUR is based on using a corabon of BFATE codes and the
presence/absence of weight measurements to as$edbew a lamb has survived until
weaning ageif. 100 days). The weight measurements used are weamimght, live weight
at 6 months of age, live weight at 8 months of diye, weight at 10 months of age, live
weight at 12 months of age, live weight at 18 menthage and greasy fleece weight at 12
months of age. The rules used to assign NEWSURleseribed in Figure 4. Lambs with
BFATE “E” (embryo transfer progeny) or “L” (Al pramy) are treated similarly to lambs
without BFATE. Then, if these lambs have at least@rded weights, they will be considered
alive; otherwise their survival will be set to migs Lambs with BFATE “H” are counted as
dead because lambs would have died without breeddgrvention. Lambs with BFATE “F”
are considered missing because some breeders fogiats regularly as a standard
management practice for their flock (54% of lambthva BFATE code containing “F” have a
birth rank of 3). The NEWSUR uses the same sunvivaits as those used for SILSUR.
Proportions of survival reported in Figure 4 weleserved after application of the survival

limits.
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( Data <

YES \ 4
Does lamb have ‘H’ in its BFATE code?

NO
YES A 4

Does lamb have ‘F’ in its BFATE code?

NO

A 4

YES

Does lamb have at least 2 recorded weights?

NO

NO \4
Does lamb have a BFATE code?
YES
YES y
Does lamb have ‘M’ in its BFATE code?
NO
A4
Does lamb have ‘4’ in its BFATE code?
NO l YES
YyVY
MISSING (NA) Does lamb have another BFATE code?

7% YES l NO l
v

DEAD (0) ALIVE (1)
13% 80%

Figure 4. Rules used to define the new lamb survival traRABE = lamb birth fate; H =
hand reared; F = fostered; M = died of misadventire culled at birth (alive but not tagged);
NA = not available.
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ESTIMATION OF BREEDING VALUES FOR THE NEW LAMB SURVIVAL TRAIT
Data Preparation

The NEWSUR data were edited to remove missing d=cand effect levels with low number
of observations after applying SIL survival limitgsulting in data sets of differing sizes for
NEWSUR and SILSUR. For age of dam classes (AODygkb dams (1-year-old ewes) or
dams with missing age or age <1 year old were rexho®ams older than 7 years of age were
grouped into age group 7. Lambs from litter sizesater than 3 (birth rank > 3) were removed
from the data set. Lambs with a missing birth degee also removed. Sex is known to affect
lamb survival but the industry standard is to maird the sex of lambs found dead at tagging.
Including 3 classes of sex (male, female, and uwknan the analysis was not appropriate as
unknown sex animals had zero survival. Accordinfily,the purpose of estimating variance
components, the sex of dead lambs was assignaddam with equal probability for each sex
as done by Lopez-Villalobos and Garrick (1999). @stimate maternal genetic effects
accurately, at least 3 generations of animals wegeired and, therefore, 6 year of records
were included in the analysis. A subset of 6 yeatambing data (2005 to 2010) was created
for NEWSUR and then used to estimate the varianogponents of NEWSUR. In this subset,
the 944 211 lambs (from 212 flocks) were the prggefl6 084 sires and 353 783 dams with
5 418 paternal grandsires, 10 798 paternal grarftermt13 590 maternal grandsires and 179
359 maternal grandmothers. There were 144 636esimgin lambs, 647 008 twin-born lambs
and 152 567 triplet-born lambs of various breedd bBreed composition (predominantly

Romney, Perendale, Coopworth, and Texel).
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Genetic Parameter Estimation

All analyses were performed using ASReml 3 (Gilmetal, 2009). Six univariate animal
models were tested to estimate variance or cova@iaomponents and genetic parameters for
NEWSUR were derived. All models included the fixeffects of flock (212 flocks), year of
birth of the lamb (6 levels: 2005 to 2010), liteee at birth or birth rank (3 levels: single,
twin, and triplet), AOD in years (6 levels: 2-7 yeand sex of lamb (2 levels: ram and ewe)
and their interactions. The random direct and malegenetic effects and the covariance
between direct and maternal genetic effects wese &tted in all models. The different
models investigated are summarized in Table 9. NModel, A2, A3 and B analysed
NEWSUR as a normally distributed trait and modedgA and LogB analysed NEWSUR as a
logit transformed trait using model A3 and modelrBspectively. Models Al, A2 and A3
differ in the way they deal with the explanatoryrigble “lamb day of birth”. Model Al
ignores lamb day of birth, Model A2 fits day ofthifday 1 to day 355) within flock and birth
year as a covariate, and Model A3 fits day of batdssified in periods of 2 weeks (25 classes)
within flock and birth year as random effects. MoBeis the same as model A3 but has an
extra random non-genetic effect that is specifia titter (interaction between dam and year of
birth) fitted. This litter effect reflects commomwronmental effects unique to the litter as
well as non-genetic effects expressed in full sbbsl genotype x year interaction effects

expressed in the dam.

Heritabilities and genetic correlations were caltedl from the variance estimates produced
by ASReml 3.0 (Gilmouret al, 2009). The total h?2 was obtained by summing denet
variances attributed to direct and maternal effeotd the covariance (doubled). Genetic
correlations between direct and maternal genefiectesf were calculated by dividing the
covariance between direct and maternal effects hey dtandard deviation of direct and

maternal genetic effects.
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Table 9. Description of the six models used to estimateavar@ components

ModeP
Type Effect Al A2 A3 B LogA LogB
Fixed class effect Flk VoA NN A \
BY S A \
BR N A \
AOD NN N NN \
Sex VoA NN \
Flk x BY VoA NN ol
Flk x BR A A v
BY x BR VoA NN l
BR x AOD VoA NN l
Flk x BY x BR A e A ol
Fixed covariates BDAY x Flk x BY \
Random effect directgenetic v A A A A \
maternal genetic v N A4 \
cov(a, m) S N \
BDAYc x Flk x BY N V
litter \ \
Phenotypic transformation logit \ \

8Flk = flock; BY = year of birth class; BR = birtlamk class; AOD = age of dam class; BDAY = day ofthi
cov(a,m) = covariance between direct and matergaetic effects; BDAYc = day of birth classifiedperiods of
2 wk. Litter is the random litter effect (dam/yeand logit is the logit transformation of phenotype

® A1 = model with no day of birth fitted; A2 = modahere BDAY x Flk x BY is fitted as fixed covariates3 =
model where BDAYc x Flk x BY is fitted as randonfeets; B = same as A3 but with an extra randorerlitt
effect fitted; LogA = model A3 but with phenotypansformed using a logit transformation; LogB =dabB
with logit transformation.
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Comparison of Models Based on their Predictive Ability

First, the best linear model was chosen as thewatiethe highest restricted likelihood. The
same method was used for comparing logistic mo&slsond, because log-likelihoods for the
linear and logistic models cannot be compared,ftiewing procedure was performed to
assess whether a logit transformation was apptepfieet NEWSUR by analysing the ability
of the 2 models to predict the lamb survival phgpet A 3-fold cross-validation method was
used, where survival records from lambs born in02@kre randomly allocated to 1 of 3
groups, and EBV were estimated 3 times using botidets, sequentially setting all
observations in 1 of the 3 groups to missing. Thenptypes were then predicted from the 2
fitted models for the subset where the phenotyaeslbeen set to missing. The variances of
the difference between observed and predicted saltmat is, mean square error (MSE),
obtained with both models were then calculated @mpared with an intercept model (using

the average lamb survival as a predictor).
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RESULTS AND DISCUSSION

COMPARISON BETWEEN EXISTING AND NEW SURVIVAL PHENOTYPES

The incidences of NEWSUR and SILSUR, before appboaof the survival limits, were
compared in Table 10. With NEWSUR, 11.3% of lamdxsorded alive with SILSUR are now
considered missing. Most of these lambs are lamtimut a BFATE code and are assigned
alive by default by SIL. With NEWSUR, these lambgheout a BFATE code and without at
least 2 weights are considered missing. Anotherifsignt difference between NEWSUR and
SILSUR is that 42% of lambs considered missing BithSUR are now considered alive with
NEWSUR. Most of these lambs are lambs with an “Kdlied by misadventure) BFATE code
(or BFATE code combination, as lambs may have niwae one code to describe their fate)
and are considered missing by SIL, despite hauihggat 2 recorded weights.

Table 10. Cross-frequencies of the new lamb survival traEYMSUR) and the current Sheep
Improvement Limited lamb survival trait (SILSUR; danconditional percentages, per
row/column if appropriate)

SILSUR status

NEWSUR status Dead Alive Missing Total
Dead 388 993 10 901 4187 404 081
(99.6% / 96.3%) (0.4%/ 2.7%) (9.4% / 1.0%) (11.8%)
Alive 701 2 644 398 18 784 2 663 883
(0.2% / 0.0%) (88.4%/99.3%) (42.0%/ 0.7%)  (77.7%)
Missing 840 336 980 21712 359 532
(0.2%/ 0.2%) (11.3%/93.7%) (48.6%/6.0%) (10.5%)
390 534 2992 279 44 683
Total 3 427 496
(11.4%) (87.3%) (1.3%)
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GENETIC PARAMETERS ESTIMATION

All fixed effects fitted in the 6 models investigdtfor NEWSUR were significant 8<0.001.
Estimates of variance or covariance componentgdarided genetic parameters for NEWSUR
are reported in Table 11 for the linear modelsetksind in Table 12 for the logistic models.
Variance components of both logistic models catm@tompared with those obtained for the
linear models. However, heritabilities and coriielaé can be compared as they are ratios of

variances.

Estimates of residual variances, direct genetitamaes and total phenotypic variances were

relatively constant for the linear model®(models Al, A2, A3, and B).

Estimates of maternal genetic variances were velgticonstant but decreased with the
addition of the random effect of litter fitted inogkel B. This decrease was also observed for
the logistic models, indicating that a part of titier variance has been attributed to maternal
genetic variance when the litter random effect was fitted. Consequently, the maternal
genetic variance would be overestimated in modétsowt the litter random effect fitted. This
finding is similar to that made by other authorgestigating genetic parameters for the lamb
survival trait (Van Wyket al, 2004; Everett-Hinckst al, 2005, 2014) and for analyses
involving other traits where the maternal genetaciance is estimated (Hagger, 1998; Al-
Shorepy and Notter, 1998; Van Wgkal, 2004).

The ratio of litter variance to total phenotypicriaace was greater than the direct and
maternal genetic ratios in models B and LogB, iatlicg a common environmental or non-
genetic resemblance among littermates. This islainid what was reported in previous
studies on lamb survival (Amer and Jopson, 2003) gk et al, 2004; Everett-Hincket
al., 2014).
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Table 11. Estimates of variance components and genetic paessnéwith their SE in
parentheses), proportion, and restricted log-liiad for the new survival trait (NEWSUR)

using different linear models

ModeP
ltenr? Al A2 A3 B
6%(BDAY( 0.007 (0.002)  0.007 (0.003)
&*(litter) 0.014 (0.002)

Q>
N
—_
£

0.109 (0.002)
0.007 (0.003)
-0.001 (0.003)

Q>
I\.)’Q? N
< QD
=3

62(m 0.008 (0.003)
6%(y) 0.121 (0.003)
h?(a) 0.055 (0.000)
h?(m) 0.064 (0.000)
2la,m) -0.186 (0.003)
5*(g) 0.012 (0.003)
h?(g) 0.097 (0.000)
LnL -1564964.02

0.108 (0.002)
0.006 (0.002)
-0.001 (0.002)
0.008 (0.003)
0.119 (0.003)
0.052 (0.000)
0.064 (0.000)
-0.212 (0.003)
0.011 (0.003)
0.092 (0.000)
-1562810.38

0.108 (0.002)
0.005 (0.002)
-0.001 (0.002)
0.007 (0.002)
0.126 (0.004)
0.043 (0.000)
0.055 (0.000)
-0.136 (0.003)
0.011 (0.003)
0.085 (0.000)
-1558802.22

0.0960)
0.00808)
-0.00R02)
0.0020)
0.1260)
0.0400)
0.016Q0)
-0.43803)
0.00a0®)
0.03600)
-1555568.89

862(BDAYc) = estimated variance of the day of birth (classifin periods of 2 wk) x flock x year of birth effg
62 (litter) = estimated variance of the litter effeg(e) = estimated residual varian@?(a) = estimated direct

additive genetic varianceg(a,m) =

estimated covariance between direct and materefigcts;

6%(m) = estimated genetic maternal additive genetic avae;62(y) = estimated phenotypic variance;
h%(a) = estimated direct heritabilityj?(m) = estimated maternal heritabilitg(a,m) = estimated genetic
correlation between direct and maternal effegf€g) = estimated total genetic (direct + maternal) acke;
h?(g) = estimated total heritability, LnL = restrictaabtHikelihood.
® A1 = model with no day of birth fitted; A2 = modehere the interaction between effects day of bittick,
and year of birth is fitted as fixed covariates; A3nodel where the interaction between day of hittsses,
flock, and year of birth is fitted as random effe@® = same as A3 but with an extra random litferot fitted.
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Table 12. Estimates of variance components and genetic paeasnéwith their SE in
parentheses), and restricted log-likelihood for tleav survival trait (NEWSUR) using 2
different logistic models (LogA and LogB)

ModeP
ltem?® LogA LogB
6%(BDAY(Q 0.358 (0.015) 0.347 (0.015)
°(litter) 0.355 (0.010)

2

Q
—
£

3.290 (0.000)

3.290 (0.000)

6%(a) 0.128 (0.007) 0.083 (0.006)
é(a,m 0.006 (0.010) 0.002 (0.007)
62(m) 0.315 (0.012) 0.141 (0.010)
5%(y) 4.102 (0.019) 4.220 (0.019)
h?(a) 0.031 (0.002) 0.020 (0.002)
h?(m) 0.077 (0.003) 0.033 (0.002)
o(a,m) 0.028 (0.052) 0.023 (0.068)
5%(g) 0.454 (0.013) 0.229 (0.011)
h?(g) 0.111 (0.003) 0.054 (0.003)
LnL -1454703.73 -1402085.36

@ 62(BDAYc) = estimated variance of the day of birth (classifin periods of 2 wk) x flock x b effe@? (litter)

= estimated variance of the litter effeéf(e) = estimated residual varian&?(a) = estimated direct additive
genetic variancej(a, m) = estimated covariance between direct and mateffeadts;52(m) = estimated genetic
maternal additive genetic varian@®(y) = estimated phenotypic variandg&(a) = estimated direct heritability;
h?(m) = estimated maternal heritabilit§(a, m) = estimated genetic correlation between direct mwadernal
effects; 52(g) = estimated total genetic (direct + maternal) amce;h2(g) = estimated total heritability;
LnL = restricted log-likelihood.

®LogA = model where the interaction between day idhtclasses, flock, and year of birth is fittedrasdom
effects and where phenotypes are transformed wsilogit transformation; LogB = same as model Logh b
with an extra random litter effect fitted.
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The h2 attributed to direct effects ranged frono 515% for all models. Model A1 generated
the greatest direct h? whereas the LogB model géedithe lowest h? when the same data set
was used. The h? attributed to maternal effectgadrfrom 1.9 to 7.7% for all models. The
greatest maternal h2 was reported with model Logd \aas lowest for model B. These values
were low but in agreement with literature. A studyolving 7 commercial New Zealand
sheep flocks provided h? estimates for lamb sutwiasaged from 0.8 to 7% for direct effects
and from 0.2 to 7.5% for maternal effects (Amer auwghson, 2003). Safadt al. (2005)
reviewed h? estimates for lamb survival trait fraéstudies and reported an averaged h2 of 3
and of 5% for direct and maternal effects, respebti Hatcheret al. (2010) found
heritabilities ranged from 2 to 5% for direct et'eand from 3 to 7% for maternal effects in

Australian Merino sheep.

The maternal and direct genetic effects appeardze toegatively and slightly to moderately
correlated (from -0.14 to -0.44) for models with@itenotype transformation. This negative
genetic correlation suggests that some genes tipgiog survival in the individual may also
contribute to poor survival in their progeny andesversa. However, Robinson, (1996)
showed, using simulated data, that negative estsraftcorrelation between the direct and the
maternal genetic effects may be obtained in therades of a true antagonism between them.
For both logistic models, the genetic correlaticetween direct and maternal effects was
positive but low (from 0.02 to 0.03). The sign bé&tcorrelation differed between the logistic
models and the linear models but the estimatesooklation had a large SE in logistic
models. Therefore, the correlation between diract maternal genetic effects for NEWSUR
was significant for linear models and not signifitdor logistic models. Some previous
studies on lamb survival (Morret al, 2000; Everett-Hinckst al, 2005, 2014; Cloetet al,
2009) also reported negative correlations betwassttdand maternal genetic effects using
linear or logistic models. In a study of lamb sualiin Rambouillet and Finnsheep with linear
and threshold models, Mates al. (2000) obtained positive correlations, albeit walhge SE
too.
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COMPARISON OF MODELS BASED ON THEIR PREDICTIVE ABILITY

Model selection of random effects was assessethétusion based on log-likelihood values.
Log-likelihood values obtained for NEWSUR with nmarsformation of phenotypes are
reported in Table 11, and those for logistic mo@etsreported in Table 12. With or without a
logit transformation of NEWSUR, the models thatlinied litter effect i(fe. models B and
LogB) were superior to the models without this effénclusion of the random effect of litter
(daml/year) in survival analyses in populations whaultiple births are prevalent is relatively
common (Van Arendonlet al, 1996; Knolet al, 2002). Therefore, the inclusion of litter
effects in the genetic evaluation model for NEWSiRrequired to avoid inappropriate
weighting of the contribution of lamb survival fromultiple births when calculating EBV of
NEWSUR.

Log-likelihood values cannot be used to comparelitiear and logistic models; therefore,
MSE were calculated, as described in the methoggplmgassess whether model LogB was a
better fit for lamb survival trait when comparedttwithe model B. The MSE were slightly
lower with the linear model B (from 0.1275 to 0.#28&han the logistic model LogB (from
0.1283 to 0.1293) and much lower than the intercepdel (ranged from 0.1624 to 0.1672).
Accordingly, the linear model B seems to be a bditéor NEWSUR than the model with a

logit transformation (model LogB).
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CONCLUSIONS

According to the results of this large study, tesvrdecision rules to assign NEWSUR could
reclaim and include more records in the genetidyaig of LS. Variance or covariance
components and derived genetic parameters for NERV8ldre estimated with linear and
logistic models. The correlation between direct amaternal genetic effects was negative for
the linear models and positive but not significawlifferent from zero for the logistic models.
The h? estimates were low but consistent with tHosad in other studies on lamb survival in
sheep. This study also showed that the maternahbgities may be overestimated when the
litter random effect was not fitted. Among the ésstodels, models fitting the random effect
of litter effect displayed the best fit for NEWSUWRcording to their log-likelihoods values
(i.e. models B and LogB). In terms of predictive abilitpodel B performed slightly better
than model LogB. Thus, model B, which is the lineavdel fitting the random litter effect,
would be the model of choice to implement the germtaluation of NEWSUR for the New

Zealand sheep to improve the genetic progressifob Isurvival to weaning.
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CHAPTER | V. DEVELOPMENT OF GENETIC EVALUATION

SYSTEMSIN A MULTI-BREED (CROSSBRED) POPULATION






OUTLINE

As mentioned in Chapter Il, crossbreeding is a commractice in beef, poultry
and swine productions. With the exception of Newalded, crossbreeding of
dairy cattle has garnered limited acceptance wadew For several years,
however, crossbreeding of dairy cattle has becortopia of some considerable
interest in response to concerns by dairy breealedsproducers about declining
fertility, health and survival in most major daipyeeds. By crossbreeding, dairy
farmers aim to capitalise on breed complementaaity heterosis as well as
remove the negative effects associated with thee@asing levels of inbreeding
within those breeds. However, most of genetic eatéda systems in dairy cattle
compare animals only within breed or disregardingeed (composition)
differences, as is the case in the systems dewtlape discussed in Chapter Ill.
As a second step in the research strategy oflibEd, this chapter focused on the
development of genetic evaluation models adaptepofmlations with various
breed compositions in order to provide across-breetbction and mating
programs to dairy breeders and producers. Firstlynulti-breed model was
developed to analyse milk yields from New Zealararyd cattle, which is
composed of a large proportion of crossbred cowsapter 1V.1). Then, this
multi-breed model was adapted and assessed fojottie genetic analysis of
calving ease for purebred and crossbred animats Holstein and Belgian Blue
Walloon cattle (Chapter I1V.2).






CHAPTER I V.1. ESTIMATION OF TEST-DAY M ODEL
(Co)VARIANCE COMPONENTS ACROSS BREEDS

USING NEW ZEALAND DAIRY CATTLE DATA

Based on: Vanderick, S., B. L. Harris, J. E. Prycand N. Gengler. 2009. Estimation of test-day
model (co)variance components across breeds usiegyMealand dairy cattle data. J. Dairy Sci.
92:1240-1252.






OUTLINE

Chapter Il stated that multi-breed models allowgbwed animals to be evaluated
more accurately for performance in crossbreedingpared to strictly single-
breed models because they use all available progdosmation {.e. crossbred
and purebred data). As a result, a greater resptmselection for crossbred
performance can occur when a combined crossbresbped genetic evaluation is
performed. To do this, genetic correlations of tddieffects in different breeds
need to be known. However, literature results feneadic correlations among
additive effects from different dairy breeds ararse. Therefore, the objective of
this chapter was to develop a multi-breed modeptdhto a multi-breed dairy
cattle population to model different additive etffecaccording to breed
composition in order to estimate genetic correfegiacross breeds. This study was
conducted on first-lactation milk yield recordsrfrdNew Zealand dairy cattle, in
which a large proportion of animals are crossbradstly Holstein-Friesians x
Jersey. These data were provided by the Livestogbrdvement Corporation
(LIC), Hamilton, New Zealand. The originality ofishstudy lies in the use of a
random regression test-day model, in which randegreassions were breed-
specific for each random effect. First, (co)varmeomponents were estimated for
purebred and crossbred animals using the test-ameimThen, derived genetic
parameters within and across breed were explored.



ABSTRACT

In New Zealand, a large proportion of cows are entty crossbreds, mostly Holstein-
Friesians (HF) x Jersey (JE). The genetic evaloatistem for milk yield is considering the
same additive genetic effects for all breeds. Theative was to model different additive
effects according to parental breeds to obtairt fitimates of correlations among breed-
specific effects and to study the usefulness & type of random regression test-day model.
Estimates of (co)variance components for purebrEdarid JE cattle in purebred herds were
computed by using a single-breed model. This aisalylsowed differences between the 2
breeds, with a greater variability in the HF bregcio)variance components for purebred HF
and JE and crossbred HF x JE cattle were then asiihby using a complete multi-breed
model in which computations of complete acrossdbrém)variances were simplified by
correlating only eigenvectors for HF and JE randegressions of the same order as obtained
from single-breed analysis. Parameter estimatésreld more strongly than expected between
the single-breed and multi-breed analyses espgd@llJE. This could be due to differences
between animals and management in purebred andurebrpd herds. In addition, the model
used only partially accounted for heterosis Thetirtmeed analysis showed additive genetic
differences between the HF and JE breeds, expressgehetic correlations of additive effects
in both breeds, especially in linear and quadratigendre polynomials (respectively, 0.807
and 0.604). The differences were small for oveamdlk production (0.926). Results showed
that permanent environmental lactation curves \imggbly correlated across breeds; however
intraherd lactation curves were also affected leyliteed-environment interaction. This result
may indicate the existence of breed-specific cormpeteffects that vary through the different
lactation stages. In conclusion, a multi-breed rhcaeimilar to the one presented could
optimally use the environmental and genetic parameeind provide breed-dependent additive
breeding values. This model could also be a udeflil to evaluate crossbred dairy cattle
populations like those in New Zealand. Howeverg@tine evaluation would still require the
development of an improved methodology. It woukbabe computationally very challenging
because of the simultaneous presence of a largberush breeds.

Keywords: crossbreeding, Holstein-Friesian, Jersey, muéedrmodel
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INTRODUCTION

Crossbreeding is a method used for improving anipnatiuction in pigs, beef cattle, and
poultry (.9. Wei and van der Werf, 1995). However, it has ne¢rbwidely used in dairy
cattle in most temperate countries until recenttigause of the high milk production of the
Holstein-Friesian (HF) breed (Touchberry, 1992).sMourrent purebred HF populations in
the world were created by upgrading existing Euaop€riesian or similar populations. Harris
and Kolver (2001) gave a more detailed historyhef New Zealand HF (NZHF) population
that showed the different phases. The original NA¥pulation was first developed from
animals imported from the West Coast of the UnBéates before 1925, and it then remained
as a closed population. Most of the cattle bef@®&01(approximately 75%) were Jersey (JE).
Therefore, until the early 1980s upgrading wast firem JE to NZHF by using locally
available sires. The descendants of this procesained lighter than overseas HF (OSHF)
from North America or Europe. Since the 1980s, O3itEs have become more popular.
However, the daughters of these animals are heavidrseem to be less fertile and have
decreased survival rates (Harris and Kolver, 200herefore, most New Zealand dairy
farmers have not upgraded to OSHF, and as a refthis experience, there has been even
more widespread popularity of crossbreeding. Everugh dairy farmers in North America
and Europe were very reluctant to crossbreed &titha, crossbreeding has been a feature of
the history of the dairy industry of New Zealandur@ntly, more than one-third of dairy
replacements are crossbred, mostly HF x JE. THigeéause both breeds, the HF and JE, are
economically comparable under typical New Zealanddpction systemse(g. Lopez-
Villalobos and Garrick, 2002), and complementasiteharacteristics from these breeds and
heterosis effects favour crossbredsy(Lopez-Villalobos and Garrick, 2002). Crossbhregdin
provides a good opportunity to maximize the netoime per hectare under New Zealand
pastoral conditions by improving fertility and siual, and also by improving (or altering) the
composition of milk, which is very important because dairy company payment structures
reward farmers for the amount of milk solids (fatigrotein) produced. Therefore, crossbreds
benefit from the high volumes achieved in the Héelras well as from the beneficial fat and

protein composition of the JE breed (Montgomer#)2). Several studies have demonstrated
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the economic superiority of crossbred HF x JE cowew-Zealand €.g. Lopez-Villalobos
and Garrick, 1996, 1997; Lopez-Villalobes al, 2002) and potentially elsewhere.d.
VanRaden and Sanders, 2001).

Additionally, crossbred bulls are currently beinggeny tested by the major New Zealand
breeding companies in response to farmer requiestmers are willing to accept a reduction
in heterosis in order to have a type of cow thayttecognize as being the most profitable for

their system, even when heterosis effects are éghor

From 1996 up to the start of 2007, New Zealandydzattle were genetically evaluated across
breeds for yield traits using a 2-step test-day ehdd which test-day production records were
combined to predict 270-day yields, and an animadl@hwas used for the genetic evaluation
of these predicted yields (Harris, 1994, 1995). evrtest-day model has been developed to
use the milk production herd-test data to estinmé®ding values, and this new system has
been implemented in February 2007 (Haetsal, 2006). The evaluated production traits are
then included in an economic index called Breedigrth (BW), which describes animal
profitability per unit of feed (this is a featuré the across-breed evaluation) (Garrigkal,,
1997; Johnson, 1996). Heterosis is modeled ased &ffect in the model correcting for mean
differences. Thus, genetic contributions from puoedb to crossbreds are only partly taken
into account; therefore, it does not allow an optinnse of crossbred data. Moreover, a study
by Wei and Van der Werf (1995) showed that an ogitinse of crossbred information jointly
with purebred information in selection could brimgpre genetic progress in crossbreds. To do
this, genetic correlation of additive effects irfifelient breeds has to be known. Such results
are rare, if not non-existent, in dairy cattle, vdas in swine or in beef cattle such results are
less unusuale(g. Lutaayaet al, 2001; Newmaret al, 2002; Roseet al, 2005; Zumbaclet

al., 2007).

The objective of this study was to model differadditive effects according to breed
composition in order to estimate correlations amdmged-specific effects. The second
objective was also to study the usefulness of tigee of a more complicated random

regression test-day model.
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MATERIALS AND METHODS

DATA

Data were provided by the Livestock Improvement gooation (LIC), Hamilton, New
Zealand, and comprised of records on cows from cagell progeny-testing herds. The
original data comprised 223 141 animals in producand a total of 500 134 animals in the
pedigree.

Only animals of HF and JE inheritance were keptestimate (co)variance components;
therefore, animals whose summed proportion of HiF Hn genes was lower than 100% were
eliminated. No distinction was made among HF arsmath different compositions of OSHF
and NZHF genes; they were considered to belonfpgcsame breed. This was also done to
limit the study to a 2-breed situation. Data wenaited to first-lactation test-day milk yield,
which were recorded for 208 164 cows in 3481 heuitls test days, equally spaced across the
lactation, at 2 months intervals. After these editee breed composition of animals with
records in first lactation were approximately 54%,21% JE, and 25% HF x JE, and the
distribution of herds per breed composition showet 65% of herds had HF x JE, HF, and
JE or were entirely composed of HF x JE animals¥@2&f herds were purebred HF and only
10% were purebred JE. In the context of this atipurebred means at least 95% of HF or JE
genes. Crossbreds consequently were animal withjermreed composition of between 50%
(included) and 95% (excluded) HF or JE genes.

Data sets were constructed based on a stratificaticherds as a function of their average
breed proportions. Herds with average breed cortiposiof 95% and more HF or JE genes,
were considered purebred herds. Similarly, herd# &n average breed composition of
between 50% (included) and 95% (excluded) HF ogeltes were considered crossbred herds.
Within the purebred herds, only animals whose priomes of HF or JE genes were 95% or
more were selected. Because the data set wawostiihirge for analysis, additional samplings
were made on a herd base, in which animals witemldiwere kept together and randomly
assigned to data sets. For purebred herds, 3 HR di&ddata sets were created. For crossbred

herds, 5 data sets were created, composed of pdreimd crossbred animals. Table 13 lists
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the number of herds, animals in production, testréaords, and records per lactation for the
purebred and crossbred data sets used in this.shlelgns and standard deviation of daily

milk yield are also given.

Table 13. Composition, daily milk yield average, and standdeviations of purebred and
crossbred sampléssed in this study

Test-day records Daily milk yield, kg
Data sets Herds, n Cows in n Average per Average SD
production, n lactation, n
HF 1 160 11 721 44 531 3.8 13.30 4.35
HF 2 166 11 952 45 326 3.8 13.08 4.38
HF 3 165 11 748 45 324 3.9 13.68 4.46
JE1 107 7703 29 512 3.8 9.94 3.14
JE 2 105 7671 30 605 4.0 9.76 3.03
HFxJE 1 64 4966 19 048 3.8 12.78 4.22
HFxJE 2 48 4918 19 769 4.0 12.50 4.20
HFxJE 3 44 4990 19 486 3.9 12.85 4.33
HFxJE 4 60 4959 18 305 3.7 12.62 4.21
HFxJE 5 64 4968 18 017 3.6 12.11 4.20

2 HF n = Holstein-Friesian purebred sample n; JEJersey purebred sample n; HF x JE n = Holsteigskamn x
Jersey crossbred sample n.

MODELS

The research was conducted in 2 steps. First, astim of (co)variance components for
purebred HF and JE cattle was done by using a simsiplgle-breed model. Hereafter, this
study is called hereafter a single-breed analy§le)variance components for purebred HF
and JE and crossbred HF x JE cattle were then astihusing a complete multi-breed model.
This study was considered to be an across-breelys@jahereafter called a multi-breed
analysis. The reasons for using this strategy &efed. First, we wanted to simplify actual
estimations by estimating within and then acrogetls. Second, this strategy allowed us to
compare the results from both analyses. We ackrmigelghat there were 2 types of herds
(purebredvscrossbred), implying that differences should beeekgd.
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Single-breed analysis

(Co)Variance components were estimated for HF @adokeds separately by using the
purebred data sets. The single-breed model usedawasdom regression test-day model,

written as:
y=Xb+Q,h+Q.a+Q p+e (46)

wherey is a vector of first-lactation test-day yields,a vector of fixed effects for herd x test-
day date, lactation stage (defined as classedDdM), gestation stage (definition based on 24
d carried calf classes), and regressions on agahahg within lactation periods (defined as 4
classes based on DIM : 5 to 64, 65 to 119, 123Bth &nd greater than 184) x calving season
(March to June, July, August, September to Decembealving period (before 1994, 1994 to

1998, and after 1998) classes; dnda andp are vectors of unknown herd x calving year,

permanent environmental, and additive genetic randegression effectQ,,Q, andQ , are

the covariate matrices for the third-order Legermsbnomials; linkingh, a, andp with y
and eis a vector of unknown residuals. The (co)variancatrices associated with the 3

random effects werevar(h)=1,0H, Var(p)=1,0P, and Var(a)=A,0G where

H P andG were the elementary (co)variance matrices acrass$ thegendre polynomials. A

random herd x calving year period effect was inetlth order to model potential additional
environmental covariances because of a commondmetdime-dependent effect. This random
effect was defined as a combination between hards/aperiods of 2 years of calving from
1989 to 2002. Hereafter, this effect is called trexd-period. The (co)variances among

residuals were modeled ®ar(e) = 1,07, whereg?was the residual variance ahgdwas an

identity matrix of dimension n, where n is the n@anlbf records. By keeping this variance
constant, we modeled differences in environmentaliances across DIM by the other

environmental random effects.
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Multi-breed analysis

The model used for the multi-breed analysis waslaino those used for the single-breed
studies, with 2 differences. In the definition bdefd effects, regressions on age at calving were
computed within breed x lactation period x calvsgason x calving period classes, where
breed was defined as previously: purebred HF, padceBE or crossbred HF x JE. Effects of
heterosis and recombination should be partialleralto account by this effect. All other
fixed effects were defined without considering tireed of animals. The second difference
was in the definition of random effects. Based loa tesults from the within-breed analysis
and to simplify the estimation of (co)variance caments across breeds, initial Legendre
polynomials were transformed into three new indepeean regressions contained in the
covariate matricesQ.,,Q,, andQ,, by using diagonalizations based on the following
decompositions:H =T,D,T;,P=T,D T, andG =T DT, . Original covariance structures
were transformed to beconvar(h,)=1, OD,, Var(p,)=1,0D, andVar(a,)=A, 0D,
based orvar(h)=1, OT,D,T;, Var(p)=1,0T,D,T, andVar(a)=A, OT,D,T,.

To achieve equivalence between the original and tthesformed model, transformed
regression matrices required to model a recoid were defined as

Quingiy = Qngy Ths Qray = Qay Tar @ndQryy = Q,(y T, - Equivalence can be shown by rewriting

the original model (38) for a single observation i:
Yoy = XiPay + Quyhey + Qadgy + QP + &) (47)
The transformed model becomes

Yoy = Xyby + Qrayhr iy + Qrragy@ry + QroyPreiy * &) (48)

where, based on the equivalence between modelai7{48), the following formulas can be

established:
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Var(Quhr ) )= Qra Varlhe i, gy = Qs PaQingy = Quy TiPaTi Qi) = QuyH Q-
Var(QTaU)aT(I)) = QTa(I)VaI’(aT(I))Q!,-a(I) = QTa(i)Danl'a(i) = Qa(|)TaDaTz;Q'a(|) = Qa(I)GQ'a(I) ’and

Var(QTp(i)pT(i) )= QTp(i)Var(pT(i) JR50) = Ry Do Qo) = Qo TaDaTaQpry = Q) PQ-
By using the transformation, the global single-dreedel could therefore be rewritten as

y =Xb +Qph; +Qrar +Qqpr te (49)

Based on model (47), an appropriate multi-breedehodnsidering separate random effects

per breed would be written as

y = Xb + ") (th(HF) +Q,a") + Qpp(HF))+ DUE) (th<JE) +Q,a% + Qpp“E))+ e (50)

where @7 and ®“® are diagonal incidence matrices containing thetifta of breed

compositions linking observations to random effedtotation of fractions of the breed
composition of animals is written aéi';F) and (oi(JE) for every record i, with values being

obviously identical for all records of the samenaal. The feature of this model was that the
definition of the covariate matrices included a tplication with the fraction of HF,
respectively, JE breed contributions. To simpligmputations and based on model (48), the

following transformed model was used:
— HF HF HF HF HF HF JE JE JE JE JE JE
y =Xb+ QPRI +QPar™ + QP pl™ + QEPNY® + QUPal™ +Q[Ppt® +e (51)

where breed-specific regressions for a given recordi are
(HF) — (HF) (HF) — _(HF) (HF) — (HF)
Qrniy =@y Qrngiyr Qray = @iy Qragy and Q) =@ Qryy for  HF  and

(JE) — (JE) (JE) — ,(JE) (JE) — (JE)
Qtny =20 Qunaiy» Qray = @4y Qracy» @A Qry = 9y~ Qi) for JE.
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Computations of complete across-breed (co)variamom® simplified by correlating only
eigenvectors for HF and JE of the same order. Bseaated (co)variance matrices among

these transformed random effects could then be siygpauped by type of effects:
h(HF) D(HF) D(HFxJE) (HF) D(HF) D(HFXJE)
Va{ 1(—JE) = Ih o (I-TFXJE) h(JE) ! Var p-l(-JE) =1 p O (HpFXJE) p(JE) ’ and
h: Dy, Di, Py D, D,
(HF) (HF) (HFXJE)
a D D
Va'{ -I(—JE)] - Aa D( (:FXJE) a(JE) j
ay D, D.

The diagonal matriceB"™® for every type of random effects contained the\@dances

across breeds among transformed regressions. drarafons were done in a way that forced
the order of eigenvectors for HF and JE to remdientical (largest to smallest). This

procedure is not a rank reduction; but makes thmpctations more robust because it
concentrates (co)variances among breeds into vahstead of 6. Initial tests showed that
stable convergence of variance component estimgifooedures required the use of this
procedure. In addition, interpretation of the (@)ances among breeds was simplified. The
basic assumption was that the eigenvectors stageldusif we compare the single-breed and

multi-breed models.

Heterogeneity of residual variances was expected doimals with different breed
compositions. Therefore, breed composition was usectalculate weights in order to
standardize residual variances and to adjust foe®pected heterogeneous residual variances.

The weight for a record of a given animal was defined as

2
HE, x/(02)™ + 3, x/(02) ™ 2

(HF) 2\HF)  (UE) \/( 2)(JE)
iy >(\/(a-e) T o5 XV \Te

weight;, =

where HFpand JEpare the average breed proportion for breed HF &ndfhe population

(JE)

used for the estimation%aj)(HF) and (Jj) are the residual variances estimated with the

single-breed model; ang("™ andy"’® are the breed proportions for breed HF and JE of a
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recordi of a given animal in production. The (co)variane@song unknown residuals were

modeled ad/ar(e) =W o? whereg? was the multi-breed residual variance, and therimat

diagonal matrixW contained the inverse of the weight for every rdco

ESTIMATION OF (CO)VARIANCE COMPONENTS

(Co)variance components were estimated by using REMie expectation-maximization
algorithm (EM) with acceleration EM-REML was usedhis algorithm estimates the
parameters by indirect approximation of the firgridative of the likelihood function.
Expectation-maximization-REML is very stable bute tltonvergence rate is very slow
(Misztal, 2002). Therefore, the average informatiEML algorithm (Jenseet al, 1997) was
also used. It uses approximate second derivatimdsisacomputationally more demanding,
although it requires less iteration to convergeweler, convergence problems appeared
when the (co)variance matrices were not positivienide (Meyer, 1997; Misztaét al, 2000)
and most of the computations needed to be doneMWREML, which proved to be more

stable.
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RESULTS AND DISCUSSION

SINGLE-BREED ANALYSIS

The (co)variance components were estimated for saniple, and from these estimates, the
means and standard deviations of the samples fdr beeed were calculated. Results for
variances and (co)variance for constant, linead, guadratic random regression coefficients
are presented in Table 14. In general; estimates guite consistent across the 3 HF and 2 JE

samples, except the herd-period effect in HF, wklobwed a greater variability.

Variances of random effects, except for the redigtadances, which were considered to be
constant, varied with DIM because of the use ofdoam regression models. Phenotypic
variances for milk as a function of DIM for HF adH breeds are shown in Figure 5 5. The HF
breed showed a greater variability than the JE dyrees confirmed by the herd-period,
permanent environment, and genetic variances pattdrthe 2 breeds (Figure 6). This can be
explained mainly by a scale effect due to the grgatoduction of HF. It is also likely that HF
showed a greater genetic variability because ofitigortation of HF genetic material from
overseas (Canada, United States, or Europe), edlgesince the 1980s, creating 2 different
HF strains (a NZHF strain and an imported OSHFirgtradarris and Kolver (2001) have
reviewed the effect of Holsteinization on pastodaliry farming and have discussed the
differences between the 2 HF strains in New Zealémdhis study, we did not distinguish
between the 2 strains because the genetic differdratween the 2 HF strains can be
considered less important than the one betweenrtdRJ&E. Animals of non-native JE origin

are also present in New Zealand pedigrees, althtughmuch lesser degree.
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CHAPTER IV.1

Herd-period variance trends are given in Figurdlte trajectory of this variance was less
pronounced in HF but was generally greater thanJir The differences may be due to a
difference in management between the HF and JEbpedeherds in New Zealand. For
example, the greater stocking rates of the JE bemedd be an explanation for these
differences in variability. Another assumption &t the geographical location of HF and JE
herds could have influenced the results. Bryetnal. (2007a) showed that HF and JE have
reacted differently to differences in climate otitatle. Incidentally, purebred JE herds are
more common in the northern part of the North Idlanhereas purebred HF herds are more

common in the cooler parts of the South Island.

Lactation variances were computed over a 270-daydstrd lactation. Table 15 presents the
variances and relative values obtained when cordpaith phenotypic variance. The values
confirmed the previous results in Figure 6 showgngater relative herd period variances and
slightly greater relative genetic variances for Residual variance on a lactation basis was
very low because environmental correlations acidBd are taken into account by other

environmental effects, but residual correlation®agDIM were assumed to be zero.

Table 15. Variances (litersx 10 000) and relative variances to phenotypic mated for a
lactation of 270 DIM in the single-breed models mfrebred Holstein-Friesian (HF) and
Jersey (JE) animals

HF purebreds JE purebreds
Type of variance Variance Relative Variance Relative
Phenotypic 31.80 1.00 18.40 1.00
Permanent environment 14.50 0.46 7.00 0.38
Genetic 9.91 0.31 5.87 0.32
Herd period 7.31 0.23 5.55 0.30
Residual 0.05 0.00 0.02 0.00
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A) Single-breed model
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Variance (L?)

O 1 1 1 1 1 1 L}
0 30 60 90 120 150 180 210 240 270
DIM

W 100% Holstein-Friesian [ 25% Holstein-Friesian, 75% Jersey

H 75% Holstein-Friesian, 25% Jersey [1100% Jersey

B) Multibreed model
E 50% Holstein-Friesian, 50% Jersey
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Figure 5. A) Comparison of phenotypic variances obtained H®y gingle-breed analysis for
Holstein-Friesian «) and Jerseyd] animals for milk as function of DIM. B) Comparis®f
phenotypic variances obtained by the multi-breealyesis for purebred and crossbred animals.
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A) Herd-period
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Figure 6. Herd-period (A), permanent environment (B), anditagelgenetic variances (C) for
milk as function of DIM estimated by using the dexgreed ¢, #) and multi-breed models (
m) for Holstein-Friesian (solid symbols) and Jer§gyen symbols) animals

148



MULTI-BREED RANDOM REGRESSION TEST-DAY MODEL

Table 16. Heritabilities, and genetic (above diagonal) ancergtypic (below diagonal)
correlations for daily milk yield among first latitan, estimations from single-breed models
for Holstein-Friesian and Jersey animals

DIM
Item 5 60 120 180 270
Holstein-Friesian
5 0.150 0.954 0.844 0.739 0.575
60 0.804 0.197 0.965 0.896 0.670
120 0.597 0.719 0.231 0.977 0.747
180 0.415 0.581 0.672 0.241 0.841
270 0.361 0.401 0.408 0.458 0.255
Jersey
5 0.126 0.960 0.880 0.816 0.622
60 0.840 0.192 0.976 0.925 0.630
120 0.648 0.746 0.259 0.978 0.665
180 0.471 0.608 0.684 0.285 0.782
270 0.466 0.479 0.457 0.447 0.350

Daily estimates of genetic and phenotypic corretetibetween different stages of lactation
and daily estimates of heritabilities are presentedrable 16, with heritabilities on the
diagonal, genetic correlations above the diagoaatl phenotypic correlations below the
diagonal. As expected, these correlations becamakeveas the interval between tests
increased. On average, correlations were greatedHothan HF animals. Heritability (h2)
estimates increased from the beginning until theé ehthe lactation for both breeds. This
trend was confirmed by the representation of haiitees for milk yield as function of DIM,
as illustrated in Figure 7. According to Figurgdrebred HF animals had a greater h2? than JE
at the beginning of lactation, but from 60 DIM, tliend was reversed. As reported in Table
14, the h2 for 270-day lactation yields (represeénby the genetic relative variance) were
similar for HF and JE purebreds (respectively, (aB#l 0.32) and these values were slightly
less than the h2 estimate used for the geneticuatrah of milk in New Zealand (0.36;
Interbull, 2007). These estimates were not totallfine with literature €.g. Ahlborn and
Dempfle, 1992; Interbull, 2007), in which valueshdritabilities for the lactation milk yield
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trait for the JE breed tended to be greater thasetfior HF. For example, in the United States,
heritabilities of 0.25 to 0.35 are used for the dt@ih breed and 0.30 to 0.40 for the JE breed

(Interbull, 2007). However, there may be other o@ago explain our results.

A)

0.40

0.30

0.20

Heritability

0.10

0.00
0 30 60 90 120 150 180 210 240 270

DIM

W 100% Holstein-Friesian [ 25% Holstein-Friesian, 75% Jersey
B) B 75% Holstein-Friesian, 25% Jersey [ 100% Jersey
[ 50% Holstein-Friesian, 50% Jersey

0.40

0.30

0209

Heritability

0.10

0.00
0 30 60 90 120 150 180 210 240 270
DIM

Figure 7. Heritabilities for milk as a function of DIM estirtead by using single-breed,(¢)
and multi-breed models:( m) for purebred Holstekfrriesian (solid symbols) and Jersey (open
symbols) animals (A) and for purebred and crosslam@dals using the multi-breed model

(B).
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MULTI-BREED ANALYSIS

As for the single-breed analysis, (co)variance comepts estimated for each sample were
averaged. Means and standard deviations of (c@)wegs for constant, linear and quadratic
random regression coefficients are given in Table The patterns and magnitude of h?2
estimates were different between the single-breednaulti-breed analyses, especially for JE
purebred animals on a daily basis (see Figure 3Juds of variances and h? estimates
computed for 270-day lactation are presented inleTdl8. These results were also quite
different (mainly for JE animals) from those obtainin the single-breed models. They were
more in line with literature, albeit slightly lowée.g. Ahlborn and Dempfle, 1992; Interbull,
2007). As confirmed by the values in Table 15 aabdl& 18, the lactation h2 for JE changed
from 0.32 to 0.52 when changing from the singlesdréo the multi-breed model. Figure 6
shows that a greater genetic variance and a loesl-freriod estimate from the multi-breed
analysis for JE animals induced the difference?irirterpretation of these large differences is
not easy. A first potential reason could be théed#ince in the types of animals in each study
because completely different data sets were usedadtlition, the management between
purebred herds and herds considered crossbred pattidlly explain these differences. This
hypothesis is supported by the change in the J&-feniod variance with a decrease in the
estimated value from 5.55 (single-breed) to 1.44&l{rbreed). The JE herd-period variance
was, in fact, as much as 4 times greater, mainlyhe first half of the lactation, in the single-
breed model than in the multi-breed model. Fewedgices in permanent environmental
variances were observed between the single-breatklnand the multi-breed model (see
Figure 6). Finally, the multi-breed model used dat fully account for heterosis. This could
also have inflated observed genetic variance. lyamthesis was supported by the observed
increase in genetic variance for JE when compathiegsingle-breed and multi-breed models,
where 5.87 became 8.85.
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CHAPTER IV.1

Only JE showed the large increase in h2. Previesgarch by Lofgremt al. (1985) also
showed a greater sensitivity of this breed, congpaweth HF, to changes in herd
environments, expressed as means and standardialeviaf contemporary groups adjusted
for genetic differences. As shown in Table 13, nseand standard deviations for daily milk
yield were approximately 30% greater in the muieda data sets compared with the purebred
JE data sets. Lofgreet al. (1985) reported that similar differences in meand standard
deviations, but in a purebred setting, generatsdbstantial increase in h2 (as much as 50%).
Earlier studiesd.g.Legates, 1962, for fat yields) showed similar lss@again in JE. It is very
difficult to explain these results but they arelime with ours. It seems possible to imagine
that, in particular, greater average yields in J& lanked to larger animals, which could
express genetic differences. Because crossbrechdidsbe larger, this hypothesis could
remain valid in our study.

From the (co)variances estimated with the multedrenodel, variances for milk as a
function of DIM were computed for HF x JE crossbeedmals. Results are given for first-
cross animals of the 2 purebreds (HF= 50% and JBE6)and back-crosses between F1 and
purebreds (HF = 75 or 25% and JE = 25 or 75%). @hbnotypic variances (Figure 5) as a
function of DIM are presented, showing the evolutaver the lactation. The variances for HF
x JE crossbred animals were between those of trebpds and followed the same trend as in
purebred animals. These were confirmed by the sabfevariances for 270-day lactation

yields presented in Table 18.

Correlations across breeds for the 3 Legendre pahjals are shown in Table 19. Virtually no
differences existed among permanent environmerftatte for both breeds. This could
indicate that breed-specific permanent environmeerféects are not important even if
variance differences exist across breeds. Herageegression effects differed strongly, with
correlations between 0.755 and -0.040. Becausee teffects translate into herd-specific
lactation curves within breeds, these results contticate not only that lactation curves
among breeds are different, but also that breesisnanaged differently, or at least that they

react differently to a common management (Bryaintl, 2007b). Direct interpretation of
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these results on a herd level could also indidateeixistence of breed-specific competition

effects that vary through the different lactatiteges.

Table 19. Correlations among Legendre polynomial regressammess Holstein-Friesian and
Jersey breeds estimated from the multi-breed m@@dlies shown were obtained by back-
transformation)

Effect
Polynomial Herd period Permanent environment Additienetic
Constant 0.755 0.989 0.926
Linear 0.616 0.974 0.807
Quadratic -0.040 0.961 0.604

Correlations were very high for the constant genefiiect (0.926), but decreased to 0.604 for
the quadratic genetic regressions. These resuwtgeshsimilar genetic rankings between the 2
breeds for the mean or overall milk yield. Howewis does not mean that these ranking
differences can be neglected completely, becayssites can rerank significantly, even with
an overall correlation of 0.926. In addition, ifhet lactation shape parameters linked to
persistency are considered, larger differences devwHF and JE cattle seem to exist. This
hypothesis is also supported by the values in T@Bleshowing the genetic correlations
between HF and JE cattle on a within lactation 99aSbme correlations, especially those
linking different DIM, were as low as 0.600. Pheypdt correlations are not given across

breeds as they would not make much sense.

Because we used an animal model, most of the irbom on genetic correlations might
come from the difference between dam-daughter ssgmes when daughters are purebred
compared with crossbred. They also reflect expe@eking differences in purebred offspring

compared with crossbred offspring of a purebregl sir

Heritability estimates as a function of DIM, asudtrated in Figure 7, were low at the
beginning and the end of lactation, whereas thesevgeeater towards mid-lactation for JE
purebreds and crossbreds. The HF purebred aniradisaHower h2 than JE animals during
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lactation. Daily estimates of genetic and phenatygmrrelations between different stages of
lactation and daily estimates of heritabilities presented in Table 20. Results were similar to
those from the single-breed analysis, with correhest becoming weaker as the interval
between tests increased. Genetic correlations agaen greater for JE than for HF animals.

However, this was not true for phenotypic correlasi, for which values for JE were less.

Table 20. Heritabilities (diagonal), genetic correlations gab diagonal), and phenotypic
correlations (below diagonal) for daily milk yiekdnong first lactation estimated from multi-
breed models for Holstein-Friesian and Jersey dsinggnetic correlations among Holstein-
Friesian and Jersey animals

DIM DIM

DIM 5 60 120 180 270 5 60 120 180 270

Holstein-Friesian Holstein-Friesian x Jersey
5 0.155 0.916 0.729 0.604 0.540 0.852 0.822 0.771 0.722 0.600
60 0.829 0.189 0.941 0.855 0.599 0.893 0.916 0.907 0.883 0.745
120 0.609 0.755 0.233 0.972 0.632 0.826 0.885 0.910 0.914 0.805
180 0.420 0.611 0.711 0.253 0.732 0.773 0.833 0.868 0.894 0.853
270 0.378 0.401 0.397 0.421 0.270 0.677 0.641 0.626 0.665 0.829

Jersey
5 0.218 0.981 0.943 0.918 0.845
60 0.719 0.297 0.989 0.971 0.855
120 0.537 0.625 0.331 0.993 0.865
180 0.391 0.515 0.575 0.314 0.907
270 0.347 0.384 0.397 0.413 0.281
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CONCLUSIONS

Recently, an advanced test-day model that is adafate its special breed structure was
introduced in New Zealand. The present study ingattd potential further advances for the
future; (co)variance components and genetic paemewithin and across breeds were
estimated for HF and JE animals. Parameter estindifeered between single-breed and
multi-breed analyses. However, this could also hibegen due to differences between the
purebred and nonpurebred herds used for thesesaalycould have been artefacts resulting
from the choice of the models. This indicates latdns in the design of this study, because it
was assumed a priori that purebred and nonpurdieets were more similar, and the model
was designed having this in mind. Future studiemsilshconsider our findings. The genetic
correlations across breeds, computed from the +hréeed model, showed additive genetic
differences, especially in linear and quadratic dredfe polynomials, which are linked to
persistency. The results of this study showed lineeéd-dependent additive breeding values
could be estimated by the proposed multi-breed meae could therefore provide a
theoretically better tool to evaluate crossbredydeattle population as found in New Zealand.
However, the situation presented here was simglifiecause only two breeds were analysed
together. A routine model might require 10 or mdiféerent breed effects. Despite this, if in
the future available computing resources increaskadso if detecting genetic differences in
lactation shape parameters becomes even more adfsae, models similar to the one
presented in this study would be possible and wootisidering. According to our findings,
such a model could use a single permanent envimotaineffect. However, it would need
distinct herd-period effects because result inditatthe existence of breed-specific
competition effects that varied through the différéactation stages. Scaling of variances
would always be needed because we showed that datige variance differences existed.
Even intrabreed h? differences may exist accordinghe environment (purebreds multi-
breed herds). Therefore, future studies and a rmeuévaluation would still require the
development of an improved methodology, and theeahpdesented here is only a first step.
Improved methodology would also address heterosi® morrectly by estimating general, but

potentially also specific, heterosis. Such a modeluld also be computationally very
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challenging because of the simultaneous presence lafger number of breeds than the 2
breeds used in this study.
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OUTLINE

As previously stated calving ease is of great esboomportance in dairy and

beef cattle and should be considered in breediagrams. The development and
implementation of the current genetic evaluatiorstayn of this maternally

influenced trait for the Walloon Holstein dairy tathave been presented in
Chapters IIl.1 and Ill.2. A genetic evaluation gystfor calving ease also exists
to predict genetic merit of Walloon dual-purposddien Blue cattle. As these

two systems are within breed systems, only data fparebred animals are used,
thus ignoring data from crossbred animals. Chalpterdicated that there could

be some benefits in performing a joint genetic eatbn of purebreds and

crossbreds. A multi-breed model using breed-specdndom regressions was
developed in Chapter IV.1. Therefore, the objectif/éhis chapter was to explore
the feasibility and usefulness of a joint genetiraleation for calving ease of

Holstein and Belgian Blue Walloon cattle, using addtom purebreds and

crossbreds. Thus, based on results and statenfgmtsvious chapters as well as
literature, single-breed and multi-breed lineamaali models were adapted and
assessed for the estimation of the genetic parasnéde direct and maternal

effects on calving ease. Then, the relative mefithese models were compared
in terms of goodness of fits. The use and comparegdwo multi-breed models

using different functions of breed proportions asdom regressions are what
make the originality of this study.



ABSTRACT

The objective of this study was to verify the féddy of a joint genetic evaluation system for
calving ease trait of Belgian Blue (BBB) and HoisttHOL) Walloon cattle based on data of
purebred and crossbred animals. Variance comporardsderived genetic parameters for
purebred BBB and HOL animals were estimated bygusingle-breed linear animal models.
This analysis showed clear genetic differences &etwbreeds. Estimates of direct and
maternal heritabilities (+ standard error) were40(0.02) and 0.09 (+0.01) for BBB,
respectively, but only 0.09 (+x0.01) and 0.04 (x0.@dr HOL, respectively. Moreover, a
significant negative genetic correlation betweereai and maternal effects was obtained in
both breeds: -0.46 (£0.04) for BBB and -0.29 (x0.idr HOL. Variance components and
derived genetic parameters for purebred BBB and @ crossbred BBBxXHOL cattle were
then estimated by using two multi-breed linear atirmodels: one based on a random
regression test-day model (Model MBV), and one Base a random regression model
(Model MBSM). Both multi-breed models use differdonctions of breed proportions as
random regression predictors, thereby enabling fodealifferent additive effects according
to animal’s breed composition. The main differeheéveen these models is the way in which
relationships between breeds are accounted fdrargénetic (co)variance structure. Genetic
parameters differed between single-breed and rorded analysis, but are similar to the
literature. For BBB, estimates of direct and matéheritabilities (+SE) were 0.45 (+0.07) and
0.08 (+0.01) by using Model MBV, and 0.45 (+0.08)da0.09 (+0.02) for Model MBSM,
respectively. For HOL, these estimates were 0.030&) and 0.05 (x0.01) using Model MBV,
and 0.16 (x0.04) and 0.05 (+0.01) for Model MBSMspectively. Reliability gains (up to
25%) indicated that the use of crossbred data & rtulti-breed models had a positive
influence on the estimation of genetic merit of ghred animals. A slight re-ranking of
purebred sires and maternal grandsires was obséeteken single-breed and multi-breed
models. Moreover, both multi-breed models can besicered as quasi-equivalent models
because they performed almost equally well withpees to MSE and correlations, for
purebred and crossbred animals.

Keywords: crossbreeding; covariance structure; genetic nretigbility
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INTRODUCTION

Crossbreeding is commonly used in beef cattle pridolu systems and it is known to be an
important tool to increase the efficiency of meabduction through heterosis and breed
complementarity. In dairy cattle, for several yedre fall in the prices of milk and dairy
products coupled with growing health, fertility andlving performance concerns for almost
all dairy breeds, have driven dairy breeders awndyrers to increasingly adopt crossbreeding
in their herds (Sgrensen al, 2008; Fouzt al, 2013). Additionally, increased inbreeding rate
and homozygosity in those breeds have also comédbuo the growing interest in
crossbreeding around the world (Hansen, 2006; Serest al, 2008). Two crossbreeding
strategies are mainly used to exploit heteross commercial dairy herd. First, the rotational
crossbreeding program which includes two or moieydaeeds being used alternately: most
dairy cattle crossbreeding systems use three btteealstimize the average level of heterosis
across generations (Hansen, 2006). The secondgtrastto mate dairy or dual-purpose cows
with beef bulls, adopting a simple two-breed crossanimals not used to produce purebred
replacements in dairy farms. The final cross, kn@sriindustrial or terminal cross”, is sold to
commercial producers with higher price than selligebred animals (Sgrensenal, 2008;
Fouzet al, 2013).

The ability to calve easily is an economically impat trait in dairy and beef cattle
production systems. This trait affects the profitgbof herds, animal welfare and thereby
acceptability of the production systems by the ocomsr (Mee, 2008; Barriegt al, 2013).

Thus, selection to improve calving ease is an it@mbrbreeding goal that may grow in

importance over time.

Currently, two distinct genetic evaluations areriegr out for calving ease in the Walloon
Region of Belgium: one for the Holstein (HOL) dapgpulation (Vandericlet al, 2013); and
another for the dual-purpose Belgian Blue poputatiblowever, data from crossbred
descendants of artificial insemination (Al) bulfsBelgian Blue breed (BBB) and HOL cows
are currently not used in either one of them. Thisecause these genetic evaluations compare

animals only within breed, based on purebred in&irom, therefore excluding information
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from crossbred animals. The BBB sires of thesestnasls are from two sources, primarily
from the beef (meat) production population but dison the dual-purpose population (as
determined from the Walloon cattle pedigree comesliih April 2016).

Originally, the BBB was a dual-purpose breed conmgjrdairy and beef production. From the
1950s to the 1980s, the selection process was ynémglused on meat production and
selection for milk production discontinued leadiiogthe current beef type.€. beef animals
with a muscular hypertrophy). However, some bregdi not adopt this breeding goal and
therefore, currently a small population of the oréd dual-purpose BBB remained. Thus, the
BBB breed is composed of two strains; the most nt@md beef-purpose strain in a suckler
herd system, and the dual-purpose one, with cuyratiout 4000 milking cows recorded in
the Walloon milk database consulted in April 2016.

A study by Vandericket al. (2014) estimated genetic parameters for direct rmaternal
calving ease for Walloon HOL dairy cattle. Direaidamaternal heritability (h?) estimates for
calving ease ranged from 0.07 to 0.12 and from @004, respectively, depending on the
model fitted (lineaws threshold). These results were in the range ofipusly published h2
estimates of calving ease in HOL dairy catdeg(LOpez de Maturanat al, 2007; Eagleret
al., 2012). The current genetic evaluation systencédring ease in Walloon HOL dairy cattle
is based on results of Vanderiekal. (2013).

The current genetic evaluation system for calviageefor Walloon dual-purpose Belgian Blue
is based on the methodology proposed by Mayetes. (2007). This non-published study
estimated direct and maternal heritabilities aro@84 and 0.11, respectively, and their
correlation to be approximately -0.66. These reswlre consistent with most values reported
in the literature for other dual-purpose and beetts €.9.Hagger and Hofer, 1990; Bennett
and Gregory, 2001).

Therefore, given the obvious differences betweeredtfimates of HOL and Dual-purpose
Belgian Blue populations, a joint genetic evaluatior calving ease of these populations
requires strategies that allow the use of a he&regus genetic covariance structure in order

to keep the genetic features of each populationver@é multi-breed models using
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heterogeneous (co)variances across breeds havetmesed (Leet al, 1993; Garcia-Cortés
and Toro, 2006; Vanderickt al, 2009; Strandén and Mantysaari, 2013). These +brded
models allow purebred and crossbred data to be io@ahland to further perform joint genetic
evaluations of purebred and crossbred animals. fitbites end, the main goal of this study
was to verify the feasibility of a joint geneticaduation for calving ease in Walloon BBB and
HOL animals. To achieve this, 1) genetic paramdtardirect and maternal effects on calving
ease of BBB and HOL cattle in the Walloon RegiorBefgium were estimated using single-
breed linear animal models; 2) two literature-basedlti-breed linear animal models
(Vandericket al, 2009; Strandén and Mantysaari, 2013) were adagtddthen assessed for
the estimation of the breed-specific additive genparameters for direct and maternal for
calving ease; 3) the relative merits of these sitgeed and multi-breed models were
compared in terms of goodness of fit.
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MATERIALS AND METHODS

PHENOTYPIC DATA

In the Walloon Region of Belgium, calving ease ialléon BBB and HOL cows is recorded
by breeders on a voluntary basis at birth regisinatand collected by the Walloon Breeding
Association (aweé). In this study, calving ease walsjectively scored by breeders on a scale
from 1 to 4 as follows: 1) Caesarean section andrgotomy, 2) hard pull, 3) easy pull (slight
assistance), and 4) normal (no help) (Vandegtkal, 2014). Records from calves born
between 2000 and 2015 were used. Data editing wagely based on that previously
described by Vanderic&t al. (2014). Breed proportions were computed for eadhand its
parents from a pedigree file of 6 346 577 animdisaitle breeds raised in the Walloon
Region of Belgium. Only animals of BBB and HOL imii@nce were kept to estimate genetic
parameters. In the context of this study, purebreei® animals with at least 95% of BBB or
HOL genes, therefore, only calves in which the sidfithe two breed proportions was equal to
95% or more remained. It should be emphasisechthdistinction was made between the two
strains of BBB,i.e. between the beef-purpose and the dual-purposes, Thel edited data set
consisted of 427 202 calving records from 1670 @éadlherds: 55% of herds were composed
of BBB purebreds, 23% were composed of HOL purebradd 22% by BBB HOL
crossbreds as well as by BBB and HOL purebredsil&@ino purebred animals, purebred
herds in this study were considered as herds witbaat 95% of average breed compositions
of BBB or HOL genes. Crossbreds were animals, imgtudy, with at least 50% but less than
95% BBB or HOL genes.

From this edited data set, two data sets were prdpaVithin each purebred herd, animals
with less than 95% of BBB or HOL genes were removedrder to remove BBB purebred
herds using caesarean section (CS) as routine ey tool (Kolkmaret al, 2007), BBB
herds were selected according to their caesarean nage. Thus, BBB purebred herds with at
least 3% of calvings without CS were kept. Thet filata set (data set ) included records from
55 319 BBB purebred calves born in 257 Walloon B@BBebred herds from 2401 sires, 30
074 dams and 2258 maternal grandsires. Pedigre&acasl back to animals born in 1985 and
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hence the pedigree file for data set | consistefl0O& 221 records. The second data set (data
set II) comprised records from 40 535 HOL purebcaties originating from 383 Walloon
HOL purebred herds, from 2700 sires, 27 194 dands2879 maternal grandsires. The total

number of animals in the pedigree was 102 820.

In addition, a third data set (data set Ill) wasated by combining calving scores from
crossbred calves extracted from the edited dataiiefpurebred calving scores from data sets
| and II. Data set Il included records from 1007 4&urebred and crossbred calves distributed
as follows: 55% of BBB purebred, 40% of HOL purehrand 5% of crossbred calves. More
than half of crossbreds were 50% BBB50% HOL. The total number of animals including

ancestors without records was 219 625.

Descriptive statistics of these three data setgpesented in Table 21. Calving ages of dam
were grouped as 18-24, 25-26, 27-28, 29-30, 313337, 38-41, 42-45, 46-49, 50-56, 57-65,
66-79 and more than 79 months at calving. (L3 classes) for all data sets. Four seasons of
calving were used in the analysis: winter (Januaiarch), spring (April — June), summer
(July — September) and autumn (October — DecemBeores were not transformed because
the use of equally spaced scores has been sugdgedtade negligible effects on h? estimates
(Abdel-Azim and Berger, 1999).
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MODELS OF ANALYSIS

A previous study provided evidence that there wasclear advantage to use a threshold
animal model rather than a linear animal modelualate calving ease for Walloon HOL
dairy cattle (Vandericlet al, 2014). Therefore, only linear animal models wewasidered in
the present study to analyse calving ease of BBBH@L cattle in the Walloon Region of

Belgium.

Firstly, a single-breed linear animal model wasduseestimate (co)variance components and
derive genetic parameters for purebred BBB and H@ttle by using data sets | and II,
respectively. Hereafter, this study was callednhglsibreed analysis. Secondly, the data set Ill
was used to estimate (co)variance components andedgenetic parameters for purebred
BBB and HOL as well as crossbred BBBIOL cattle by using two multi-breed linear animal
models. The methodology of the first multi-breed delowas derived from the random
regression test-day model proposed by Vandeegicil. in 2009 and the methodology of the
second multi-breed model was based on the randgrasgon multi-breed model proposed by
Strandén and Mantysaari in 2013, considered aspprodimation of the split multi-breed
model described by Garcia-Cortés and Toro (200®h Bnulti-breed models use breed
proportions as random regression predictors, tlyeegtabling modelling different additive
effects according to breed composition of each ahiriithus, these multi-breed models
generate as many variances and estimated breedingsv(EBV) as the number of breeds in
the data set. Hereafter, this study was called Hi-bmeed analysis. This strategy of single-
breed and multi-breed analyses was used to simatifyal estimations by estimating within
and then across breeds. Moreover, this strategwedl us to compare the results from the 2

analyses.

171



CHAPTER IV.2

Single-Breed Analysis.

(Co)variance components were estimated for the BB& HOL breeds separately by using
data sets | and I, respectively. Calving ease fiteed as a continuous trait by using the
univariate linear animal model described in Vandesdt al. (2014). The single-breed model
used in this analysis included fixed effects ofseeg herd and combined effects of sex of calf
x age of dam classes group of parities (two groups: 1§' parity and 2) from the™ to the

5™ parity). Direct and maternal additive genetic effe maternal permanent environmental
effects, herdx year of calving effects, which were included t@@mt for the variability in
the frequency of dystocia among herds and yeansirwherds, and residual were fitted as
random effects. Model designated as Model L1 watedfi with an estimated genetic
correlation between direct and maternal additivaegie effects and model designated as

Model L2 with a genetic correlation between genetfects equal to zero.

Multi-Breed Analysis

The following fixed effects were included in bothvestigated multi-breed models: season
effects, combined effects of herd by breed-of-dano (groups: HOL purebred or crossbred
dams and BBB purebred dams) and combined effect®)ff calfx age of dam classes
group of parities (two groups as described in sifgyked analysisx breed-of-calf (two
management groups: 1) HOL purebred or crossbrddacdl 2) BBB purebred calf). These
groups of breed-of-dam and breed-of-calf were ithetlito account for breed-of-dam and
breed-of-calf differences, but also to accountdiferences between purebred and crossbred
calvings. Calvings from HOL purebred or crossbradhd (calves) were considered as being
similar from a management perspective. Furthermoowariates for direct and maternal
heterosis coefficients as well as for direct andemmal recombination loss coefficients were

included in both multi-breed models. The heter@sid recombination loss coefficients were

(X) e f(x) and

sire dam

calculated for each calf and for each dam from dsda Ill as 1—Zf
X=1
n (f(X>}2+§f(X>}2 . . .
1- ) Aste 5 dam/_ respectively, in whichf
X=1

with X :{BBB,HOL}; in the sire and dam, respectively (VanRaden ardi&rs, 2003).

%) and f*) are the proportion of breex

sire dam
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The first multi-breed model (hereafter called ModdBV) was based on the random
regression test-day animal model developed by Maidet al. (2009). This multi-breed
model separates the random effects by breed arse therts are correlated in the variance
structure. Therefore, correlation between breedskisn into account in the estimation of each
random effect. Thus, in this study, the direct catenmnal additive value of an animal is
decomposed into several genetic parts dependirtbeanbreed of origin. For the purpose of
this study, this multi-breed model was adaptedlate, Model MBV can be written as:

Yee = XB + ZEBBB)h(BBB) + Z(pBBB)p(BBB) + Z;BBB)a(BBB) + ZS]:BBB)m(BBB) (53)
(HOL)}+ (HOL) (HOL) ~ (HOL) (HOL) 4(HOL) (HOL) 1~ (HOL)
+Zy7"h +Z,70p +Z,"a +Z,7m +e

where Y is a vector of observed calving ease scofess a vector of fixed effects and

covariates:h®®® (h"°Y) is a vector of herck year of calving random regression coefficients
for BBB (HOL) breed;p®®®® (p™?) is a vector of permanent maternal environmental
random regression coefficients for BBB (HOL) breeff®™® (a"°") is a vector of direct

additive genetic random regression coefficientsBB8 (HOL) breed:m®®® (m**) is a
vector of maternal additive genetic random regoesspefficients for BBB (HOL) breedX

is the incidence matrix linking observations witlefl effects;e is a vector of residual

effects; Z{F®2 (Z{"),z®% (z{*9),Zz8 (Z4Y) and 8 (Z4'°Y) are the breed-

specific regressors. These breed-specific regressoe defined asZz®®® =@&®z

calf

Z05%® =@z 7P =Pz, , andZEP = @27 for BBB andZ (" = @(?VzZ,

dam calf dam calf

7(HOL) — qp(HOL)7 7(HOL) — qp(HOL) 7
! p p a

dam calf a’?

and 2" = @z  for HOL where ®® |

dam calf

@2 @Y and @"°Y are diagonal matrices containing the breed prapwtof calf

dam calf dam

(£.559 and f5°9) and dam(f

calf

{859 and £{"°9) for BBB and HOL, respectively; and, , Z,,

Z, and Z are the incidence matrices linking observationthwespective effects. The

residual effects were assumed independently dig&tbwith the same residual variangg.
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The associated (co)variance matrices among thel{sgecific random effects could then be

shown grouped by type of effects:

(BBB) 2 \(BBB) (BBBxHOL)
Var[E(HOL)} = th g(BBBxHOL) Egggmou } Oy,

h h

Var[p(BBB)} = [(Uz)(BBB) (Up)(BBBXHOL)] 01, and

(HOL)

(BBBxHOL) (HOL)
p () (2)
BBB) (BBB) (BBBxHOL) (BBBxHOL)
a* ] [{o?) (0 (02) (O
(BBB) (BBB) (BBBxHOL) (BBBxHOL)
var ™ | 2| (0 (02) (0 (02) OA
(HOL) ( 2) BBBxHOL) ( )(BBB><HOL) ( 2)(HOL) ( )(HOL)
° O ( ) Jma( ) O (HOL) Ja( )
(HOL) BBBxHOL ( 2)BBB<HOL ( )HOL ( > \(HOL
m (Uam) Um a o-m

(X)

where (th)(m is the variance of herd year of calving effects(a,f) is the variance of

permanent maternal environmental effetﬁbsj)(x) is the variance of direct additive genetic

(X)

effects, ( )( " is the variance of maternal additive genetic eﬁ,eand(aam) is the direct-

maternal additive covariance for bre@dwith X ={BBB,HOL; ( )(BBBXHOL) is the herdx

year of calving covariance between the BBB and HID&eds;(ap)‘BBB*“O” is the permanent

2 \(BBBxHOL)

maternal environmental covariance between the BBB HOL breeds( ) and

(aﬁ,)(BBBxHOL) are the direct and maternal additive genetic naga between the BBB and

)(BBBXHOL)

HOL breeds, respectivel;(;gam is the covariance between direct additive genetic
effects for the BBB breed and maternal additive efjen effects for the HOL breed;
(Jma)(BBBXHOL) is the covariance between maternal additive gereftects for the BBB breed
and direct additive genetic effects for the HOLeatd, andl  are identity matrices; and

is the additive relationship matrix. Covarianceswaen genetic and environmental effects
were assumed to be zero, and no variances duertimalace or epistatic effects were assumed

to exist.
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The second multi-breed model (hereafter called ModBSM) was based on the random
regression model presented by Strandén and Mamiy42813), considered as an
approximation of the split multi-breed model propdsdy Garcia-Cortés and Toro (2006). In
the split multi-breed model, the additive valusidit into several independent parts depending
upon their genetic origin; the variance-covariastreicture of each part is determined by a
partial relationship matrix, which describes ralaships only according to genetic origin. The
algorithms to construct directly the inverse of siaepartial matrices, by using breed
composition, were provided by Garcia-Cortés andT@006). To relieve the need of build
these partial relationship matrices, an equivalandom regression multi-breed model can be
used (Strandén and Méantysaari, 2013). For the gerpb this study, the model proposed by
Strandén and Mantysaari (2013) was adapted andehéhodel MBSM can be written as

follows:

Yee = XB + Z(hBBB)h(BBB) + Z(pBBB)p(BBB) + W;BBB)a(BBB) + W';BBB)m(BBB)
(HOL)}4 (HOL) (HOL),~ (HOL) (HOL) 5(HOL) (HOL) 44~ (HOL)
+Z,""h +Z0p + W, am™ o + W m (54)

+ W;Seg)a(Seg) + Wrg]Seg)m(Seg) +e

Several features distinguished Model MBSM from MobBYV. The first difference was in

the definition of the breed-specific regressors foe additive genetic random effects:

W =87 and WEER =Bz for BBB, and WY =w{!°Yz  and

calf dam

wHoh =gz for HOL where W™, wEE® oD and ¢ gre diagonal matrices

dam calf dam ! calf dam

containing the square root of breed proportionscalf (,/f(BBB’ and f(”OL’) and dam

calf calf

(1/ f {28 and,/ fd(aj?”) for BBB and HOL, respectively. The square rooboded proportions

was used to equalize the proportion of direct anatemmal additive genetic variances

accounted for by breeds and avoid high variatiomvéen purebred and crossbred direct and

maternal additive genetic variances when fittifid? and f), respectively, for breec

dam ?
with X :{BBB HOL}. Secondly, an extra additive genetic componenttduke difference in

allelic frequencies between the two breeds wasdfith Model MBSM. This component is

called the segregation term and is equal to th&erdifice in additive variances between
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second-cross (F2) and first-cross generation (Eb)€t al, 1993). Thus W **9a**9 and
W (59m(Sed wherea(®*® and m®*® are the vectors of direct and maternal geneticiaan
regression effects for breed segregation, respgtiand W **9 and W (%9 are the breed

segregation specific regressions defined Vi§*® =H_,Z, and W9 =H__ 7  where

calf

H and H ., are diagonal matrices containing the square rootbrefed segregation

calf dam

proportion, for calf and dam, respectively. Thedoresegregation proportion for an animal

was computed as follows:

h(BBB—HOL) - 2(f (BBB) £ (HOL) 4 fd(aBr:]BB) f (HOL)) (55)

sire sire dam

where f(®®® and f{"°") are the proportions of genes of its sire comirgnfithe BBB and

sire sire

HOL breed, respectively; and(2*® and f{"°") are the proportions of genes of its dam

dam dam
coming from the BBB and HOL breed, respectivelynafly, covariances among breed-

specific additive genetic effects were not accodifice in Model MBSM and were replaced by
the segregation variances for the direct and mateffects g2 andg?(>*?), respectively.

Thus, contrary to Model MBV, the different parts additive value are uncorrelated in the

variance structure and the additive (co)varianceiogs can be written as:

_ a(BBB) 9T 0_2)(BBB) (0_ )(BBB) 0 0 0 0
me® || (g )™ (2™ o 0 0 0
(HOL) 2 \(HOL) (HOL)
Var ::](HOL) = 8 8 (0a )(HOL) ((CZ;I:))(HOL) g g OA
=00 o o ) o)
me0 ] | o 0 0 0 (o)™ (o)

where (Jj)(se@ and (Ji)(se@ are the direct and maternal segregation variabeageen breeds

BBB and HOL,; and(aam)(seg) is the direct-maternal genetic segregation coxada The

associated (co)variance matrices among the bresdfispherdx year of calving random
regression effects and among the breed-specifimg®ent maternal environmental random

regression effects are identical to those from MddBY. Furthermore, as for Model MBV,
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covariances between genetic and environmental teff@ere assumed to be zero, and no

variances due to dominance or epistatic effect® wesumed to exist.

ESTIMATION OF (CO)VARIANCE COMPONENTS AND GENETIC PARAMETERS

For all tested models, (co)variance components weséimated using expectation
maximization REML (Misztalet al, 2014). Standard errors (SE) of (co)variance egBms

were obtained using average information REML (Mibet al, 2014).

Genetic parameters direct and maternal h? werenelkfiacross herds and computed as
W =0}/(2+ o, ot +a+a?)  and  W,=0%/(0F +0,,+ 0+ O+ + )
respectively. Genetic correlations between dired anaternal effects were estimated by:
r,(a, m):aam/ (\/aj*ari). Approximated SE for genetic correlations and thbiiities were

calculated using equations provided by Klei andriigu(2008).

MODEL COMPARISON
Reliabilities and Rank Correlations

The comparison between single-breed and multi-breedels was based on reliabilities and
Spearman’s rank correlations of direct and mateEBY for sires and maternal grandsires
with progeny. Reliability of direct and maternal ¥Bvas defined as the squared correlation

between true and predicted EBV and can be calaikge
2, =1-(pey,,/02) (56)

wherer? is the reliability for animal and breedk for genetic componert (i.e. direct or

maternal effect), pey,, is the corresponding prediction error varianceegivoy direct

inversion of the coefficient matrix, anaf’, is the additive variance for bregdind for genetic

component.
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Mean Squared Error and Pearson’s Correlation

Moreover, the comparison between these models alsoebased on their goodness of fit and,
to that end, two different criteria were computése mean squared error (MSE) and the
Pearson’s correlation between observed and predatiservationsThe MSE was computed

as

13 N
MSE:EZ(yCE _yCE)2 (57)

i=1

where y.. and V.. correspond to the observed and predicted calvinge escores,

respectively;nis the number of data points in data set.

The EBV and predictions of calving ease were coexgbutith a BLUP approach for each of
the following models: Model L1 used with the BBBdaHOL purebred data setise( data set |
and data set Il, respectively) and both multi-breeddels ((e. Model MBV and Model
MBSM) used with the full data set Ill.
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RESULTS AND DISCUSSION

The descriptive statistics of the data sets I,nd &l are presented in Table 21. Unbalanced
sex ratios were observed in records, there wererfemale calves than females in the three
data sets. The most unbalanced data set was daffatisat contained calving records from
HOL purebred herds. As suggested in a previousydiudthe calving ease trait in Walloon
dairy cattle (Vandericlet al, 2014), this imbalance may be due to the diffeednceconomic
value between male and female dairy calves, solttedders prefer to record female over
male calves. This recording bias in the numbereohdle and male calves can lead to an
underreporting of difficulty to calve (score < 4 the calving of males is known to be more
difficult in both beef and dairy cattle.Q.Heinset al, 2006; Fouzt al, 2013).

For the single-breed analysis, calving records f&&B19 BBB purebred calves distributed
over 2438 herc year of calving combinations (data set 1) and iogivecords from 40 535
HOL purebred calves distributed over 3337 hergear of calving combinations (data set 1)
were analysed. As expected, most BBB purebred salwere delivered by CS (1).
Nonetheless, about 15% of BBB purebred calves didneed any help (4) or only need of
slight assistance (3). Most calvings of HOL purebecalves were classified as normal (4) or
with slight assistance (3). Although around 84%B&B purebred calves were born by CS,
less than half of all combinations of hexdyear of calving were exclusively composed of
calvings by CS in data set I. Furthermore in tlatadset, about 5% of herdyear of calving
classes were composed of calvings without CS. iDigion of herdx year of calving

combinations in data set Il is also provided in [Edl.

For the multi-breed analysis, calving records fré@®3 crossbred calves were added to the
almost 96 000 calvings from purebred data setss [Bwv number of crossbred calving records
can be explained by a lack of economic incentivegricourage breeders and producers to

register their crossbred animals.
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SINGLE-BREED ANALYSIS

For single-breed analysis, (co)variances and dergenetic parameters of calving ease were
estimated using linear animal models (Model L1 atddel L2) where each breed was
analysed separately. Table 22 presents the estimatgo)variance components and genetic
parameters with their SE, and AIC values for Mddkland Model L2. Standard errors were
relatively small for all estimates. Estimates ob){@riance components for HOL purebred
animals and their related genetic parameters agvébdhose reported in a previous study on
the same dairy cattle population and linear animaldels (Vandericket al, 2014); the
exception was the significant negative genetic etation observed in the present study

between direct and maternal effects for Model L1.

Concerning the genetic parameters of BBB purebngmals, they were consistent with those
reported in the literature for calving ease in beatle and dual-purpose cattle (Hagger and
Hofer, 1990; Kootset al, 1994a; Phocas and Laloé&, 2003; Berry and Evdis})2Note that
the direct additive h? in Table 22 was higher thamalues often reported in literature for other
beef breeds. However, Bennett and Gregory (200d9rted quite higher heritabilities for
calving ease in beef and dual-purpose heifees ¢stimates around 0.40 and 0.20 for direct
and maternal h?, respectively). Moreover, in a pahlished study on the birth traits in
Walloon dual-purpose Belgian Blue population, adirh? of 0.34 was estimated for calving
ease (Mayerest al, 2007).

For both breeds, the additive genetic variancetdubrect effects was greater than that due to
maternal effects. Direct heritabilities were appnoately four to five times as large as
maternal heritabilities for BBB purebred animalsdainom two to three times for HOL
purebred animals (Table 22). Greater estimatesrettdcompared with maternal heritabilities
have also been found in previous studies in bedfdairy cattle (LOpez de Maturame al,
2007; Eagleret al, 2012).
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Table 22. Estimates (standard error) of (co)variance compsneand related genetic

MULTI-BREED RANDOM REGRESSION MODELS FOR CALVING EASE

parameters from single-breed models using data frerebred data sets | and Il

BBB® purebreds HOL® purebreds
Parametér  Model L1° Model L2° Model L1° Model L2°
o7 0.06 (0.00) 0.06 (0.00) 0.04 (0.00) 0.04 (0.00)
g2 0.17 (0.01) 0.12 (0.01) 0.03 (0.00) 0.03 (0.00)
a2 0.05 (0.01) 0.02 (0.00) 0.01 (0.00) 0.01 (0.00)
o 0.02 (0.00) 0.02 (0.00) 0.01 (0.00) 0.01 (0.00)
o2 0.24 (0.01) 0.26 (0.00) 0.25 (0.00) 0.25 (0.00)
r.(a,m) -0.46 (0.04Y -0.29 (0.119
h? 0.34 (0.02 0.25 (0.01Y 0.09 (0.01Y 0.07 (0.01Y
h2 0.09 (0.019 0.05 (0.019 0.04 (0.019 0.03 (0.01Y
C, 12% 12% 13% 13%
C, 4% 4% 3% 3%
C, 49% 54% 73% 74%
AIC® -425324.10 108035.28 -218821.44 68273.02

“BBB = Belgian Blue breed, HOL= Holstein breed.

®Model L1 is the linear animal model with estimatgehetic covariance between direct and maternattsffe
Model L2 is the linear animal model with geneticzanance between direct and maternal effects caingd to
zero described in Vanderi@k al. (2014)

°The termsOﬁ is the herdx year of calving variancea's is the direct additive genetic varian(@,‘,?nis the
maternal additive genetic varianogg is the permanent maternal environmental varianrée,is the residual

variance, [, (,m) is the genetic correlation between direct and mateeffects,h; and h? are the direct and

the maternal heritabilities, respective@h, Cp and Ce are the herdx year of calving fraction, permanent

maternal environmental fraction and residual fratin the phenotypic variance, respectively.
4 Approximated standard error computed using equsfpwavided by Klei and Tsuruta (2008).
®AlC=Akaike’s Information Criterion
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A significant negative genetic correlation betwebrect and maternal additive effects was
obtained in both breeds fitting Model L1 (Table 22egative correlations have been
documented to exist between direct and maternatefiin beef and dairy cattle.§. Phocas
and Laloé, 2004; Eaglent al, 2012). This negative direct-maternal genetic elation
suggests that dairy and beef farmers need to ledesetisn decisions on both the direct and the

maternal EBV of a sire for calving ease to avoigiterm negative consequences.

Direct and maternal additive variances as well agdtimates showed obvious differences
between breeds (BBBs HOL). The BBB breed had greater direct and mateadlitive
variances and heritabilities than the HOL breed(@&2). A trend for higher h2 estimates of
birth traits, such as calving ease, in beef brezmspared to dairy breeds was reported by
Kootset al. (1994a). Moreover, a higher negative direct-mategenetic correlation in BBB
than in HOL was also found (-0.46-0.29, respectively). As for the heritabilitiestrand for
stronger negative direct-maternal genetic cormretetin beef than in dairy breeds was reported
by Kootset al. (1994b). Few differences in herd year of calving and maternal permanent
environmental variances were observed between dradese variances were slightly greater
in BBB than in HOL (Table 22).

Model L1 had the best fit for both breeds, as shdwyrthe smallest percentage of residual
variance in the phenotypic variance (49%64% in Model L2 for BBB, and 73%s 74% for
HOL). Moreover, according to the AIC values in T@BPR, Model L1 presented the lower AIC
value for BBB and HOL breeds, meaning that Modeliak the best model to explain calving
ease in both breeds. Therefore, for the multi-braealysis, an estimated genetic correlation
between direct and maternal additive genetic effeehs considered in Model MBV and
Model MBSM.
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MULTI-BREED ANALYSIS

The estimates of (co)variance components and dkrigenetic parameters with their
approximated SE are displayed in Table 23. Stanéarors were relatively small for all

estimates, except for estimates of genetic coroeldbetween direct and maternal additive
effects for HOL for both multi-breed models. Eveg,using completely different approaches,
estimates of (co)variance components and genetenpers were similar for Model MBV

and Model MBSM.

The estimates of segregation variances (Model MB8Mje 0.06 (+0.01) for direct effects

and 0.01 (x0.00) for maternal effects; and high atieg correlation between direct and

maternal segregation effects was found (-0.56 §0.08e estimation of these variances and
this correlation required informative records oa talves, for direct effects, and on the dams,
for maternal effects, from advanced crosses E2, third-cross (F3)...). In the present study,
the number of these informative records did naivalan accurate estimation of the direct and
maternal segregation variances and correlatioresmast of the crossbred animals were F1.

Nevertheless, the related SE were low.

Because the different genetic parts were correlaédodel MBV, correlations among breed-
specific additive genetic effects were estimateatr€lation between BBB and HOL was high
for the direct genetic effects (0.90 +0.42), wherearrelation for the maternal genetic effects
was moderate (0.33 +0.53) but with a large SE aewkcé, being unreliable. High genetic
correlations should indicate that alleles inheridgdourebreds express themselves similarly in
crossbreds.

As in the single-breed analysis, evident genetfteidinces between BBB and HOL were
observed within each multi-breed model. Howeveg, tlagnitudes of direct and maternal h?
estimates were quite different between single-b@eatl multi-breed analyses, especially for
the HOL breed (Table 22 and Table 23). The h? edémof the HOL population increased
considerably by using multi-breed models in whiclrgbred and crossbred data from both
breeds were jointly analysed. In HOL, the direcintteased 100% and 77% for Model MBV

and Model MBSM, respectively, when compared to Molde, whereas the maternal h2
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increased by 25% by using Model MBV or Model MBSMthough these h2 were higher than
those used in the current Walloon genetic evalonasiygstem (Vandericlet al, 2013), these
heritabilities were consistent with those repoitedhe literature for calving ease in Holstein
dairy cattle, ranging from 0.03 to 0.17 for direétand from 0.02 to 0.12 for maternal h? (e.g.
Lépez de Maturanat al, 2007; Eagleret al, 2012). To a lesser extent, an increase of direct
hz for BBB animals was also observed by using narled analyses (+32%). By contrast, a
decrease of maternal hz (-14%) for BBB animals alaserved between Model L1 and Model
MBV and similar estimates of maternal h? were oigdi comparing Model L1 with Model
MBSM.

The direct-maternal genetic correlations increasaaiulti-breed models compared to single-
breed models (+24% on average), except for thetigedieect and maternal correlation for
HOL estimatedvia Model MBV (-22%). However, this latter correlati@stimate was not

reliable considering its large SE.

Based on the relative residual fraction of the pitygpic variance, even with small differences,
we may infer that the best fit was achieved for BloMBV with 52 and 67% of relative
residual variances for BBB and HOL animals, redpelt. For Model MBSM these fractions

were 53 and 69% respectively for BBB and HOL angnal
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Table 23. Estimates (standard error) of (co)variance compsneand related genetic
parameters from both multi-breed models using deden purebred herds and crossbred
animals (data set Ill)

Model MBV? Model MBSM’
Parametdr BBB° HOL® BBB® HOL®
o 0.07 (0.02) 0.05(0.01) 0.07 (0.01) 0.05 (0.01)
o’ 0.20 (0.09) 0.06 (0.03) 0.19 (0.10) 0.06 (0.03)
o? 0.04 (0.02) 0.02 (0.01) 0.04 (0.02) 0.02 (0.00)
Oa 0.06 (0.01)
ol 0.01 (0.00)
o’ 0.01 (0.01) 0.01 (0.00) 0.02 (0.01) 0.01 (0.00)
o? 0.24 (0.02) 0.23 (0.02)
r,(a,m) -0.57 (0.09) -0.22 (0.23) -0.58 (0.08 -0.36 (0.17
r,(sa sm) -0.56 (0.03)

2 0.45 (0.075 0.18 (0.05) 0.45 (0.08j 0.16 (0.04
h? 0.08 (0.01§ 0.05 (0.019 0.09 (0.025 0.05 (0.019
C, 15% 13% 15% 13%

C, 3% 3% 3% 5%
C. 52% 67% 53% 69%

Model MBYV is based on the random regression mukied model described in Vanderigkal. (2009)
®Model MBSM is based on the approximate split mbteed model described in Strandén and Méantysa@tid)2
“ BBB = Belgian Blue breed, HOL= Holstein breed.

¢ The termsaﬁ is the herdX year of calving varianceaj is the direct additive genetic varianaef1 is the

maternal additive genetic varlancrsr:a is the direct segregation variand@,,, is the maternal segregation variance,

Js is the permanent maternal environmental variara'é,is the residual variance, (a,m) is the genetic
correlation between direct and maternal effec‘gs(sa, Sm) is the correlation between direct and maternal

segregation effec;d’lj and hrf] are the direct and the maternal heritabilitiespeetively.C,,, Cp and C, are the

herd X year of calving fraction, permanent maternal emwinental fraction and residual fraction in the pitgpic
variance, respectively.

° Approximated standard error computed using equatpsavided by Klei and Tsuruta (2008).
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From the (co)variances estimated using multi-bneedlels, variances for calving ease were
computed for BBB<HOL crossbred animals. Results are shown for Finalsi (BBB=50%
and HOL=50%) and back-crosses (F2) between F1 amebpeds (BBB=25 or 75% and
HOL=75 or 25%) in Table 24 and Table 25, respettiv€éhe herdx year of calving and
direct additive genetic variances for BBBHOL crossbred calves were between those
reported for purebreds in both multi-breed modé&kb(e 23). Note that the estimates of direct
additive genetic variances for BBBHOL crossbred calves were larger in Model MBSM than
Model MBV, especially for back-crosses. These gneastimates obtained for back-crosses
might be explained by the inclusion of the direegregation variances in Model MBSM,
which is an extra source of genetic variability fllose animals. The maternal additive genetic
variances for BBBXHOL crossbred dams tended to follow a similar pati{@able 25). By
contrast, the maternal permanent environmentahrnees of crossbred dams were below those
of the purebred dams in both multi-breed modelkshasvn in Table 25.

Table 24. Variances of her& year of calving and direct additive genetic effeestimated
from both random regressions multi-breed modelpéoebred and crossbred calves

Breed composition Model MBV? Model MBSM
of calf
BBB? HOL? Herd-period Direct adglitive Herd-period Direct adqlitive
genetic genetic

0.00 1.00 0.05 0.06 0.05 0.06
0.25 0.75 0.05 0.08 0.04 0.12
0.50 0.50 0.05 0.11 0.05 0.12
0.75 0.25 0.06 0.15 0.07 0.19
1.00 0.00 0.07 0.20 0.07 0.19

#Model MBYV is based on the random regression mukied model described in Vanderigkal. (2009)

® Model MBSM is based on the approximate split mbited model described in Strandén and Méantysaari
(2013)
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Table 25. Variances of maternal permanent environmental amademal additive genetic
effects estimated from both random regressions ifbtded models for purebred and
crossbred dams

Breed composition

of dam Model MBV? Model MBSM’
Maternal Maternal Maternal Maternal
BBB? HOL® permanent additive permanent additive
environment genetic environment genetic
0.00 1.00 0.01 0.02 0.01 0.02
0.25 0.75 0.01 0.01 0.01 0.03
0.50 0.50 0.01 0.02 0.01 0.03
0.75 0.25 0.01 0.02 0.01 0.04
1.00 0.00 0.01 0.04 0.02 0.04

Model MBYV is based on the random regression mukied model described in Vanderigkal. (2009)

® Model MBSM is based on the approximate split mbiged model described in Strandén and Mantysaari
(2013)

MODEL COMPARISON

The mean estimated reliabilities of EBV of the pwesl sires and maternal grandsires
obtained for each model are provided in Table 2& fivo multi-breed models showed greater
mean reliabilities than Model L1 for both breedwslded, for Model MBYV, the reliability gain
was approximately 5 and 3 % for direct and mateEBY in BBB, respectively, and around
25 and 15% in HOL. For Model MBSM, this reliabiligain was approximately 5 and 6% for
direct and maternal EBV in BBB, respectively, wlasrevere around 19 and 15% in HOL. By
comparing multi-boreed models, in terms of reliahjlithe Model MBV was similar to the
Model MBSM for both breeds. It should also be higiied that reliability depends upon
genetic parameters, and because greater h? estimate, in general, reported for multi-breed
models (Table 23), the use of crossbred data yoiwith purebred data in the genetic
evaluation increased the reliability of the purebEBV. This is in agreement with VanRaden
et al. (2007) in a joint evaluation of purebreds and sbosds in US dairy cattle and Lutaasta
al. (2002) in a joint evaluation of purebreds and sbosds in swine. Both studies
demonstrated that crossbreds are useful for impgothe accuracy of genetic evaluation of
their purebred relatives. Greater accuracy meaeatgr genetic gain. Relative genetic gain
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from multi-breed models compared to Model L1 watinested as the relative increase in the
mean estimated accuracie®.(square root of mean estimated reliabilities) BVEbetween
Model L1 and multi-breed models. The relative adagas in genetic gain that could be
expected by a breeder by using EBV from Model MB¥tead of those from Model L1
ranged from 2% to 12% and from 3% to 9% by using/EBm Model MBSM instead of
those from Model L1.

Table 26. Mean reliability of the estimated breeding valueBY) of purebred sires for direct
calving ease and of purebred maternal grandsirasdternal calving ease in both breeds

Breed EBV N Model LT Model MBV®  Model MBSM

BBE Direct 2395 0.55 0.58 0.58
Maternal 2256 0.33 0.34 0.35

HoL Direct 2696 0.31 0.39 0.37
Maternal 2374 0.20 0.23 0.23

& Model L1 is the single-breed linear animal modegctibed in Vanderickt al. (2014)
® Model MBV is based on the random regression nirkied model described in Vanderikal. (2009)

¢ Model MBSM is based on the approximate split moited model described in Strandén and Mantysaari
(2013)

4 BBB = Belgian Blue breed, HOL= Holstein breed.

The ranking of animals on the bases of their germagrit to allow their selection is a major
objective in breeding programs. Spearman’s ranketations between EBV obtained by
Model L1, Model MBV and Model MBSM among purebreides with progeny for direct
calving ease, as well as among purebred materr@addgires with progeny for maternal
calving ease are presented in Table 27. The ramklatons were high>0.90) for all models
in both breeds, indicating similar genetic rankirggween all models, especially between
Model MBV and Model MBSM, but also indicating thidiere will be no substantial losses
regardless of which of the three models is usedofewhat lower rank correlation among
models was observed for HOL, especially betweenélad and Model MBV. Furthermore,
estimates of rank correlations were slightly sniftbe maternal effects than for direct effects
of calving ease in both breeds.
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Table 27. Spearman’s rank correlations of estimated breedahges (EBV) of purebred sires
for direct calving ease and of purebred maternahdgsires for maternal calving ease in both
breeds obtained from the different models

Model L1, Model L1, Model MBYV,

Breed  EBV N Model MBV ~ Model MBSM  Model MBSM
BBB Direct 2395 0.97 0.97 0.99
Maternal 2256 0.94 0.94 0.99
HOL Direct 2597 0.96 0.95 0.99
Maternal 2374 0.90 0.91 0.99

@ Model L1 is the single-breed linear animal modedctibed in Vanderickt al. (2014); Model MBV is based on
the random regression multi-breed model describedandericket al. (2009); Model MBSM is based on the
approximate split multi-breed model described ira&tién and Mantysaari (2013)

® BBB = Belgian Blue breed, HOL= Holstein breed.

Finally, all tested models were compared in teringoodness of fit. To achieve this, the MSE
and the Pearson’s correlation estimates betweesrdss and predicted calving ease scores of
BBB and HOL purebred calves were calculated fohaaodel. The results are presented in
Table 28. Models with the smaller MSE had a beitgnreement between observed and fitted
values,i.e. a better goodness of fit. The differences in MS#awery small between models,
especially for BBB calves. A higher difference inSH was observed for HOL purebred
calves between Model L1 and Model MBV. The lowe§SBiwas obtained by Model MBSM
for the BBB purebreds whereas the lowest MSE fohhQrebreds was obtained with Model
MBV. Based on these MSE, both multi-breed modetspdirform slightly better than Model
L1 in terms of goodness of fit; and therefore, aacy of prediction was slightly better using
Model MBV or Model MBSM than Model L1. Similar to $E results, differences in
Pearson’s correlation between models were very|lsamal again the multi-breed models

outperformed single-breed models, especially ferHIOL purebred calves (Table 28).
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Table 28. Mean squared error (MSE) and Pearson’s correlastimates between observed
and predicted calving ease scores from Model L1dé&id1BV and Model MBSM for BBB
and HOL purebred calves

BBB? (N=55 319) HOP (N=40 535)
MSE Correlation MSE Correlation
Model L1° 0.15 0.93 0.20 0.73
Model MBV* 0.14 0.93 0.17 0.79
Model MBSM 0.14 0.93 0.18 0.78

®BBB = Belgian Blue breed, HOL= Holstein breed.
® Model L1 is the single-breed linear animal modesatibed in Vanderickt al. (2014)
¢ Model MBYV is based on the random regression mukied model described in Vanderikal. (2009)

4 Model MBSM is based on the approximate split mbtted model described in Strandén and Mantysaari
(2013)

For a more detailed comparison of both multi-breemtiels, MSE and Pearson’s correlation
estimates were also computed for BBBIOL crossbred calves. Crossbred calves were
gathered in 5 groups according to their breed caitipa and results of MSE and Pearson’s
correlations for these 5 groups of crossbred catwresprovided in Table 29.Although there
were no large differences between the 2 multi-bmeedels, the MSE for the Model MBSM
was smaller than for Model MBV in each of the 5ssiored groups; therefore, Model MBSM
had a slightly better goodness of fit for crossbesimals than Model MBV. The same

statement can be made for the estimates of Pearsomrelation.

To sum up, Model MBV and Model MBSM worked almosgueally well regarding
comparison results for both purebred and crosshkrathals. Therefore, both multi-breed
models can be considered as being quasi-equivaedels and either of them can be used to

perform the joint genetic evaluation for calvingeaf BBB and HOL Walloon cattle.

190



MULTI-BREED RANDOM REGRESSION MODELS FOR CALVING EASE

Table 29. Mean squared error (MSE) and Pearson’s correlastiimates between observed
and predicted calving ease scores from Model MBY lslodel MBSM for calves of data set
1]

Breed composition of calves MSE Correlation
8B  HOL' N A wesw  weve  waswr
] 0% - 19%] [80% - 95%] 564 0.29 0.27 0.93 0.93
[20% - 39%] [60% - 79%)] 1051 0.28 0.26 0.90 0.91
[40% - 59%)] [40% - 59%)] 2504 0.24 0.22 0.85 0.86
[60% - 79%] [20% - 39%)] 435 0.45 0.40 0.90 0.92
[80% - 95%[ ] 0% - 19%)] 342 0.35 0.33 0.92 0.93

2BBB = Belgian Blue breed, HOL= Holstein breed.
® Model MBV is based on the random regression nirkied model described in Vanderikal. (2009)

“Model MBSM is based on the approximate split mofted model described in Strandén and Mantysaari
(2013)

CONCLUSIONS

According to estimates of genetic parameters, miigehnd correlation between models, this
study verified the feasibility of a joint genetigaduation for calving ease trait using purebred
and crossbred data from BBB and HOL Walloon cattleough multi-breed models. The
adaptations of the two literature based multi-brewxdlels (Model MBV and Model MBSM)
were successfully demonstrated. In addition, it whswn that Model MBV and Model
MBSM performed almost equally well for purebred ancssbred animalj.e. quasi-
equivalent. It was demonstrated that the use of BBHBOL crossbred information had a
positive influence on the estimation of genetic itner BBB and HOL purebred animals, and
accordingly on the relative genetic gain expectedteeders using EBV from both proposed
multi-breed models. However, further studies aredee to assess the predictive ability of

these multi-breed models.

These results showed the benefit of a joint genetmluation for calving ease of Walloon
BBB and HOL cattle including crossbreds. This eatibin could be performed with either of

the two proposed multi-breed models, since theyewsbiown as quasi-equivalent models. But
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both models have advantages and disadvantagesModel MBV allows describing the
additive genetic effects of crossbreds as a weiljsten of breed-specific effects. We can
therefore consider that the expectation of the taddieffects to be correctly modelled.
Nonetheless, Model MBV uses a strong simplificatimn define the additive variances
whereas the Model MBSM defines in a theoreticallyrencorrect manner segregation effects
and associated variances. Finally, the MBV modetamputationally simpler and has the
advantage that it could be easier to use in a genevaluation setting, even if Makgahlat

al. (2013) used the MBSM, but avoided difficulty in delling segregation effects under

genomic context.
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CHAPTER V. GENERAL DISCUSSION, CONCLUSIONS
AND PERSPECTIVES






OUTLINE

Chapters Il to IV presented genetic evaluationesystfor the genetic improvement
of maternally influenced traits and genetic evabratmodels for the genetic

improvement of crossbred and purebred animals frartii-breed populations. The

objectives of this chapter are to compile resubtsimed throughout this work and to
discuss them in a wider perspective. The followasgects relating to the accuracy
and efficiency of genetic selection based on esé@thabreeding values are
addressed. Firstly, the quantity and quality ofrgtgpic data used in any genetic
evaluation are examined. Secondly, the use of adewiatistical genetic models to
get accurate estimations of genetic parametersestichated breeding values is
discussed. Finally, main conclusions obtained frar@vious chapters as well as
future perspectives of research are summarized.






GENERAL DISCUSSION, CONCLUSIONS AND PERSPECTIVES

INTRODUCTION

Animal breeding programs are set up to genetigaifyrove livestock populations to enhance
competitiveness and sustainability of livestock duation. Genetic selection based on
estimated breeding values (EBV) is key in genetiprovement programs, since it provides a
way of comparing animals to select the geneticallperior indiviuals that will be used as
parents of the next generation. Estimated breedahges are random effect solutions of mixed
model equations (Henderson, 1973) that are usbaked on the knowledge of phenotypic
data and pedigree information. In the last ten gjetire inclusion of molecular information

(e.g. SNP markers), in addition to phenotypes and pedighas become an important

component in the prediction of genetic merit.

The mixed model equations can be set up in diftenexrys depending on the evaluated trait,
the population analysed, the final goal and otlm@saerations, and in summary, the accuracy
of genetic selection depends not only on quantity guality of the available phenotypic data,
but also on the suitability of the statistical ggmevaluation (mixed) model used for the

estimation of genetic parameters and EBV.
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PHENOTYPIC DATA

QUANTITY OF DATA

Phenotypic and pedigree data sets are the foumdaifo genetic evaluation systems.
Phenotypic data may be recorded by the animal$bpeance recording systems.q. milk
recording organisations), progeny-test stationsmah breeding organisations.. Herd-
Book), livestock farmers (on-farm recording), stign research centres, laboratories.d

milk testing labs), veterinarians, slaughterhowsesso on.

The quantity of recorded data relies on many facsoich as the amount of labour and its cost,
drive of farmers and other stakeholders to recoodtendata, the availability of computing
resources, etc. Depending on the trait to be etedydhe data quantity can be hugeg(
several tens of gigabytes of data for milk yieldspectral data...) or limited to a few hundreds
of phenotypes, especially if the recording is difft and/or expensive. For instance, direct
recording of traits such as dry matter intake othraee emission in a large number of animals

is currently hard to achieve, which limits the effncy of genetic selection for such traits.

The number of phenotypes depends heavily uponnitentive of the breeders and producers
to record the traits. For example, although reecagdif calving ease scores is not mandatory,
the quantity of scores recorded by breeders hasidemably increased since the genetic
evaluation system of calving ease for Walloon Hoisdairy cattle was implemented. From
December 2012 (first official genetic evaluationm falving ease) to December 2016 (most
recent genetic evaluation), an increase of 94%aobagsrved (from 85 118 to 165 085 scores)
whereas only 85 118 scores relevant for genetituatian were recorded between 2000 and
2012 (Chapter 111.2). This significant increase canleast partially, be explained by the fact
that the delivery of EBV to Walloon dairy farmersrohg the 4 last years. The usefulness of
these EBV as decision support tools for selectiod mating, which in turn has made the

farmers more willing to supply extra phenotypicadtt increase the reliability of the EBV.

In addition, the amount of available data is insheg due to developments of precision

livestock farming, defined as the management dadslieck production using principles and
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technologies from process engineering. The fasamcks in computer resources, information
technology as well as the implementation of elestroanimal identification and the
development of the sensor-based data, have gredlilyenced data recording in livestock
populations. The use of advanced sensors clossbgiated to animals facilitates therefore the
recording of data at low cost without disturbingnaals and can help more effectively farmers
in managing their herds (Genglet al, 2013). On dairy farms, sensors measuring milk
conductivity or pedometer measuring mobility aréenfgiven as examples. Likewise, fine
milk composition, and in particular fatty acid pte$§, can be measured using mid-infrared
(MIR) spectroscopy, which is an example of higletlghput data with respect to both the
number of measurements and the number of variablass, precision livestock farming has

the potential to increase dramatically the quartitghenotypic data available.

QUALITY OF DATA

As previously mentioned, the accuracy of estimaexdetic parameters and EBV rely on the
quality of phenotypic data and on correct pediges®rding. Moreover, high quality data are
crucial for making efficient use of genomic dataapplications such as linkage or association
mapping and genomic selection. A prerequisite tmuete genetic/genomic analysis is data

consistency to ensure data quality.

Quiality checks are performed on data to identifpimrsistent or inaccurate data that should not
be used in a genetic analysis. The aim of the deaning process is to ensure that the
analysis is as accurate as possible while the slditaonstitute a representative sample of the
population. Quality checks were carried out in Geeplll and IV. For example, records
considered as outliers or individuals with missimigrmation related to any factor used in the
genetic analysis modek.Q. animal/herd identification, birth/calving date) n@eremoved.
Likewise, birth dates of animals and parentage vedrecked to ensure that the age of an
animal at recording and its parents’ ages at itth bvere consistent. Data recording may be
optional in some cases.{.calving ease scores in Wallonia), which introdugesertainty in
data quality due to subjectivity or errors fromdxters. To avoid these issues, some additional
checks must be applied to the data. For examplesheith a standard deviation for calving

ease scores 0.05 were excluded to avoid herds where breeders sl calving in the same
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category (Chapters lll.1, 11l.2 and 1V.2). Simikarto avoid breeder recording errors, survival
limits based on the mean of lamb survival to wegror a flock and birth year were applied

on the lamb survival data (Chapter 111.3).

Furthermore, information from other recorded traitcen be used to check the
relevance/consistency of data for a trait undetuat®mn, thus improving the data quality for
this trait g.g.Kadarmideen and Coffey, 2001). In Chapter IlIt& presence/absence of lamb
weight measurements recorded at the strategicalfoitant time periods combined with
information coming from lamb birth fate codes wased to assess whether a lamb had
survived until weaning. Based on this combinatidndata, new decision rules for data
inclusion and exclusion in the genetic evaluatigateam of lamb survival to weaning were
defined and tested. Results showed that these ulew/allowed to enhance data quality and to
recover data that were previously considered asingswhen using the previous decision

rules.

As was the case with the quantity of phenotypiadé#te incentive of farmers and other
stakeholders involved in recording is essentia¢nsure good quality of phenotypic data. In
addition, precision farming can also improve dataliy, especially through the use of
electronic identification based on radio frequenbye information recorded and stored on the
reader is more accurate than using pen and pafibrfewer opportunities for errors to occur.
Once recorded and stored, the information can biéyedaansferred for further use. Thus, the
use of sensors or other electronic devicesy.(automated milking systems, automated
weighing crates, feeding machines) combined witbctebnic identification enables the

acquisition of the good quality phenotypic daay(Boichard and Brochard, 2012).

To sum up, the quality of data used in a genetaluation system can be guaranteed and
improved through the implementation of quality dkecusing other traits as information

sources, properly incentivising farmers and usiregigion farming tools.
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STATISTICAL GENETIC EVALUATION MODEL

Another important step in genetic evaluation systésto choose an appropriate statistical

model to estimate genetic parameters and genetic (ine. EBV) accurately.

The choice of a genetic evaluation model may bedas whether trait under evaluation is
expressed on a continuous or on a discrete scaleekhas being informed by the underlying
processes affecting the expression of the traipe@ally in the presence of multiple
environmental (such as permanent environment, mat@r not) or genetic (such as animal
and maternal genetics or non-additivity) factonsttfrermore, the model needs to be adapted
to the particular structure of the animal populat@nalysed €.g. multi-breed population,

admixed population).

MODELS FOR TRAITS EXPRESSED ON DISCRETE SCALES (CATEGORICAL
TRAITS)

Many traits of importance in livestock productiore &xpressed on discrete scales that are
categorical €.g. calving ease, disease susceptibility, survivaljeréfore, genetic evaluation

models accounting for the categorical nature otthi¢ is needed.

Theoretically, non-linear mixed models, such asegalized linear mixed models (GLMMs)
and threshold mixed models, allow better estimatibgenetic parameters and genetic merit
predictions of categorical traits (Gianola, 198Rgsearchers in general expected that non-
linear mixed models would lead to increased respdrmsn selection, because they described
more accurately the structure of the data (AbdetrAand Berger, 1999). However, although
some simulation studies (Hoeschele, 1988; AbdefAand Berger, 1999) have confirmed the
statistical superiority of non-linear mixed modés analysing discrete data, several studies
using phenotypic data from sheep, beef, and daitslecdemonstrated no real significant
advantage for the analysis of categorical traitatdet al, 1997; Phocas and Laloé&, 2003;
Vazquezet al, 2012).

Our results agree with the literature. In Chaptéd,l calving ease scores from Walloon

Holstein dairy cattle were analysed using lineadt #tweshold animal mixed models. Models
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were assessed and compared in terms of goodnefiis asfd predictive ability. Although
threshold models had better results in terms ofdgess of fit, no clear advantage of the
threshold mixed models over the linear mixed modes observed in terms of predictive
ability, especially when there were a larger numioér progeny per sire (Table 4).
Furthermore, Spearman’s rank correlations of 0.87eviound between sires EBV indicating
that sire rankings were similar and that fittingelar models would not result in a substantial
loss of accuracy. Likewise, when revising the germtaluation model of the lamb survival to
weaning trait for the New Zealand sheep industryaf@ler 111.3), the benefits of using use a
generalized linear mixed model with a logit linkn@ition rather a linear mixed model were
investigated. Results obtained from the cross-atibad study showed that, in terms of
predictive ability, the generalized linear mixed dab (MSE from 0.1283 to 0.1293) was
slightly less accurate than the linear mixed mgq&SE from 0.1275 to 0.1284) on lamb
survival data. These results could, at least pirtibe explained, by the hypothesis that in
many practical situations, linear models are néljuxery robust to non-normality. Similarly,
non-linear models also often rely on specific agstions that are not necessarily adequately

met.

Our results combined to previous studies in litematsuggested little incentive for the use of
non-linear over linear mixed models of both catemrtraits studied, especially because
computational requirements are more complex byguson-linear mixed models (Chapter I1).
However, the use of non-linear models might be ehile for some types of categorical
traits, as those showing unordered or few categdesy., binomial), very uneven distributions

of records inside categories or non-normal proltgdistributions (e.g. Poisson).

MODELS FOR MATERNALLY INFLUENCED TRAITS

Several traits of interest in animal productiontsyss €.g.calving ease, birth weight, survival
to weaning) are maternally influencezld. Dematawena and Berger, 1997; Roughsetge,
2001). These traits are influenced not only by gemotype or the environment of the
individual itself .e. direct effects), but also by either environmentd/anthe genotype of its
mother {.e. maternal effects). Genetic evaluations of matéyniafluenced traits require

models accounting for all those effects to delivebiased and accurate EBV. Access to
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accurate maternal genetic evaluation systems cioalded help breeders and producers to
select superior animals for breeding, thereby iming the maternal efficiency of the
livestock. Estimation of direct genetic as wellnagternal genetic and environmental effects is

possible by fitting a maternal animal model (Chagi)e

Through Chapters 1ll.1 to 11l.3, different maternahimal models were investigated and
assessed for two maternally influenced traits: inglwease in Walloon Holstein population
(Chapters 1ll.1 and 111.2) and lamb survival to wesy in New Zealand sheep population
(Chapter 111.3). In Chapters 1l.1 and 11.2, Modell and L2 were linear models and Models
T1 and T2 were threshold models. Models L1 and €leviitted with an estimated correlation
between direct and maternal additive effects wieeMadels L2 and T2 were fitted with a
correlation between these effects constrained . ze Chapter 111.3, models Al, A2, A3 and
B were linear models whereas models Log A and Lagie logistic models using model A3
and model B, respectively. Models A1 and A2 difteie the way they handled the variable
“lamb day of birth”, model B was the same as A3&ddled a maternal environmental random

effect.

An important issue in the implementation of a genewvaluation system for a maternally
influenced trait is to determine the relationshgiviieen direct and maternal genetic effects.
This relationship affects the estimation of gengiarameters as well as the response to
selection of both components. Most of genetic dati@n estimates between direct and
maternal effects tend to be negatieeg(Bennett and Gregory, 2001; Phocas and Lalo&, 2003;
Eaglen and Bijma, 2009; Everett-Hinoétsal, 2014), although positive correlations have also
reported in some studieg.¢. Matos et al, 2000; Steinboclet al, 2003). These negative
correlations might be the product of both an emgtgenetic antagonism and a sire by year
interaction (Robinson, 1996), and can be also émited by data structure (Maniatis and
Pollott, 2003). In our studies, positive and negatgenetic correlation estimates between
direct and maternal effects were obtained. For Istdidied maternally influenced traits, the
sign of genetic correlation estimates differed leswthe linear and non-linear models (Tables
2, 11 and 12). However, almost all estimates weresignificant, except for estimates from

linear models in Chapter I11.3 (Table 11). Consetlye no genetic correlation between direct
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and maternal effects is fitted in the current Watigenetic evaluation system for calving ease
for Holstein dairy cattle (Chapter Ill.2). It shdube noted that, during the single-breed
analysis addressed in Chapter IV.2, a significagative correlation estimate between direct
and maternal additive genetic effects were obtafoedalving ease for the same population
with Model L1 (Table 22). This might be due to ateedata structure and a greater amount of
score phenotypes, as well as due to different dieimnof purebred Holstein animals between
our studies (at least 75% of Holstein genes in @rdfl.1 vsat least 95% in Chapter IV.2). In
the near future, we could consider a revision @& ¢thirrent genetic evaluation model and
therefore to revisit the issue of the relationdiepveen those effects for this trait. If a negative
genetic correlation between direct and maternaicggffor calving ease is confirmed, this will
indicate that Walloon dairy farmers will need toséaselection decisions on both direct and
maternal EBV of an animal, to avoid long-term negatonsequences. Currently, both direct
and maternal EBV are provided separately to thed®ses, which may cause some breeders to
select their animals based solely on the direct donversely on the maternal) EBV.
Calculating an aggregated EBV including direct amaternal values as suggested by Eaglen
et al. (2012) could therefore be an effective way to emage breeders to emphasise both

effects, especially if strong negative correlatians present.

The necessity to include maternal effects, esdgcelmaternal additive genetic effect, in
genetic evaluation models can be seen by compastignated direct heritability (h?) and total
h2, which was calculated as the ratio of total thbte varianceif. genetic variance that is
available for response to selection) over phenctypriance (Eaglen and Bijma, 2009). For
lamb survival to weaning (Chapter 111.3), this camgon showed that the presence of
maternal effects led to an increase in estimatéal tgenetic variance of approximately 75-
100% in the case of models Al to A3 whereas a dseref 13% was observed with model B.
This decrease for model B could be explained bydberease in maternal additive genetic
variance after maternal environmental effects ifterl effects) were added to the model, and
when moderate negative genetic correlation betwdect and maternal effects (-0.438) were
estimated. The estimated total genetic variance magased by approximately 255% and
175% for logistic models (Log A and Log B), respeely. On the other hand, for calving ease
(Chapter 111.1), the estimated total h? ranged fi@i02 to 0.151 for all tested models whereas
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the direct h2 ranged from 0.074 to 0.121. It intBeathat the addition of maternal effects
increased heritable variance by approximately 2586 threshold models and by

approximately 35% for linear models.

Furthermore, the importance of accounting for nmeteenvironmental effects to prevent the
overestimation of maternal h? and the subsequeatestimation of total h? was reported in
several studiese(g. Arangoet al, 2005; Everett-Hincket al, 2014). Our results agree with
their findings. In Chapter 111.3, higher estimata#fsmaternal h? for lamb survival to weaning
trait were observed in maternal models ignoring thaternal environmental effectse(
models Al to A3 and Log A) compared to maternal el®d.e. models B and LogB) fitting
those effects. Similar results were obtained dummgliminary analysis of calving ease
(Chapters 111.1). In addition, the largest partnaodternal variability was due to environmental
effects rather than additive effects for both srgifable 2 and Tables 11-12), reinforcing the

importance of accounting for maternal environmeettdcts.

Finally, genetic models developed and assessechaptér Ill to evaluate calving ease and
lamb survival to weaning were single-trait modétkwever, several authors showed that
multiple-trait models may be better than singléttngodels €.9.Eaglenet al, 2012; Everett-
Hincks et al, 2014). They suggested that using a multiple-tnaaidel that incorporates a
highly heritable and correlated indicator trait Wwbumprove the estimation of genetic
parameters and would lead to a more optimal arglysi particular, maternal variance for
lowly heritable traits, such as calving ease orHasurvival, benefited from including a
correlated traité.g. gestation length, body condition score (BCS), tirpés, birth weight) in
the genetic model (Bastiet al, 2010; Eagleret al, 2013; Ahlberget al, 2016). Thus, it
might be worthwhile to see whether there is realefie in replacing the current single-trait
model used to evaluate calving ease in the Walttary cattle by a multiple-trait model using

correlated traits, such as gestation length or BCS.
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MODELS FOR MULTI-BREED (CROSSBRED) POPULATION

Crossbreeding has been shown to provide a simplinacheto increase the health and
productivity of many plants and animals. It is widased in the pig, poultry and beef cattle
populations while, in general, it is not yet thesean dairy cattle. An exception can be made
for New Zealand and for tropical climates wheressteeding is wide spread in dairy cattle
populations. However, for several years, probleelated to functional traitse(g. lower

fertility, greater susceptibility to mastitis, lggoblems and ketosis), coupled with increased
inbreeding on an international scale, have resulettemendous interest in crossbreeding
among commercial dairy producers (Sgrenséral, 2008). Dairy producers indeed use
crossbreeding to exploit heterosis for functiomait$ and breed complementarity for other
traits. Therefore, dairy cattle populations thatlude crossbred animals can contribute to
genetic progress. This can be achieved, for instamgincluding crossbred bulls used in New

Zealand in some populations (Chapter IV.1).

In general, genetic evaluation systems appliedvesiock production, especially dairy cattle,
only compare animals within breed. It means thdy purebred data are used whereas data
recorded on crossbred animals are neglected, elien wis available. We stated in chapter I
that using purebred selection is not appropriathéncase of crossbreeding systems. There are
indeed genetic and environmental differences betwmeebred and crossbred animals, so
much so that purebred performance can be a podicpye of crossbred performance (I8an
Escricheet al, 2011). Hence, to perform combined crossbred-patebelection, multi-breed
genetic evaluation systems combining purebred aogsbred data have been suggested by
numerous authore(g. Pollak and Quaas, 1998; Lutaagtaal, 2002; Garcia-Cortés and Toro,
2006; VanRaderet al, 2007). Thus, a direct comparison of animals wigltious breed
composition from multi-breed or admixed populatiooan be made, enabling genetic
improvement of these populations. Moreover, witd thtroduction of genomic selection in
animal breeding programs, many investigations Hasen carried out recently to develop
multi-breed models allowing the use of moleculdoimation, such as SNP markers (Toefsi

al., 2010; Makgahlelaet al, 2013; Christensert al, 2014; Lundet al, 2014). Relatively

sophisticated models need to be developed, foangst to separate markers into 2 classes:
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those with effects consistent across breeds, amgktivith breed specific effects or to allow

marker effects to be partitioned into across arnfliwibreed components (Lurd al, 2014).

In Chapter I, it was stated that in the case wiudti-breed population it is more appropriate to
use breed specific additive genetic (co)varianBesults from single-breed analyses (Chapter
IV) indicated genetic differences between the bsestddied (Holsteiws Jersey and Holstein
vs Belgian Blue, respectively), which prompted theelepment in Chapter IV.1 and V.2 of
multi-breed models with heterogeneous genetic @iguces across breeds to conserve the
genetic features of each breed. The particulafitthese multi-breed models is that they use
breed proportions to estimate random regressiofficeats. Random regressions are useful
because they can accommodate changes in the (emsrstructure of phenotypic data
according to the breed composition of an animaleréfore, the EBV of an animal was
decomposed into several correlated genetic papemndieng on their breed of origin. This
decomposition of the genetic (co)variance matriblsed of origin resulted in a much simpler
formulation for (co)variance components estimatiarhich is easy to implement using

estimation techniques available in general purgossvare.

The multi-breed model proposed in Chapter IV.2 léchl hereafter Model MBV for
convenience) was compared with the approximate itbrded random regression model
presented by Strandén and Mantysaari (2013) (chlézdafter Model MBSM), which also
used breed-specific random regressions for thetimddjenetic random effects but based on
the square root of breed proportions. The maireckfice between Models MBV and MBSM
was how they handled the relationships betweendbrée the additive genetic (co)variance
structure. Contrary to Model MBV, covariances betwebreed-specific additive genetic
effects were not accounted for by Model MBSM, mhistly because they were already
included in the segregation (co)variances structlifee segregation variance results from
differences in allelic frequencies between paregpuaé breeds, and is derived as the difference
in additive variances between breed groups (Chaipt&kesults showed the quasi-equivalence
of both Models MBV and MBSM in terms of goodnessfibfas well as in terms of genetic
rankings (Spearman’s rank correlation of 0.99),eemlly for F1 crossbreds when the

segregation effect is null. Likewise, the same lahd@omparison was undertaken between the
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multi-breed modelsi.e. Model MBV and Model MBSM) and the single-breed rabdsed for
the single-breed analysis (Chapter 1V.2). ResultBcated similar genetic rankings between
single-breed and Model MBV or Model MBSM, but alsudicated there would be no

substantial losses in accuracy incurred by usitigeeof the multi-breed models.

According to several studies, one of the main athges of the multi-breed models, which
make use of purebred and crossbred information, thasincreased reliabilities of the
purebred EBV compared to strictly single-breed ngddue to the use of all available
progeny information (Lutaayat al, 2001; VanRadert al, 2007; Iba@z-Escricheet al,
2011). The same conclusions were reached in Chdyt2rbetween single-breed models
using purebred data alone and multi-breed modetsi@IMBV or Model MBSM) combining
purebred and crossbred data. Results showed thatsth of data from crossbred progeny in
addition to purebred data resulted in reliabiligirgs ranging from 3% up to 25% depending
on breed and genetic additive effect, and confignihe importance of using data from
crossbred progeny in addition to purebred data.sJThaince response to selection is
proportional to the prediction accuracy of the denmerit, combining purebred and crossbred

information may be beneficial for genetic evaluatad purebred animals.

Finally, results from Chapter IV indicated that dulespecific EBV for a trait measured
repeatedly over timd.€. milk yield in first lactation) as well as for a teanally influenced
trait (i.e. calving ease) could be estimated for each puredmedcrossbred animals of a multi-
breed population using the multi-breed random &giom models proposed. These breed-
specific EBV could be helpful for breeders and mwets in their selection and mating
decisions because they could select animals bas#teamating strategy that they would like

to apply in their herds.

Although Model MBV and Model MBSM performed almasqually well for purebred and
crossbred animals i.€¢. quasi-equivalent models), they both have advastagad
disadvantages. The Model MBV allows the additivenede effects of crossbreds to be
described as a weighted sum of breed-specific tsffed/e can therefore consider the
expectation of the additive effects to be correctigdelled. However, Model MBV uses a
strong simplification to define the additive vaias whereas the Model MBSM'’s definition
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of segregation effects and associated variandbeasetically more correct. Finally, the MBV
model is computationally simpler since the estioratof segregation variance/effects is not
required, so that it has the advantage that itcctwel easier to use in a genomic evaluation
framework. Indeed, the principal difference betwsgmgle-breed and multiple-breed genomic
prediction is in the relationship matrix used ttate SNP effects to phenotypes. The genomic
relationship matrix needs to properly account foe breed of origin of the alleles in the
population as well as the allele frequency diffeemnbetween breeds, and this could easily be
managed by Model MBV. However, most studies hawendbolittle benefit in using models
that included breed-specific genetic effects ovassé which ignored these effects.g
Makgahlelaet al, 2013; Thomasent al, 2013; Lourenceet al, 2016). But most studies in
dairy cattle have focused on the use of multi-bragninals to predict the genetic merit of
purebred animals, rather than using all availabfermation to the predict genetic merit of
composite animals. It would therefore be intergstio modify Model MBV to extend the

utility of genomic selection to those crossbredydapons.

211






GENERAL DISCUSSION, CONCLUSIONS AND PERSPECTIVES

GENERAL CONCLUSIONS

The main conclusions drawn from this thesis ar& tha

» For both categorical traits studieide( calving ease and lamb survival to weaning), non-
linear mixed models did not offer clear advantage®r linear mixed models. No
substantial losses in accuracy will result frontirfg linear rather than threshold mixed

models for these categorical traits.

» For both maternally influenced traits analysee. (calving ease and lamb survival to
weaning), the largest part of maternal variabiityas due to environmental effects.
Therefore, maternal environmental effects had todsesidered in the genetic models used
to evaluate calving ease and lamb survival to weprno get accurate estimation of
additive genetic effects. Indeed, it was shown thambetic models omitting maternal
environmental effects (temporary or permanent)ltedun an overestimation of maternal

additive genetic variance and, thus in an overedion of maternal h2.

» For both maternally influenced traits analysed,itp@s and negative genetic correlations
between direct and maternal effects were estimidwedigh linear and threshold maternal
models. Almost all estimates of genetic correladiomere not significant, with two
exceptions. Estimates from linear maternal modaidamb survival to weaning showed
moderate and unfavourable correlations. Moreoveigaificant negative correlation was
estimated for calving ease during the developmeéatjoint genetic evaluation of this trait

for Holstein and Belgian Blue Walloon cattle.

* Based on the linear maternal animal models devdlapehis thesis, useful and accurate
EBV for direct and maternal additive genetic efecan be estimated, allowing breeders

and producers to improve the genetic merit of the@stock herds efficiently.

* Genetic correlations across breeds computed froenntilti-breed random regression
models showed additive genetic differences betwwerds as well as differences in the

additive effects transmitted to purebred and cneskbffspring.
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* Breed-specific EBV could be estimated by the miléed random regression models for
purebred and crossbred animals from multi-breediladipns and, therefore, help breeders

and producers to select animals according to thating strategy.

* Genetic evaluation using multi-breed models conmgindlata recorded on purebred and

crossbred animals led to an increase in the rétyabf EBV for purebred animals.
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PERSPECTIVES

This thesis contributed to the development of genetaluation systems currently used in
routine genetic evaluations in Walloon Region ofgdem and in New Zealand. It also opened

further directions of research:

» to revise the current genetic evaluation modelaving ease for Walloon dairy cattle as
the amount of recorded data has increased signilicaince the implementation of the
system, leading to a need to re-examine if theetation between direct and maternal

genetic effects can still be considered equal to péif it needs to be re-estimated.

» to investigate the usefulness of a multiple-traédtennal animal model using correlated
traits rather than the current single-trait matearamal model used to evaluate calving
ease for the Walloon dairy cattle. A first step Vdobe to examine genetic relationship
between calving ease and other traits, such aatgestength or BCS, to determine which
trait could be a good indicator trait to enhance #tcuracy of genetic selection and

therefore increase the genetic gains in calving.eas
» to extend the proposed multi-breed random regresamdel to more breeds.
» toinclude dominance effects in the proposed nirkted random regression model.

* to modify the multi-breed random regression model dense SNP markers to allow

genomic selection in multi-breed populations.

215



CHAPTER IV.2

IMPLICATIONS

Researches undertaken during this thesis have ldtetdevelopment and the implementation
of a genetic evaluation system for calving eag@énWalloon Region of Belgium. Since April
2013, EBYV for direct and maternal effects of calviease from Holstein animals have been
provided to Walloon breeders and producers andbeansed for their breeding decisions.
Moreover, the development of a genetic evaluatigstesn for calving ease has allowed the
Walloon Region of Belgium to participate in theemtational MACE evaluation for calving
traits performed by Interbull. Finally, since Ap2015, direct and maternal calving ease EBV
have been integrated in the Walloon global selaaigective (VEG).

Likewise, researches carried out during my scientiftay at the AgResearch Limited,
Invermay Agricultural Centre (Mosgiel, New Zealatd)e contributed to the development of
the current genetic evaluation system for lambigahto weaning in New Zealand.
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