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A linear oscillator simultaneously subjected to stochastic forcing and parametric excitation is
considered. The time required for this system to evolve from a low initial energy level until a
higher energy state for the first time is a random variable. Its expectation satisfies the
Pontryagin equation of the problem, which is solved with the asymptotic expansion method
developed by Khasminskii. This allowed deriving closed-form expressions for the expected
first passage time. A comprehensive parameter analysis of these solutions is performed.
Beside identifying the important dimensionless groups governing the problem, it also
highlights three important regimes which are called incubation, multiplicative and additive
because of their specific features. Those three regimes are discussed with the parameters of
the problem.

& 2017 Elsevier Ltd All rights reserved.
1. Introduction

1.1. The considered governing equation

Many physical problems can be modeled by the forced and damped Mathieu equation

ξ¨ + ̇ + + = ( )⎡⎣ ⎤⎦x x u x w2 1 1

with x(t) the state variable as a function of time t and ξ a damping coefficient. This model involves parametric excitation,
represented by u(t), and external forcing w(t). For instance a vertical motion of the support of a pendulum generates this
kind of parametric excitation. It has been widely studied in its most simple case where the parametric excitation is har-
monic, viz. λ ν( ) =u t tcos , and, in some instances, including the possible large rotations of the pendulum, i.e. replacing x by

xsin in the above equation. This equation develops in various forms, from deterministic to stochastic, depending on the non-
deterministic nature of the parameters of the problem and of the excitations. Notable works studying the transition from
deterministic to stochastic conditions include the studies about the evolution of unstable regions for an excitation that
continuously varies from periodic to stochastic [32]. Besides, Gitterman studies the stability and the period of the pendulum
under deterministic and stochastic excitations of its support [13,12]. He observes that an increasing stochasticity of the
excitation induces larger unstable ranges of parameters of lower intensity. In those works, it is shown that, assuming no
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damping and depending on the frequency content and magnitude of the excitation, the pendulum describes oscillations or
eventually complete rotations.

Narrow band and random phase excitations are investigated by Alevras and Yurchenko in [49,2] through a numerical
path integration providing complex stability lobes in a configuration where the support is submitted to a vertical harmonic
excitation of frequency equal to an integer multiple of the fundamental frequency. Higher energy lobes are observed for a
frequency of the excitation close to the fundamental frequency of the pendulum or a fraction of it. Xu presents similar
results in [46] for a harmonically excited pendulum by evidencing the basins of attraction in the phase plane. Mallick
presents an analytical method providing an expression for the asymptotic probability distribution function of the energy in
[24]. The current work mainly focuses on the stochastic version of the forced and parametric oscillator, without any de-
terministic component. Similar problems have been studied by other authors who developed analytical solutions of the
deterministic problem including the different stable regions thanks to the harmonic balance method, the perturbation
method and the critical velocity criterion [11,4,45].

In the following quasi-Hamiltonian oscillator, the concept of energy stored in the oscillator plays a central role. In fact,
interest has been shown for the energy of a system that is governed by a Mathieu equation in the study of a pendulum
submitted to wave excitations in [28,47,1] and finds a direct application in the extraction of energy fromwaves and heave, as
also discussed earlier by [17,16]. In the same way, capsizing and rolling motions of ships under stochastic wave excitation
can also be assimilated to similar oscillators and are studied by Moshchuk and Troesch in [27,39].

In order to understand and characterize different crane instabilities in gusty wind conditions, Voisin performed
experimental analyses and determined the susceptibility of a tower crane to autorotation when it is left free to rotate in a
given environment ([42,43]). This approach allows to experimentally assess field configurations against undesired crane
autorotation which could potentially lead to dramatic failures. Following this model, the crane can be represented by a
single-degree-of-freedom model composed of a rigid jib rotating around a fixed pivot with an angle θ. The linearized
governing equation of a jib with inertia I and damping coefficient C is characterized by the following stochastic Mathieu
equation

( )θ θ θ θ¨ + ̇ − ̇ ( ) ( ) = ( )I C M u t w t, , , 0 2w

in which the wind torqueMw depends on the two horizontal components u(t) and w(t) of the wind field and typically shows
the features of a parametric excitation [41].

As another example, the deflection of a horizontal cable subjected to an axial oscillation of one anchorage is described by
the modified Mathieu equation [7]

α ξα λ
π

α ν α ν α¨ + ̇ + + + ( ) + + =
( )

⎛
⎝⎜

⎞
⎠⎟x t2 1 0.

3
b

2

2 2
2

3
3

with α( )t the deflection at mid-span in the first mode, ξ the damping ratio, λ2 the Irvine parameter and ν1 and ν2 two parameters
related to the cable elasticity. The motion of the cable support xb(t) is assumed to be deterministic in many cases, but could also
be represented by a stochastic process as a result of the buffeting action of wind on a bridge deck, for example [5].

Using the appropriate non-dimensionalization and discarding the nonlinear governing components, the governing
equations of these problems, as well as a large number of other applications, can be cast under the format of Eq. (1) where u
(t) and w(t) are stochastic processes. This is the general equation studied in this paper.

1.2. First passage time of the parametric and forced oscillators

As a heritage of deterministic dynamics, the externally and parametrically excited oscillator is usually studied with the
scope to determine the stability zones, the amplitude of the limit cycle oscillations or steady state solutions. These ob-
jectives lose interest in undamped or even very slightly damped oscillators, since a steady-state configuration takes too long
to develop. It is possible to demonstrate [35] that, for the considered governing equation, any large value of the generalized
coordinate x, as large as desired, is encountered with probability one in the undamped case. This mathematical fact
therefore suggests to reconsider the practical questions related to boat capsizing, large cable vibration or crane autorota-
tions, from a different standpoint since any large amplitude could be reached by waiting sufficiently long enough (in case
dissipation is neglected). We therefore decide to investigate the time required for the system to reach a certain displacement
or amplitude, given an initial condition, or to reach a given energy barrier departing from a lower initial energy level. This is
known as a first passage problem. The objective of such a problem is to determine the time required for a system to evolve
from a known initial condition and to reach a given state. In a stochastic context, this time is a random variable. It is
characterized by its probability density functionwhich can be obtained by Monte Carlo simulations [9,29] or by resolution of
the Chapman-Kolmogorov equation, via use of numerical [22] or semi-analytical methods such as a numerical path in-
tegration [48,21], approximation of the solution by a Galerkin scheme [37,36], a Poisson distribution based assumption [3].
These numerical approaches are important because there are very few problems in which the distribution of the first
passage time can be established in closed-form [44,40]. This work seeks to provide an analytical understanding of this
problem and therefore focuses on the average value of the first passage time instead of the complete distribution.



Fig. 1. Fragments of the trajectory of the system in the phase plane and contours of the Hamiltonian. Numerical values: ξ = 0.01, = −S 10u
2 and = −S 10w
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Since the problem at hand is particularly interesting when the damping and the intensities of the excitations are small —
otherwise the steady regime develops fast enough— the considered oscillator actually happens to be a quasi-Hamiltonian
system for which the total internal energy H(t) evolves on a slow time scale [24]. The energy balance of the governing
equation, obtained by time integration of the power fluxes, yields

( )∫ ∫ξ
̇

+ + ̇ + ̇ = ̇
( )

x x
x u x x t w x t

2 2
d d . 4

2 2
2

This indeed shows that the total internal energy (referred to as the Hamiltonian, by extension, in the sequel) defined by

= +
̇

( )H
x x
2 2

, 5

2 2

composed of potential and kinetic energies, is slowly varying, since ε̇ = ( )H ord if ξ ε{ } = ( )u w, , ord . This is also illustrated in
Fig. 1 which shows, in the phase-plane ( ̇)x x, , three fragments of one realization of the system, considered to be subjected to
two δ-correlated white noises of intensities = −S 10u

2 and = −S 10w
4, while the damping ratio is set to ξ = 0.01. It is seen that

the trajectories are nearly tangent to the ellipses of constant energy, which indicates that the Hamiltonian varies by only a
small quantity over one period of revolution of the unperturbed dynamical system. These observations support the quasi-
Hamiltonian nature of the system, which is, in this case, a consequence of the smallness of ξ, Su and Sw.

The first passage problem of quasi-Hamiltonian systems has been studied in the literature in the undamped config-
uration (ξ = 0) and without external forcing term (w¼0). The stochastic parametric excitation u(t) has first been considered

to be a δ-correlated process [38] and more recently an Ornstein-Uhlenbeck process [31]. In the latter case, Potapov [31] also
proposes an estimation of the problem stability based on its Liapunov exponents, an approach that is also followed in [23]
for quasi non-integrable Hamiltonian systems under Gaussian and Poisson white noises through the averaged Itô equation.

Still considering the undamped configuration (ξ = 0) and without external forcing (w¼0), the stochastic differential
equation governing the Hamiltonian reads

= + ( )H k H t k H Bd d d , 61 2

with =k S /2u1 and =k S /2u2 two parameters depending on the spectral form of the parametric excitation u, and Bd the
increment of a δ− correlated Brownian noise B(t) [33,6]. This equation can be solved explicitly [33]:

( ) = + −
( )

⎡
⎣
⎢⎢

⎛
⎝
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The first passage time of the energy level Hc, starting from a lower initial energy H0, follows an inverse Gaussian distribution

with parameters ( )
−

H H

k k

ln /

/ 2
c 0

1 2
2 and ( )H H

k

ln /c 0
2

2
2 , so that its mean first passage time can be expressed as [33]

{ }| ( ) ≥ ≔ ( ) =
( )

⎡⎣ ⎤⎦ t H t H U H
S

H
H

inf
4

ln .
8c

u

c
0

0

It is rather rare that the stochastic differential equation of a (more complex but realistic) problem can take a simple
explicit solution as (7). The complete probability density function of the first passage time is therefore seldom available.
However, the mean first passage time of a stochastic system through the boundary ∂ of a given domain , to which the
system belongs at initial state, is ruled by the Pontryagin equation, see Section 2.
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Many solutions of more or less complex problems in terms of mean first passage time can be found in the literature
[6,35,25,26,22]. Among them the first passage time for a stochastic fractional derivative system with power-law restoring
force [22] shows the typical range of difficulties that can be tackled today. An important contribution in the field concerns
the works of Khasminskii [20] which consist in the formal development of an asymptotic analysis of the Pontryagin
equation. This is precisely the approach that is followed in this work.

Based on this review of the literature, we have identified the first passage time of an undamped system subjected to both
parametric and external forcing as a novel contribution. This problem is solved in closed form and the solutions are
thoroughly discussed in Section 2. Then, two variants are presented. The first one develops and discusses the second order
terms and the boundary layer contribution of Khasminskii's theory while the second variant considers the leading order
solution for the slightly damped (parametrically and externally forced) oscillator.
2. The undamped, externally and parametrically forced oscillator

The problem considered in this Section is

¨ + ( + ) = ( )x u x w1 9

where u(t) and w(t) are Brownian δ-correlated white noises of small intensities Su and Sw. Formally this problem is re-
presented in the state-space = ( ̇) = ( )x x q px , , by its Itô formulation for Markov times, i.e. for each >t t0, by

= ( ) + ( ) ( )t t tx f x b x Bd , d , d , 10

where = = −
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦x f,q

p
p
q
, = −

⎡⎣ ⎤⎦b
q

0 0
1

and where = ⎡
⎣⎢

⎤
⎦⎥B B

B
u

w
is the vector of Brownian motions characterized by the power

spectrum matrix

νε ε
ν ν

ν ν= = =
( )

⎡
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⎦⎥

⎡
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⎤
⎦⎥

S S

S S
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u uw

uw w

u uw

uw w

where ε ≪ 1 and ν is an order-one matrix. It is interesting to notice that (10) is a perturbation of a conservative systemwhich
evolves along closed trajectories of constant total internal energy H. The period of revolution of a complete orbit of the
unperturbed system (ε = 0, so that = =u w 0),

∫ ∫ π=
̇

=
−

=
( )−

T
q

q H q
q2

d
2

1

2
d 2 ,

12q

q

H

H

2

2

21

2

is independent of the considered energy level H.
Let  be a closed domain in the phase plane and an initial condition ∈ x0 . The average first passage time ( )U x0 for the

trajectories of the dynamical system to reach the boundary ∂D is given by the Pontryagin equation [30]

{ }( ) = − ∈ ( ) U x x1, for 130 0

with the boundary conditions

( ) = ∀ ∈ ∂ | ( )| < ∞ ( )U Ux x 00, and , 140 0

which translates that the mean first passage time is equal to zero for trajectories starting on the boundary and that the
average time required to reach the boundary starting from =x 00 , is finite. For the sake of simplicity in the notations, the
subscript “0” is omitted in the following developments. This convention prevails for both the initial position and velocity, q0
and p0 which are the components of x0 and, later, for the Hamiltonian H0. In (13), {·} is the Backward-Kolmogorov operator
associated with the governing equation, see e.g. [35], given by

σ{·} = ∂
∂

∂
∂

(·) + ( ) ∂·
∂ ( )

⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭ tTr
x x

f x
x

1
2

, ,
15

where

σ νε ε
ν ν ν

= ( ) ( ) =
+ − ( )

⎡
⎣⎢

⎤
⎦⎥t t

q q
b x b x, ,

0 0
0 2 16

T

u w uw
2

is a drift matrix of order ε and = ( )q px , is the state vector.

The higher order derivative in {·} is therefore multiplied by a small coefficient, of order ε, which is responsible for a
well-known boundary layer in perturbation methods [15]. With this in mind and following Khasminskii's approach [20], an
asymptotic expansion method is developed in order to establish closed-form expressions for the solution of the Pontryagin
equation. This not only avoids the numerical solution of (13) but also provides a much better understanding of the features
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of the problem, as explicit expressions for the mean first passage time are obtained, under the sole hypothesis that ε ≪ 1, i.e.
that the dimensionless intensities of the external and parametric excitations are small. Following this approach, the operator

is decomposed into two operators, each one acting at its own scale in ε, as

ε{·} = {·} + {·} ( )   , 171 2

where, after replacement of the derivatives in x,

( )ν ν ν= ∂
∂

− ∂
∂

= + − ∂
∂ ( )

 p
q

q
p

q q
p

;
1
2

2 .
18

u w uw1 2
2

2

2

Following the matched asymptotic expansion solution applied in [25,26] to the capsizing of boats in random seas (with
external forcing only, though), a composite solution to (13) is provided as the sum of the outer and inner solutions

( ) = ( ) + ( ) ( )U p q U p q G p q, , , , 19n n

where Un is the outer solution obtained with the regular ansatz

ε
ε( ) = ( ) + ( ) + ⋯ + ( ) ( )

−U p q u p q u p q u p q,
1

, , , 20n
n

n0 1
1

and Gn stands for the inner solution in the boundary layer, in the neighborhood of ∂. The error of the approximate solution
has the same order as the first neglected term, i.e. εn. In order not to include the overlap between the inner and outer
solutions that anyway needs to be discarded in the composite solution [15], the outer and inner problems are respectively
solved with the following righthand sides, { } = − U 1n and { } = G 0n . While the efforts presented in this Section con-
centrate on the establishment of u0, the outer solution will be developed up to the second term u1 in Section 3. Collecting
terms of likewise powers of ε in (13) yields:

( )ε = ( )
−  uord : 0 21

1
1 0

( )ε + = − ( ) u uord : 1 22
0

1 1 2 0

( )ε + = ( ) u uord : 0 23
1

1 2 2 1

The leading order solution U0 is actually nothing but the result of the stochastic averaging method [34], which roughly
assumes that the Hamiltonian is constant along one period of motion. The higher order terms provided by the asymptotic
expansion extend the validity of the developments to moderate values of the small parameter, i.e. ε ≲ 1. However, for
problems slightly more complex than (9), the second and higher correction terms take awkward expressions which cuts
down the advantages of Khasminskii's asymptotic expansion over the more usual stochastic averaging approach. This is
discussed in Section 3.

Operator 1 represents the derivative along the direction of the conservative system, i.e. along the orbits of constant
Hamiltonian H. As a result, the leading order Eq. (21) means that u0 is constant along each orbit of constant energy. It is
consequently a function of the Hamiltonian H only. Averaging (22) along a period T of the orbit, provides the information to
determine ( )u H0 . Indeed, as the orbits are closed, averaging  u1 1 along each of these trajectories gives zero and Eq. (22)

becomes = − u 12 0 , or

( )ν ν ν ν ν ν+ − + + − = −
( )

⎡
⎣⎢

⎤
⎦⎥q q

u
H

p q q
u

H
1
2

2
d
d

2
d
d

1,
24

u w uw u w uw
2 0 2 2

2
0
2

where the following relations have been used for the partial derivatives

∂
∂

=
∂
∂

= +
( )

u
p

p
u
H

u

p

u
H

p
u

H

d
d

;
d
d

d
d 25

0 0
2

0
2

0 2
2

0
2

since ≡ ( )u u H is a function of the initial Hamiltonian only0 0 and the operator · represents the average over one period
π=T 2 of the unperturbed motion,

∫π
· = · ( )

π
t

1
2

d . 260

2

The averaging of Eq. (24) is derived, term by term, by changing the variables q and p into the energy-phase variables k
and θ with

θ θ= = ( )p k q k2 cos ; 2 sin 27

so that the Hamiltonian is now given by =H k2 2.
Finally, at order ε0, the averaged Pontryagin equation reads
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ν ν ν ν+ + + = −
( )

⎛
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⎞
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⎛
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⎞
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H u
H

H H u

H2
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1
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u w u w
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2 2
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where u0, the leading order solution in the outer domain, is a function of the Hamiltonian H (≡H0) in the initial config-
uration. The governing equation and consequently its solution are independent of the cross spectral density Suw. The general
solution of (28) is of the form

ν ν
ν ν

ν ν
ν

( ) = −
+

( + ) + +
( )

u H
C

H C
H

C
8

2
ln 2

ln
2

,
29

w u

u w
u w

w
0

1
1 2

where constants of integration C1 and C2 need to be determined to satisfy the boundary conditions (14). Notice that the first
boundary condition can also be satisfied in the outer solution which implies that there is no inner (boundary layer) solution
at order ε-1. Although the second condition straightforwardly yields =C 01 , the first boundary condition requires a little more
attention. Indeed, the boundary condition is a priori written on the boundary of the domain of  of any arbitrary shape in
the state space ( ̇)x x, . However, because ( )u H0 is a function of H only, there is no way to satisfy the boundary condition for
any ∈ ∂x0 , otherwise than to have  being a disk in the phase space. Because of this, we actually decide to restrict our
study to the determination of the first passage time through a domain shaped like a circle, i.e. through the contours of
equation =H H .c In other words, the considered problem can be expressed as the first passage time through a state of a
specifically chosen energy Hc, while starting from a smaller initial energy H0. If the domain  was not shaped like a disk, an
underestimation of the first passage time might be obtained by replacing the domain by the inscribing circle as the rotation
is fast compared to the energy. Accounting for the boundary condition ( ) =u H 0c0 , we finally obtain

ε
( ) = =

+
+ ( )

⎛
⎝⎜

⎞
⎠⎟U H

u
S

H S S
H S S

4
ln

2
2 30u

c u w

u w
0 0

0

0

where the subscript “0” has been re-introduced to indicate this corresponds to trajectories starting with an initial energy
equal to H0. As the Itô formulation (10) is only valid for positive times, this solution is only valid for a target energy higher
than the initial energy. Although the analytical form (30) takes a simple expression, it seems that this result has never been
derived before; it is a novel contribution of this work.

The average fist passage time therefore takes a logarithmic form where the intensity of the parametric excitation is
multiplied by the energy and appears in both the logarithm and the multiplying factor. Expression (30) presents two limit
cases:

� when there is no parametric excitation, i.e. =S 0u , the general solution degenerates into ( ) = ΔU H 2 H
S0 0

w
which indicates

that the first passage time scales linearly with Δ = −H H Hc 0, the difference between the target energy barrier and the
initial energy in the system. With the terminology introduced below, this corresponds to an incubation regime, no
matter the intensity of the forcing term;

� when there is no forcing term, i.e. =S 0w , the general solution degenerates into ( )( ) = = + ΔU H ln ln 1
S

H
H S

H
H0 0

4 4

u

c

u0 0
, which

corresponds to the solution developed in [33], see (8). In this case, the first passage time scales with the ratio H H/c 0 on a
logarithmic scale. Furthermore, a non-zero initial energy is required for the oscillator to exit its initial configuration. Then,
for any >H 00 , the oscillator can reach any energy barrier in a finite time, on average. With the terminology introduced
below, this corresponds to a multiplicative regime, no matter the intensity of the parametric excitation.

These two limiting cases reflect that the parametric excitation w(t) and the external forcing u(t) show themselves differently
in the problem. Notice that the linear and logarithmic scalings that are obtained here agree with the well-known responses
of undamped linear oscillators under deterministic excitations. On one hand, the envelope of the response under external
forcing grows unbounded and linearly in case of harmonic excitation tuned to the natural frequency of the oscillator
( =w tsin ). On the other hand, in the unstable configuration of the undamped Mathieu equation, the response envelope
grows exponentially fast for a harmonic parametric excitation tuned to twice the natural frequency of the oscillator
( =u tsin2 ).

The interplay between the two competing sources of excitation, i.e. does the first passage time scale on a log or linear
scale with Hc ?, depends on Su, Sw, H0 and Hc, as well as the relative smallness of some dimensionless groups made of these
four parameters. To investigate this question, we rewrite (30) as

( ) = +
Δ

+ ( )

⎛
⎝⎜

⎞
⎠⎟U H

S
HS

H S S
4

ln 1
2 31u

u

u w
0 0

0

with Δ = −H H Hc 0.
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Incubation regime. This mathematical formulation naturally reveals one particular regime, when the argument of the
natural logarithm is close to one, i.e.

Δ
+

≪ → Δ ≪ +
( )

HS
H S S

H H
S
S2

1
2

.
32

u

u w

w

u0
0

It is always possible to choose, for given H0, Sw and Su, small enough values of the target energy level satisfying condition
(32). Indeed, the system needs to pass first by these states of energy slightly larger than the initial one before reaching,
eventually, states of much higher energy. These states belong to an incubation regime during which the general solution (31)
may be linearized. Recalling that ϵ ϵ ϵ( + ) = + ( )ln 1 ord 2 for ϵ ≪ 1, the mean first passage time in this incubation regime
reads,

=
Δ

+
+

Δ
+

≃ Δ
+ ( )

⎡

⎣
⎢
⎢

⎛
⎝⎜

⎞
⎠⎟

⎤

⎦
⎥
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S
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H S S
HS

H S S
H

H S S
4

2
ord

2
4

2 33u

u

u w

u

u w u w
0

0 0

2

0

which indicates that the mean first passage time is proportional to the increase in the Hamiltonian Δ = −H H Hc 0. For very
small values of ΔH , the first passage time decreases and might reach the order of the period of the oscillator. In this case, the
asymptotic method induces large errors on the result which is not reliable anymore.

This approximation ceases to be valid when (32) is not fulfilled anymore, i.e. for Δ ≃ +H H S
S0

2 w

u
, which corresponds to an

energy barrier = + ΔH H Hc 0 that is at least twice as large as the initial energy level. Although this is a priori prohibited

because condition (32) is not satisfied, substituting +H S
S0

2 w

u
for ΔH in (33) would yield ≃U

S
4

u
. Because (33) is monotonic,

the duration of the incubation regime, is therefore one order of magnitude smaller than
S
4

u
. In order to give a simple

definition, we could for instance and arbitrarily define an incubation time by

≔
( )

U
S
1

2
,

34u
0,incub

which corresponds to ϵ = 1
8
, a number that is assumed to be small compared to 1. From a practical point of view, this means

that the first passage time might be estimated with (33) and that the resulting estimation is valid, provided it is shorter than
U0,incub. As a consequence of our arbitrary definition choice for U0,incub, the error on the estimated first passage time is, in the

worst case, ( ) ( )− + =1 ln 1 5.8%1
8

1
8

.

Now, Eq. (31) can be rewritten

( ) = + Δ
+
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1 35u
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where the dimensionless groups ⋆H0 and Δ ⋆H are defined by

= Δ =
Δ

( )
⋆ ⋆H

H S
S

H
H S
S2

;
2

.
36

u

w

u

w
0

0

Multiplicative regime. If Δ ≪ +⋆ ⋆H H 10 , we recover condition (32), the logarithm may be linearized, the first passage

time is proportional to Δ ⋆H and is much smaller than the incubation time. Otherwise, if Δ ≳ +⋆ ⋆H H 10 , the logarithm cannot
be linearized, and the expected first passage time is of the order of the incubation time or more. Two other limiting cases are
interesting.

Either ≫⋆H 10 and the expected first passage time required to go from a relatively large initial energy level to an even

larger energy level tends to ( ) ( )+ Δ =⋆ ⋆S H H S H H4/ ln 1 / 4/ ln /u u c0 0 . It therefore depends on by howmuch the initial energy is

multiplied to obtain the target energy level. This regime is therefore called the Multiplicative regime. In this conditions, the
first passage time is independent of the forcing excitation intensity Sw. In the overlap between the multiplicative and the

incubation regimes the linearized solution reads = ΔU
S

H
H0

4

u 0
.

Additive regime. Alternatively, ≪⋆H 10 and the (large) first passage tends to ( )+ Δ ⋆S H4/ ln 1u . In this latter case, no

matter the smallness of the initial energy H0 in the system, provided it is much smaller than S S2 /w u, it does not influence the

expected first passage time. In this regime, the expected first passage time only depends on the increase in energy Δ ⋆H . This
regime is therefore called the Additive regime. In the overlap between the additive and the incubation regimes the linearized

solution reads = ΔU H
S0
2

w
, which recovers the limit case =S 0u .

Fig. 2 (a) presents the ratio =U S U
U4 8

u

incub

0 0

0,
as a function of ⋆H and Δ ⋆H and identifies the three regimes (incubation, additive



Fig. 2. (a) Dimensionless first passage time =U Su U
U incub

0
4

0
8 0,

as a function of ⋆H0 and Δ ⋆H and identification of the Incubation (I), Multiplicative (M) and

Additive (A) regimes (b) Simulations and first passage time with = −S 10u
3 and = −H 100

5 for the four corners of the left diagram.
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and multiplicative). For different values of ⋆H and Δ ⋆H , Fig. 2 (b) shows four realizations of H(t) as well as the expected first

passage time ( )H Uc 0 . Subplots a, b, c and d correspond to the four corners of Fig. 2 (a), i.e. =⋆ −H 100
2 or 101 and Δ =⋆ −H 10 1 or

101. The parametric excitation is fixed at = −S 10u
3, which corresponds to an incubation time =U 5000,incub and simply means

that ( )H Uc 0 increases more or less linearly for expected first passage times shorter than 500. Whether or not the expected first
passage time versus the target energy level curve ( )U Hc0 exhibits a nonlinear profile depends on the target energy level. In case
a, corresponding to the additive regime, the curve ( )U Hc0 is nonlinear as the first passage time is longer than the incubation time

and the expected first passage time is governed by the energy increase Δ ⋆H . This is confirmed in the upper left corner of
Fig. 2 (a) which presents horizontal asymptotes in the additive regime. Similarly, case b representing the multiplicative regime
presents a nonlinear ( )U Hc0 curve and, in this regime, the first passage time is governed by the ratio H H/c 0. This is visible by the
unit slope of the isocurves in Fig. 2 (b). Finally, cases c an d corresponding to the incubation regime with a first passage time
Fig. 3. (a) First passage times for different values of Sw and = −S 10u
2 (b) and for different values of Su and = −S 10w

2.
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much smaller than 500 present a linear increase of the expected first passage time with the target energy.
The bottom left corner and the upper right corner in Fig. 2 represent the two limiting cases where the loading is either

forcing or parametric, respectively. The additive regime therefore appears as a novelty of the combination of these two types
of excitation.

Fig. 3 presents the first passage time of a slightly perturbed system (ε is of order 10�3) for different target energy barriers
Hc and different excitations (forced excitation in (a) and parametric excitation in (b)). The logarithmic evolution when =S 0w

and the linear evolution when =S 0u are respectively observable in bold in each Figure. The small circles represent Monte

Carlo simulations. As expected, the first order solution U0 provides accurate results for this small value of ε. The linearized
solution (33) is represented in dotted line and fits well the exact solution for values of U0 that are much smaller than the

incubation time, i.e. on the upper Figure ≪U 1S
4 0
u . In both graphs, increasing the parametric or forced excitation decreases

the first passage time.
As a first variant, in the next Section, the second order solution is developed in order to improve the accuracy of the

solution for larger values of ε, i.e. for larger excitation intensities. As a second variant, the last Section will present the
leading order solution of the damped oscillator.
3. Variant 1: Second order and boundary layer solutions

First order developments have shown that the averaging is more natural in the energy-phase space. In fact, the governing
Eq. (9) has been solved in the (q,p) space but the same solution would have been obtained using the variables k and θ from
the very beginning, i.e. solving

= ( ) + ( ) ( )
∼ ∼∼ ∼ ∼t t tx f x b x Bd , d , d , 37

where = =
∼∼
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and where the Wong-Zakai correction terms [35,14,10] are given by
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The corresponding drift matrix νσ ε= ( ) ( )∼ ∼ ∼∼ ∼t tb x b x, ,
T

is still of order ε. The invariant operators 1 and 2 become

θ
ε δ δ

θ
σ σ

θ
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2
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Again, from here, the subscript “0” is dropped. It will be reintroduced in (49). This formulation clearly indicates that the
operator 1 represents the variation along the orbits of constant energy H or k, as announced and used in the previous
Section.

Similarly to what was done to determine u0, the second order term u1 is obtained by solving (22), with u0 being pushed
to the righthand side since it is now known,

θ
{ } =

∂
∂

= − − { } ( ) u
u

u1 . 401 1
1

2 0

The solution of this equation takes the form

θ θ( ) = ( ) + ( ) ( )u k u k u k, , , 411 11 12

where
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u

u w

u w uw
w

u
11

2

2 2
2

2
2 2

is the general solution of the differential equation in θ while ( )u k12 plays the role of a constant of integration, independent of
θ. The cross correlation Suw influences the second order solution while it did not affect the first order one and, depending on
the initial conditions, can be the governing term of u11 as the energy k appears in the denominator of Suw. More details and
complete derivation of expressions for u11 and u12 are given in Appendix A. The constant of integration is determined at the
next order, with Eq. (23) averaged over one period of the unperturbed oscillator

{ } + { } + { } = ( )  u u u 0 431 2 2 11 2 12



H. Vanvinckenroye, V. Denoёl / Journal of Sound and Vibration 406 (2017) 328–345 337
whose solution reads, after some developments (see Appendix A),

( )
( )

ν ν ν

ν ν ν ν ν
( ) =

+

+
+

+
+
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⎛
⎝
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⎞
⎠
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C k
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C
4
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3
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uw u w

u w
w u w

12

2

2 2
1

2

2 2

and where constant C1 is shown to vanish. The constant C2 is determined by matching with the boundary layer solution in
order to respect the first boundary condition. Details are reported in Appendix A for the sake of brevity.

Unlike for the general form (29) of u0, the boundary conditions (14) cannot be satisfied with the general form of solution
for u1. A boundary layer solution therefore develops in the neighborhood of ∂, which is here restricted to a circle, in order
to satisfy the second boundary condition. It is obtained by following the standard steps for the derivation of an asymptotic

boundary solution [15,18,19,8]. Therefore, the stretched coordinate ζ =
ε

−H Hc is introduced in order to focus on the small

region in the neighborhood of =H Hc. Then, the equation to be solved { } = G 0n is considered at the different orders in ε
and a regular ansatz in the stretched coordinate system

ζ θ ζ θ ε ζ θ ε ζ θ( ) = ( ) + ( ) + ⋯ + ( ) ( )
−

G g g g, , , , 45n
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is substituted into the governing equation. The leading order equation reads
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so that the leading order solution ζ θ( )g ,1 satisfying the boundary condition θ θ( ) = − ( )g u H0, ,c1 1 and the matching condition
ζ θ( ) →g , 01 when ζ → − ∞ is
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and where coefficients an are shown to be given by
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Up to second order, the mean first passage time is finally given by

ε
θ

ε
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Fig. 4. (a) Comparison of the first-order, second-order and boundary layer terms with θ π= 3 /4 (b) Evolution of the boundary layer solution g1(b) with
=S 0u , =S 0.001w , =H 0.1c .



Fig. 5. (a) Comparison of the first and second order solution with simulations for different values of ε with ν ν= = 1u w , =H 0.010 , =H 1c and θ π= 3 /4
(b) Comparison of the solution for independent and fully correlated white noises with =S 0.1u , =S 0.01w and =H 0.1c .
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with ( )u H0 0 , θ( )u k,1 and ζ θ( )g ,1 given by relations (30), (42) and (47). Notice the subscript “0” has been re-introduced in the
last results in order to stress out that the first passage time depends on the initial energy level H0 and the initial position q0
and velocity p0.

Fig. 4 (a) presents the first and second order solution U0 and U1, together with the boundary layer solution g1. The
boundary condition ( ) =U H 0c is respected for the leading order solution U0 and when the second order and the boundary
layer are both taken into account. While the first order solution depends on the Hamiltonian only, the two second order

solutions depend on both the Hamiltonian H0 and the phase θ0. Fig. 4 (b) presents the evolution of the boundary layer in the
θ( )H ,0 0 -plane. The highest values are observed for =H Hc, on the boundary and g1 exponentially vanishes for decreasing

initial energy levels.
Fig. 5 (a) presents the evolution of the first- and second-order solutions with the excitation intensities. The comparison

with Monte Carlo simulations illustrates the accuracy of the asymptotic expansion as a function of the smallness of the
parameter ε. As expected, the first-order solution matches almost perfectly for small intensities until values of ε of about
0.1 while the second-order solution is virtually perfect for values as large as ε ≃ 1. The precision of the method decreases
with increasing values of ε but still provides very good results. Fig. 5 (b) compares the first-order solution U0 with simu-
lations for fully correlated and independent white noises. As the excitation intensities are small (ε = )0.1 , the first-order
solution is a good approximation and the first passage time is therefore independent of the correlation between the forced
and parametric excitations. This is confirmed by the superposition of the Monte Carlo simulations (dots and crosses).
4. Variant 2: Damped oscillator

In order to limit the complexity of the following developments, only leading order terms of the first passage time are
determined in the case of the damped system. Following the observations of Section 3, this means that the following results
shall be used for small (and not moderate) values of ε. Also, in order to lighten the presentation, only main results are
presented in the bulk of the text; details are presented in Appendix B.

The studied system is

ξ¨ + ̇ + ( + ) = ( )x x u x w2 1 , 50

with ξ the small damping ratio, of order ε at most, so that rewriting ξ εν= ξ, the re-scaled damping νξ is of order one at most.
The first passage time is the solution of Eqs. (21) and (22) with the new Itô formulation of the differential equation. This
leads to the same formulation for 1 and an additional term in 2, see (B.3). Performing the same developments as before in
the undamped case (which are reproduced in Appendix B), the expected first passage time finally reads
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ξξa

S

8 8

u u
. This solution is only valid for positive first passage times. There are two interesting limiting cases:

� when there is no parametric excitation, i.e. =S 0u , the general solution degenerates into



Fig. 6. (a) First passage time U0 as a function of the damping coefficient ξ for =S 0w (b) Realisations of the Hamiltonian for = −H 100
5, = −S 10u

2, = −S 10w
3

and different values of ξ.
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The limit solution for ξ = 0 is given by ( ) = −U H 2H H
S0 0

c

w

0 which was already obtained in the undamped configuration. It is

interesting though that the linearity of the solution, i.e.the expected first passage proportional to the increase in the
Hamiltonian, regularly vanishes as damping is introduced into the problem.

� when there is no forcing term, i.e. =S 0w , the solution degenerates into ( ) = +( − )
Δ ⋆

⋆⎜ ⎟
⎛
⎝

⎞
⎠U H ln 1

S a
H

H0 0
4

1u 0
. In this case, the

damping does not modify the form of the first passage time, which still increases like the logarithm of the ratio H H/c 0. This
solution presents a positive first passage time for <a 1, which means that the energy of the system can increase, on
average, if the damping ratio has an intensity below a certain threshold, ξ < S /8u . For ≥a 1, the dissipation mechanism
drives the dynamical system to lower energy levels, on average. The evaluated expected first passage time is negative. It
has no meaning anymore since the Itô formulation on which the developments are based is no more valid. For a damping
ratio equal to the critical treshold, the dissipated energy balances the injected energy and the first passage time is not

defined, as illustrated in Fig. 6 (a). Fig. 6 (b) presents time series of the system for different values of ξ so that the first

passage time is positive, not defined or invalid (negative, on average) for ξ = − S S, /8u u or Su.

Let us notice that the case where =S 0u and =S 0w is deterministic and provides in the undamped case a harmonic
Fig. 7. (a) Representation of =U Su U
U

0
4

0
8 0,incub

as a function of ⋆H and Δ ⋆H for different damping ratios (b) First passage time U0 for different damping

coefficients ξ = 0 to 0.005 with =H 0.05c and 0.1, =S 0u , = −S 10w
3.



Table 1
Summary of the analytical results and limit cases at first order.
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motion of constant energy and in the damped case an exponentially decreasing energy. The system is governed by
ξ¨ + ̇ + =x x x2 0, whose solution is
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ω
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52
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with ω ξ= −1d
2 . The initial position and velocity are given by q0 and p0. For small damping ratio, the Hamiltonian of the

system evolves as ( ) = ξ−H t H e t
0

2 and agrees with ( ) =
ξ

−U H ln H
H0

1
2

c , the limit solution of (51) for { } →S S, 0u w . In this case the

concept of expected first passage time has no physical meaning if the damping is positive.
By analogy with the undamped oscillator, the first passage time in the incubation regime, i.e. for Δ ≪ +⋆ ⋆H H 10 is

evaluated as the leading order term of the MacLaurin series expansion of (51) for Δ ⋆H , which yields
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Eq. (53) shows that the first passage time is still proportional to the dimensionless group Δ ( + )⋆ ⋆H H/ 10 with an additional

factor ( ( ) ≥⋆f a H, 10 ) modeling the increase of the first passage time with the damping ratio. Notice that ( )⋆f a H, 0 is in-

dependent of the energy increase Δ ⋆H and is asymptotic to ( )+ − + + ( )⋆ ⋆−⎡⎣ ⎤⎦H H a a1 1 ln 1 ord0 0
1 2 as →a 0.

Fig. 7 (a) shows the reduced expected first passage time U S
4

u0 , exactly as in Fig. 2 but with non zero damping ratios. It is

seen that the damping ratio has little influence on the first passage time in the incubation regime, while it extends the
expected first passage time in the additive regime. In the multiplicative regime (upper right corner), the damping ratio
changes the slope of the curve of equal first passage time, which means that the first passage time is governed by a power of
Δ ⋆ ⋆H H/ 0 smaller than unity. In all regimes, increasing the damping ratio increases the first passage time.

Fig. 7 (b) presents the first passage time as a function of the initial energy H0 for different values of ξ and Hc. The small
circles represent Monte Carlo simulations while the full line is the analytical solution. As expected, the first passage time
increases with the damping.

Table 1 presents a summary of the analytical results and their limits.
5. Conclusion

Based on an asymptotic approach, this work derives and discusses an analytical solution of the average first passage time
of a quasi-Hamiltonian oscillator simultaneously submitted to white noise parametric and forcing excitations of small in-
tensities. It is observed that the asymptotic solution of the Pontryagin equation, at leading order, provides a good ap-
proximation of the solution when excitations are small. The derivation highlighted the dependence of the expected first
passage time on the Hamiltonian, globally, and not on the position and velocity separately. In the undamped case, three
different regimes have been highlighted, namely the incubation regime (I), the multiplicative regime (M) and the additive
regime (A). These three regimes exhibit different features and the behavioral responses of the system, mainly the linear or
log scaling of the first passage time with the target energy level, was thoroughly discussed and analyzed with the help of the
two dimensionless groups ⋆H0 and Δ ⋆H , see Section 2.

As a first variant, the first order solution is improved by addition of the second order solution. In spite of the complexity
of the analytical solutions, it is possible to derive a boundary layer solution that develops for target energy levels that are
only slightly larger than the initial energy level. Unlike the first order solution, the second order one depends on both the
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initial kinetic and potential energies, i.e. position and velocity separately. It is also noted that the correlation between the
forced and parametric excitations does not influence the leading order solution and appears in the second order solution.
Although the smallness of the excitations is required for the asymptotic expansion, comparison with Monte Carlo simu-

lations showed very good accuracy of the first-order theoretical solutions for values of ε as large as 0.1. For the considered

example, second-order solutions virtually match Monte Carlo simulation results for values of ε as large as 0.5 (or more).
Finally, the first passage time is also developed for a damped oscillator. It was shown that the three regimes remain, with

little influence of the damping in the incubation regime. Positive damping expectedly tends to increase the mean first
passage times, in all regimes, and eventually induces such a large dissipation that the first passage time is not finite, on
average.

At each step, analytical solutions were validated with Monte Carlo simulations in order to demonstrate the accuracy of
the closed form solutions. The dependence of the first passage time with the initial and target energy is fully described by
the complete solution as well as some particular cases.
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Appendix A. Variant 1: Second order and boundary layer solutions

The Itô formulation (10) corresponding to the energy-phase variables k and θ reads
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From this transformation follows that
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The invariant operators 1 and 2 become

θ
δ δ

θ
σ σ

θ
σ

θ
{·} = ∂·

∂
{·} = ∂·

∂
+ ∂·

∂
+ ∂ ·
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∂
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.
A.41 2 1 2 11

2

2 22

2
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Eq. (22) provides the following expression:
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{ } { } { } { }
θ
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∂
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u

H

1
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A.5u uw u uw w

1 1
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2

0
2

Integration of expression (A.5) with respect to θ provides a decomposition of u1 into two components with the constant
of integration ( )u k12 :

θ θ( ) = ( ) + ( ) ( )u k u k u k, , , A.61 11 12

with
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Provided u12 is dependent on the Hamiltonian only, the averaging of Eq. (23) over one period of the unperturbed motion
gives:

( )
( )

ν ν ν ν
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ν ν
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The resolution of Eq. (A.8) provides:
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ν ν ν
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The first constant of integration C1 is equal to zero in order to respect the solvability condition | ( )| < ∞U 0 . The second
constant C2 will be determined together with the boundary layer solution in order to respect the boundary condition

( ) =U H 0c .
The boundary layer solution is the solution of { } = G 0n . The coordinate stretching is classical in the boundary layers

problems [8]. Therefore, the boundary layer solution Gn is written as a function of the stretched coordinate ζ =
ε

−H Hc

ζ θ ζ θ ε ζ θ ε ζ θ( ) = ( ) + ( ) + ⋯ + ( ) ( )
−

G g g g, , , , . A.10n

n

n1 2

1
2

Similarly, the operator  is transformed via the asymptotic expansion of the functions σ∼ij and δi in the neighborhood
of =H Hc:

σ θ σ θ ε ζσ θ( ) = ( ) + ( ) + … ( )∼ ∼ ∼( )H H H, , , A.11ij ij c ij c
1

δ θ δ θ ε ζδ θ( ) = ( ) + ( ) + … ( )( )H H H, , , A.12i i c i c
1

Taking into account =
ε ζ

∂·
∂

∂·
∂k

k4 and = +
ε ζ ε ζ

∂ ·

∂

∂·
∂

∂ ·

∂k

k4 162

2

2 2

2 , the Backward-Kolmogorov operator becomes

( )θ
σ θ

ζ
ε δ θ σ θ

ζ
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∂
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∂
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∂
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⎣⎢
⎤
⎦⎥

A.13
H H H H H4 , 2 2 , 2 ,c c c c c11

2

2 1 11 0 1 2

so that the governing equation becomes

{ } { } { } { }( )Λ ε Λ εΛ ε Λ ε Λ Λ= + + + … + + ⋯ + [ + ] + ⋯ = ( )LG g g g g g 0 A.14n 0 1 2 1 2 0 1 0 2 1 2

Balancing again the similar powers of ε provides the expression of the functions ζ θ( )g ,i . In particular, the first order
solution ζ θ( )g ,1 is the solution of the following diffusion equation

{ }Λ
θ

σ θ
ζ

=
∂
∂

+ ( )
∂
∂

=
( )

∼g
g

H H
g

4 , 0
A.15c c0 1

1
11

2
1

2

with the boundary conditions θ θ( ) = − ( )g u H0, ,c1 1 and ζ θ( ) →g , 01 when ζ → − ∞. The solution of this equation is given by
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with
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Because of the second boundary condition, it follows that

∫π
θ α α= − ( ( )) = ( )

π
b u H
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, d 0. A.18c0
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1

Finally, averaging (A.6) with respect to variable α and accounting that =b 00 , the constant of integration C2 is obtained:
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It finally follows from (A.19) that the second constant of equation is equal to zero.
Adapted to relation (A.17) and provided the expected parity of the boundary layer with respect to θ, only the even

coefficients an are non-zero and can be obtained via numerical integration.
Appendix B. Variant 2: Damped oscillator

The mean first passage time of the damped oscillator governed by Equation (50) is obtained following the same
methodology. The Itô formulation of the differential equation now reads

= ( ) + ( ) ( )t t tx f x b x Bd , d , d , B.1

where = =
εν− − ξ
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1
.

The Backward-Kolmogorove operator  is now defined by

ε{·} = {·} + {·} ( )   , B.21 2

where
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The first operator {·}1 is independent of the damping and Eq. (21) still provides the information that the first order
solution u0 is a function of the Hamiltonian only.

Averaging Eq. (22) assuming transformation (27) successively provides:

ν ν ν ν ν
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Similarly to the undamped oscillator, the governing equation is independent of the correlation between the parametric and
forced excitations.

A first integration provides

∫ β
= −

( )
+

( )
( ) ( ) − ( )u
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e
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e y C e
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1
d .
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so that the mean first passage time U0 is finally given by
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