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Abstract We study the spatial Brand-and-Bound algorithm for the global opti-
mization of nonlinear problems. In particular we are interested in a method to find
quickly good feasible solutions. Most spatial Branch-and-Bound-based solvers use
a non-global solver at a few nodes to try to find better incumbents. We show that
it is possible to improve the branching rules and the node priority by exploiting
the solutions from the non-global solver. We also propose several smart adaptive
strategies to choose when to run the non-global solver. We show that despite the
time spent in solving more NLP problems in the nodes, the new strategies enable
the algorithm to find the first good incumbents faster and to prove the global opti-
mality faster. Numerous easy, medium size as well as hard NLP instances from the
Coconut library are benchmarked. All experiments are run using the open source
solver Couenne.

Keywords spatial branch-and-bound, local search, heuristic, guided dive,
branching, Couenne

1 Introduction

A wide range of engineering and scientific applications may be written as a non-
linear optimization problem, e.g. electric [29], water [24] and gas [35] distribution
networks, contigency analysis in electric networks [13], nuclear reactor reloading
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patterns [36], reinforced concrete beams optimization [10], lens design in optics
[22]. Many applications can also be found in chemical engineering [6], such as
chemical processes control [7], life cycle optimization for sustainable design [20]
and production planning in multi-plant facilities [23]. Other applications include
channel interference [11] and optimal resource management [39] in wireless net-
works, optimal path for vehicles [1,21], tra�c modeling [18], conflict resolution
involving multiple aircraft [37] and flight clearance [15].

Definition 1 Smooth nonlinear programming (NLP) problems are conveniently
expressed as

min f(x)

s.t. c(x)  0

L
i

 x
i

 U
i

i 2 N

(NLP(L,U ))

where N = {1, . . . , n}, f : Rn ! R and c : Rn ! Rm are twice continuously
di↵erentiable functions.

Any (NLP(L,U )) problem can be solved by a NLP solver. The NLP solvers
are categorized depending on the methods implemented: sequential quadratic pro-
gramming [8], interior point [32], penalty [14], augmented lagrangian [34], trust-
region [9], filter [17]. . . Those strategies guarantee the global convergence to a local
optimum, i.e. the convergence to a point satisfying the KKT conditions from any
starting point.

If (NLP(L,U )) is nonconvex, the local optimum towards which a NLP solver
converges may not be the global optimum. The local optimum objective value may
also be far from the global optimum. Making sure to find the global optimum of a
problem is computationally demanding.

The best-known method for solving nonconvex NLP problems to global opti-
mality is the spatial Branch-and-Bound (sBB) [38,40], implemented for instance in
BARON [41], Couenne [3], ANTIGONE [27], LindoGlobal [26], SCIP [5], ↵-BB [2]
and COCONUT [33]. The sBB explores the whole feasible set of the problem. In
all sBB implementations, the solvers make use of the best feasible solution known
so far to prune some regions which cannot contain any better solution. Hence,
finding good feasible solutions quickly is of paramount importance to prune as
much space as possible. This paper focuses on new variants of the sBB algorithm
to find good feasible solutions quicker. All the ideas are implemented in Couenne,
a well-known open-source global optimization software.

The urge behind obtaining good feasible solutions quickly finds its root in
Mixed-Integer Programming (MIP). Some MIP models remain very hard to solve
to optimality. In such cases, several heuristics are known to sometimes provide
good feasible solutions quickly. Variable Neighborhood Search (VNS) [28] seeks a
feasible solution in a neighborhood and subsequently adds a perturbation to move
to another neighborhood. Local Branching [16] explores the neighborhood of a
feasible solution by increasing or decreasing the value of a few integer variables
while excluding the previously found incumbent with a so called ’no-good cut’. Re-
laxation Induced Neighborhood Search (RINS) [12] is based on the intuition that
there is a link between the incumbent and the solution of the continuous relax-
ation. Many variables take the same values between the two. Therefore, RINS fixes
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them and solves a sub-MIP on the remaining variables to hopefully find a solution
which achieves both integrality and a good objective value. Relaxation Enforced
Neighborhood Search (RENS) [4] explores the neighborhood of the solution of the
continuous relaxation by rounding all integer variables. [12] also introduces the
guided dive, which uses the current incumbent solution to decide to dive in the
left or right child node first.

The heuristics in MIP gave birth to several heuristics for nonconvex Mixed
Integer Nonlinear Programming (MINLP). [25] uses VNS for the global search
phase and a black-box convex MINLP solver for the local search. [31] argues that
a local search performed with a convex MINLP solver is significantly slower than
it was in MIP. Therefore, [31] proposes to avoid the convex MINLP solver and
consider a sequence of limited-size MILPs and NLPs instead. The NLP estimates
the descent direction of the original objective function and the MILP solves a
convexification with a local branching constraint. [30] also performs a sequence of
NLPs and MIPs, but with a rounding of the integer variables. However, research
still lacks insights on how to adapt these heuristics for nonconvex NLP without
any integer variables, besides using a black-box NLP solver.

We base our work on the aforementioned works, in particular the guided dive
of [12], and aim at extending it to nonconvex NLP.

The sBB recursively partitions the feasible set into subsets such that every
solution to (NLP(L,U )) is feasible in one of the subsets.

Each subset is associated with a node uniquely defined by a specific set of
bounds (l, u) such that L

i

 l
i

 u
i

 U
i

for each i 2 N , and corresponds to the
NLP

min f(x)

s.t. c(x)  0

l
i

 x
i

 u
i

i 2 N

(nodeNLP(l,u))

The feasible set of (nodeNLP(l,u)) is

⌦(l, u) = {x 2 Rn : c(x)  0; l
i

 x
i

 u
i

; i = 1, . . . , n} (1)

Definition 2 At a node (nodeNLP(l,u)), consider a variable x
b

, b 2 N on which

we branch, and let {x(1)
b

, . . . , x
(K+1)

b

} be a sequence of branching values such that

x
(1)

b

= l
b

, x(K+1)

b

= u
b

and x
(k)

b

 x
(k+1)

b

for k = 1, . . . ,K. The multiway branching

defines the K partitions of ⌦(l, u), also referred to as child nodes, as

⌦(k) = ⌦(l, u) \ {x 2 Rn : x(k)
b

 x
b

 x
(k+1)

b

} k = 1, . . . ,K (2)

⌦(k) is the feasible set of nodeNLP
k

(l, u).

In practice, all the newly created nodes are stored in a queue Q.

Definition 3 Let Q be a set of nodes {nodeNLP
j

(l, u)} to solve for j = 1, . . . , |Q|,
among which a sBB implementation must choose the next node to proceed. A node

selection strategy assigns a priority p(j) to each node in Q. The next node to select
is nodeNLP

j

(l, u) with j 2 argmax
j

p(j).
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Most sBB implementations also factorize the original problem (nodeNLP(l,u))
into a series of equivalent constraints for which a convex relaxation can be derived
[19].

One iteration of the sBB algorithm involves selecting a problem (nodeNLP(l,u))
2 Q with the highest priority p (Definition 3). Its convexification is solved, which
yields the point x(l,u). If x(l,u) 62 ⌦(l, u), the node is partitioned according to
Definition 2. (nodeNLP(l,u)) may also be solved with an NLP solver to obtain a
local optimum h(l,u).

Upon partitioning a set into two subsets or more, one may use for instance the
best bound node comparison strategy to decide which branch is to be explored first.
However, so far, there is no NLP-specific rule to guess which branch to explore first
to find feasible solutions with a good objective value quickly. This paper aims at
introducing new such rules and provides extensive tests to assess how e↵ective they
are on real-world and academic problems. In particular, Couenne runs IPOPT (an
NLP solver) on (nodeNLP(l,u)) at a few upper levels of the sBB tree to try to find
better incumbents. We show that it is possible to improve the branching rules by
exploiting the solution of (nodeNLP(l,u)) provided by the NLP solver.

The remainder of this paper is organized as follows. Section 2 introduces the
guided dive for MIP and proposes an extension for nonconvex NLP. Section 3
incorporates the guided dive and its specificities into a multiway branching scheme.
Finally, Section 4 provides extensive tests and conclusions for all the features
introduced. Section 5 concludes and gives directions for further research.

2 Guided dive

First introduced by [12] for MIP, the guided dive consists in a small modification of
the tree traversal strategy. In the branch-and-bound branching procedure, the first
decision is the selection of a variable to branch on, and the second is the choice of
which child node to explore first. Let x⇤ be the best incumbent known so far, and
x
b

be the selected branching variable at node (nodeNLP(l,u)). The guided dive

explores first the child  of (nodeNLP(l,u)) such that x⇤
b

2 [x()
b

, x
(+1)

b

], according
to Definition 2. The guided dive and the depth-first tree traversal, by making
the Branch-and-Bound dive towards the best incumbent and then backtrack the
tree, are together somewhat similar to local branching heuristics which explicitly
explore the neighborhood of x⇤.

It is important to point out that although x⇤
b

2 [x()
b

, x
(+1)

b

], the best in-
cumbent x⇤ may not be feasible in (nodeNLP(l,u)), or in any of its child nodes
nodeNLP

k

(l, u), k = 1, . . . ,K. Unlike local branching heuristics, the guided dive
also makes use of the incumbent even if it is not located in the neighborhood of
x⇤, provided x⇤

b

2 [x()
b

, x
(+1)

b

] only. The incumbent could therefore be far from
⌦(l, u). [12] notes that despite its simplicity, this approach is quite e↵ective at
improving the solutions found in MIP. We extend the guided dive to the sBB for
nonconvex NLP problems.

In Section 4, we first show computationally that as for MIP problems, the
guided dive leads to a major improvement for nonconvex NLP problems solved
to global optimality. The first limitation of the original guided dive is that there
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are many nodes which cannot be guided if x⇤
b

62 [l
b

, u
b

]. A blind child selection
must therefore be performed. In practice, the solvers use a random or a fixed child
selection. Couenne belongs to the latter by diving in the leftmost child first.

In the sBB, an NLP solver is run at several nodes at the upper levels of the tree,
each potentially providing one NLP feasible solution. Finding feasible solutions
may be hard. In this paper, we consider problems for which at least a few feasible
solutions are found throughout the sBB. Let F (l,u) be the set of all known feasible
points when node (nodeNLP(l,u)) is processed. We improve the guided dive by
using the points in F (l,u), which includes

1. former incumbents before a new better incumbent was found;
2. newly computed feasible points which are not better than the incumbent.

At node (nodeNLP(l,u)), with the branching variable x
b

, let H(l,u) = {x 2
F (l,u) : l

b

 x
b

 u
b

} be the set of known feasible points for which the value of
x
b

lies within the bounds [l
b

, u
b

] of (nodeNLP(l,u)). Our improved guided dive
chooses the feasible point h(l,u) 2 H(l,u) with the best objective value to direct the
dive at node (nodeNLP(l,u)).

In some cases, the feasible point h(l,u) used by one node (nodeNLP(l,u)) can be
reused in some of its child nodes, thereby avoiding to solve some new NLP prob-
lems. Denote by  the child node of (nodeNLP(l,u)) such that h(l,u)

b

2 [x()
b

, x
(+1)

b

],

according to Definition 2. There are two cases to consider. Case 1 considers h(l,u) 2
⌦(l, u) whereas case 2 considers h(l,u) 62 ⌦(l, u).

Case 1. h(l,u) 2 ⌦(l, u) and h
(l,u)

b

2 [x()
b

, x
(+1)

b

] imply that h(l,u) 2 ⌦(), the

feasible set of nodeNLP


(l, u). h(l,u) can be reused by nodeNLP


(l, u), for any
branching variable selected when processing nodeNLP



(l, u). For the other child
nodes, h(l,u) cannot be reused if the branching variable is x

b

and sometimes cannot
be reused for the other branching variables x

g

, g 2 N\{b} if h(l,u)

g

is excluded from
the tightened bounds [l

g

, u
g

] by the bound tightening procedures.

Case 2. h(l,u) 62 ⌦(l, u) and h
(l,u)

b

2 [x()
b

, x
(+1)

b

] imply that h(l,u) can only be
reused by nodeNLP



(l, u) provided its branching variable is also x
b

. For the other
branching variables of nodeNLP



(l, u) as well as for all the branching variables of
the other child nodes, there is no garantee that h(l,u) can be reused.

In most sBB implementations, at the v upper levels of the tree, the NLP
problem is always solved by the NLP solver, starting from the solution of the
convexification. The aim is to find new incumbents early. Below the v level, i.e. for
all the lower levels of the tree, no NLP problem is solved.

At the beginning of the tree, the major source of feasible points comes from
running a local NLP solver at several nodes, the other one being solutions of the
convexification provided they are nonlinear feasible. However, solving local NLP
problems has a non-negligible running time. We further improve the algorithm
with the main goal of solving a NLP problem when it is most useful.

In our implementation, we replace the v threshold with the v
1

and v
2

thresholds
instead (v

1

 v
2

). Above the v
1

level, the NLP problem is always solved because
the partitioning and the bounds tightening techniques at the upper levels of the
tree are likely to enable the NLP solver to find new incumbents. Between the v

1
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and v
2

levels, the NLP problem is solved if H(l,u) = ;. It is more useful to solve
a NLP problem if H(l,u) = ;, because the solution obtained will direct the dive
instead of having to perform a blind diving. Below the v

2

level, no NLP problem
is solved. However, if H(l,u) 6= ; for a node (nodeNLP(l,u)) below the v

2

level,
then one feasible point h(l,u) 2 H(l,u) is used for the child selection; otherwise the
default blind diving is performed.

3 Multiway branching

Couenne implements the branching procedure of Definition 2 forK = 2. By default,
for continuous variables, the branching value is x̄

b

= ↵x
(l,u)

b

+ (1 � ↵)xM
b

, where

x(l,u) is the solution of the convex relaxation of (nodeNLP(l,u)) and xM
b

= lb+ub
2

.
This branching-point selection is refered to as mid-point. The branching is per-
formed by adding the inequality x

b

 x̄
b

for the left child nodeNLP
1

(l, u) and
x
b

� x̄
b

for the right child nodeNLP
2

(l, u). There are several other branching-point
selection rules described in [3]. All of them aim at improving the convexification
of the subsequent child nodes. However, none of them adapt their branching value
to try to dive as fast as possible towards regions with higher odds of finding better
feasible solutions. The previous section argued that diving in the child node con-
taining the incumbent has a positive impact. This section explores modifications of
the branching values to try to achieve even better performance. For the remainder
of this section, we rewrite h(l,u) as h.

Figure 1 and Figure 2 both illustrate a disadvantageous 2-way branching. In
both figures, the left child is the vertically hatched region on the left and the right
child is the horizontally hatched region on the right. In Figure 1, the branching
value is x̄

b

. With the mid-point selection x̄
b

= ↵x
(l,u)

b

+(1�↵)xM
b

and the default

value ↵ = 0.25, the relative distance |xM
b �¯

xb|
ub�lb

is at most ↵

2

= 0.125, placing x̄
b

rela-

tively close to the center xM
b

= lb+ub
2

. However, the solution h
b

of (nodeNLP(l,u))
may lie anywhere in the range [l

b

, u
b

], regularly resulting in situations like the one
depicted in Figure 1, where h

b

is close to u
b

. According to its definition, the guided
dive chooses the right child first because it contains h

b

. However, the span [x̄
b

, u
b

]
is fairly wide, which prevents a fast dive towards the close neighborhood of h.

Figure 2 illustrates another partitioning where another branching value delim-
its a relatively short span containing h

b

. Diving in the right child first enables
the guided dive to explore the neighborhood of h quickly. However, dismissing x̄

b

as the branching point has the major drawback of not focusing on improving the
convexification of the child nodes anymore, which was the purpose of x̄

b

. Hence the
convexification of the vertically hatched area is barely improved. While the parti-
tioning of Figure 2 may help find new incumbents faster, it impedes on the global
convergence of the sBB. We propose to take these considerations into account by
keeping the branching value x̄

b

and further partitioning with a second branching
value, as defined in Definition 4 and depicted in Figure 3 (we can assume x̄

b

 h
b

with no loss of generality).

Definition 4 The guided 3-way partitioning defines a set of 2 branching values
{x̄

b

, h
b

��
1

} (resp. {x̄
b

, h
b

+�
2

}) which delimit the 3 parts according to Defini-
tion 2. The guided 3-way partitioning creates the second branching point either
on the left (h

b

��
1

) or on the right (h
b

+�
2

) of h
b

, depending on the location of
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lb x̄b hb ub

1 2

Fig. 1: Branching value x̄
b

lb x̄b hb ub

1 2

Fig. 2: Branching value close to h
b

x̄
b

and h
b

. �
1

and �
2

are margins which are a fraction of u
b

� l
b

. The branching
value h

b

��
1

is possible if x̄
b

 h
b

��
1

and the branching value h
b

+�
2

is possible
if h

b

+�
2

 u
b

. In Definition 3, the 3 parts are each given a priority p such that
p(3) > p(2) > p(1) (resp. p(2) > p(3) > p(1) with {x̄

b

, h
b

+�
2

}), i.e. the 3rd child
is to be solved before the 2nd child, which is to be solved before the 1st child.

lb x̄b hb ub

1 2 3�1

Fig. 3: Guided 3-way partitioning with branching values {x̄
b

, h
b

��
1

}

Definition 5 extends the guided 3-way by allowing one additional branching
point on the other side of h

b

. Illustration in Figure 4.

Definition 5 The guided 4-way partitioning defines a set of 3 branching values
{x̄

b

, h
b

��
1

, h
b

+�
2

} which delimit the 4 parts according to Definition 2. �
1

and
�

2

are margins which are a fraction of u
b

� l
b

. In Definition 3, they are each given
a priority p such that p(3) > p(2) > p(4) > p(1)

lb x̄b hb ub

1 2

3

4�1�2

Fig. 4: Guided 4-way partitioning
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Finally, we define the guided 2-way partitioning in Definition 6.

Definition 6 The guided 2-way partitioning defines {x̄
b

} as the sole branching
value which delimits the 2 partitions according to Definition 2. In Definition 3,
they are each given a priority p such that p(1) > p(2) if h

b

2 [l
b

, x̄
b

], and p(2) > p(1)
otherwise.

Creating more nodes in a sBB results in a noticeable computing overhead,
more than in MIP. For each sBB node, several bound tightening algorithms are
performed, a convexification is computed and solved, and an NLP solver is possibly
run. This suggests that the 3-way and a fortiori the 4-way partition should be
scarcely used. At each node (nodeNLP(l,u)), the 2-way, the 3-way or the 4-way is
chosen wisely to avoid creating too many small nodes. From the 4-way partitioning
(Definition 5), if h

b

��
1

�x̄
b

< � for some value � � 0 (i.e. part 2 is too small), parts
2 and 3 are merged, thereby resulting in a 3-way partitioning. If u

b

� h
b

��
2

< �

(i.e. part 4 is too small), parts 3 and 4 are merged. The priority p(k) is set such
that p(3) > p(2) (if not merged) > p(4) (if not merged) > p(1).

4 Computational results

Our features are implemented in Couenne 0.4 and benchmarked on an Intel Core i7
at 3.47GHz. Several di↵erent versions of the diving strategies were tested on NLP
instances from the Coconut library. Among the whole Coconut test set (around
600 problems), some problems were discarded:

– 258 problems solved almost instantaneously;
– 12 problems claimed by IPOPT to be infeasible because it makes Couenne

assume that the problem is infeasible and stop;
– 26 problems for which numerical issues were encountered by the original Couenne

or our modified versions;
– 78 problems with no solution found in the sBB within the two hours time limit,

besides the local solution found by IPOPT.

This leaves us with 170 usable problems for testing, further split into

– 117 easy or medium size problems;
– 53 hard problems.

A problem is considered hard if at least the original Couenne or one of our modified
versions does not converge to global optimality within the two hours time limit.
Moreover, besides the local solution found by IPOPT, at least one feasible solution
with a better objective value must be found in the sBB by the original Couenne
or one of our modified versions. If no better solution can be found in the sBB, the
branching strategies could not be compared.

Our measurements are:

1. total running time (resp. total number of processed nodes) until proof of global
optimality;

2. time (resp. number of processed nodes) to close 60% of the gap between the
first feasible solution f

0

found at root node and the global optimum f⇤.



Guided Dive for the Spatial Branch-and-Bound 9

We compare the original Couenne (C) with our modified versions (M). The
time gain between the two algorithms is tM�tC

max(tM ,tC)

, where t is either the total

running time or the time to close 60% of the gap. If the time gain is negative, the
modified version is faster than Couenne. Otherwise Couenne runs faster than our
modified verison. To compare the total number of nodes or the number of nodes
processed to close 60% of the gap, the formula nM�nC

max(nM ,nC)

is used, where n is the
number of nodes.

4.1 Guided dive

Table 1 shows the average gains over the easy and medium size problems for the
di↵erent diving strategies. Test 1 (first row in Table 1) shows the gain if Couenne
dives first in the child node nodeNLP



(l, u) containing the best incumbent x⇤, i.e.
x⇤ 2 ⌦(l, u), which is similar to a local branching heuristic. If x⇤ 62 ⌦(l, u), the
default diving of Couenne is performed. Finding feasible solutions helps closing the
60% gap quicker. However, there is little impact on the total running time, besides
a few branches closed thanks to the incumbent. Generating tighter convexifications
has a much larger impact on the total running time. We refer the reader to [3].

Test 2 is the guided dive as originally defined in [12] for MIP, which dives in the

child node nodeNLP


(l, u) such that x⇤
b

2 [x()
b

, x
(+1)

b

], even if x⇤ 62 ⌦(). As for
MIP problems, the guided dive also leads to a significant gain for NLP problems,
with respect to diving in the child node containing x⇤. To show how important
the guided dive is, the inverted guided dive in test 3 first dives in the child node
nodeNLP

⌧

(l, u) such that x⇤
b

62 [x(⌧)
b

, x
(⌧+1)

b

], the opposite of test 2. The slightly
positive gain values for the inverted guided dive mean that it is slightly worse than
the default diving of Couenne, which dives in the leftmost child first.

In test 4, the feasible point considered for the diving is either computed at the
current node or inherited from a parent node, not necessarily the best incumbent
known so far. The gain is not as good as the guided dive in test 2. This points out
that it is more advantageous to use the best incumbent instead of several other
feasible points with a weaker objective value, although the latter allow the sBB to
use the guided dive more often.

In test 5, we use the best incumbent if possible as in test 2; otherwise we use
another feasible point inherited from a parent node as in test 4. If x⇤

b

62 [l
b

, u
b

], the
best incumbent cannot be used and a blind dive must be performed. To avoid this
as much as possible, we use another known feasible solution from a parent or the
solution from a local NLP solver at the current node, if solved. This improves the
guided dive based only on the best incumbent.

In test 6, from H(l,u) = {x 2 F (l,u) : l
b

 x
b

 u
b

}, the set of known feasible
points for which the value of x

b

lies within the bounds [l
b

, u
b

], we consider the
feasible point h(l,u) 2 H(l,u) with the best objective value, no matter its location
in the variable space. This further slightly improves the performance. Since h(l,u)

may be spatially far from ⌦(l, u), it is reasonable to try promote a solution ĥ(l,u) 2
F (l,u) closer to ⌦(l, u), albeit with a weaker objective value. A weighting between
the value of the objective function and the distance has been carried out and
benchmarked. However, all the weighting values tested yield a deterioration of the
gain. It seems that the feasible solution with the best objective value should always
be used first, no matter how far it is from ⌦(l, u).
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Test 7 uses the two depth thresholds v
1

and v
2

. The values used are v
1

= d0.57ee
and v

2

= d0.91ee, where e is the number of variables of the extended reformulation
[19]. Between the v

1

and v
2

levels, the NLP problem is not solved if H(l,u) 6= ;.
The sBB tree is expected to barely be a↵ected by not computing those solutions.
Indeed, the total number of nodes and the number of nodes to close 60% of the
gap are almost unchanged. However, computing fewer local NLP problems saves
time. The time gain depicted in Table 1 is rather limited because we also used a
parameter preventing Couenne from solving more than 10 local NLP problems in
the whole tree, so the algorithm of test 7 only avoids a few calls to IPOPT. This
parameter, among others, was used to improve the original Couenne. If one were
to increase this parameter, the improvement from test 6 to test 7 would be larger,
but the gains of all the other tests, from tests 1 to test 6, would slightly drop.

# Dive condition
Number of nodes Time (s)
60% gap Total 60% gap Total

1 In node containing the best incumbent x

⇤ -9.33% -3.27% -8.16% -0.74%

2 In node  such that x

⇤
b 2 [x

()
b , x

(+1)

b ] -20.29% -0.35% -15.55% 1.08%
3 Inverted guided dive 3.47% 1.86% 1.75% 5.65%
4 With parent heuristic -13.86% -1.95% -12.45% -0.12%
5 With x

⇤ or parent heuristic -25.30% -2.23% -18.55% 1.74%
6 With feasible point with best obj. value -26.88% -5.81% -18.89% -2.45%
7 With v

1

and v

2

-27.70% -5.31% -25.29% -8.53%

Table 1: Diving strategies

Table 2 shows how often on average the first feasible solutions (ordered by
objective value, as in test 6) are used to direct the dive at the nodes of the sBB.
The current incumbent x⇤ is used if x⇤

b

2 [l
b

, u
b

]. If not, the 2nd best known feasible
solution x0 is used if x0

b

2 [l
b

, u
b

]. If not, the 3rd best known feasible solution x00 is
used if x00

b

2 [l
b

, u
b

] etc. The most remarkable result is the very scarce use of the
2nd and next feasible solutions. The feasible solutions are spatially closed to one
another. If x⇤

b

62 [l
b

, u
b

], the next feasible solutions are unlikely to have their x
b

value in the range [l
b

, u
b

]. Still, using all the known feasible solutions results in the
noticeable improvement from test 2 to test 6.

Percentage of use
Current incumbent 70.44%

Current 2nd best solution 1.77%
Current 3rd best solution 1.17%
Current 4th best solution 0.73%
Current 5th best solution 0.50%
Current 6th best solution 0.48%
Current 7th best solution 0.27%

. . .
No known feasible solution usable 23.68%

Table 2: Incumbents use on average
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Table 6 details the time gain between the original Couenne and our modified
versions test 2, test 6 and test 7, for each problem. For convenience, the best value
is depicted in bold for each problem.

Table 3 compares the time gains of the 53 hard instances. ’TL’ stands for
the Time Limit of two hours. Since the global solution f⇤ was not found within
two hours for most problems, the 60% gap is considered to be between the first
feasible solution f

0

found at root node and the best solution found among the
original Couenne and our test 2 and test 6 variants, instead of f⇤. Hence, the time
to close 60% of the gap is still related with the speed to find the first good feasible
solutions. The three rightmost columns show the gap closed between f

0

and the
aforementioned best solution known. The large number of ’0.0% TL’ occurences
for the gap closed by Couenne means that beyond the initial feasible solution f

0

,
the sBB did not manage to find any better feasible solution within the time limit.

60% primal gap time (s) Gap closed (%)
Problem CouenneTest 2 Gain Test 6 Gain Couenne Test 2 Test 6
etamac TL 2.57 -100% 2.35 -100% 0.0% TL 100% TL 100% TL
ex5 2 5 TL TL -0.0% 2.73 -100% 100% TL 100% TL 100% TL
ex5 3 3 5.78 5.05 -12.7% 4.88 -15.7% 100% TL 100% TL 100% TL
ex8 3 14 4.99 3.06 -38.8% 2.94 -41.1% 66.8% TL100% TL 100% TL
ex8 4 2 TL 4.38 -99.9% 4.83 -99.9% 0.0% TL 100% TL 100% TL
ex8 4 6 TL 1.13 -100% 5.13 -99.9% 0.0% TL 100% TL 97.0% TL
ex8 4 7 TL 2.87 -100% 6.11 -99.9% 0.0% TL 100% TL 100% TL
ex8 4 8 TL 8.10 -99.9% 4.64 -99.9% 0.0% TL 100% TL 100% TL
ex8 5 6 TL 19.2 -99.8% 33.6 -99.6% 0.0% TL 100% 100%

expquad TL 36.8 -99.6% 36.9 -99.6% 0.0% TL 100% TL 100% TL
hadamals TL 47.2 -99.3% 47.2 -99.3% 0.0% TL 84.6% TL 100% TL
haifam TL 57.3 -99.2% 56.1 -99.2% 0.0% TL 66.6% TL 100% TL

himmelbf TL 2.57 -100% 2.57 -100% 0.0% TL 100% TL 100% TL
hs056 0.12 15.1 99.2% TL 100% 92.4% TL100% TL 0.0% TL
hs059 0.11 0.11 -3.2% 0.09 -19.4% 100% 100% 100%

hs101 TL 505 -93.0% 3630 -49.6% 0.0% TL 27.6% TL 100% TL
hs103 TL 1.41 -100% 1.43 -100% 0.0% TL 100% TL 100% TL
hs109 TL 41.7 -99.4% 27.0 -99.6% 0.0% TL 100% TL 100% TL
hs110 TL 0.74 -100% 0.77 -100% 0.0% TL 100% TL 99.9% TL

hs111lnp TL 0.49 -100% 0.98 -100% 0.0% TL 100% TL 100% TL
hs112 3278 0.53 -100% 0.30 -100% 100% 100% 100%

hs117 3.12 0.29 -90.6% 0.18 -94.3% 100% TL 100% TL 100% TL
hs268 TL 0.14 -100% 0.16 -100.0% 0.0% TL 100% TL 100% TL
kowosb TL 19.0 -99.7% 22.3 -99.7% 0.0% TL 100% 100%

lakes TL TL 0.0% 359 -95.0% 100% TL 100% TL 100% TL
least TL 3.87 -99.9% 4.35 -99.9% 0.0% TL 100% TL 100% TL

mistake 1.02 0.33 -67.3% 0.34 -66.6% 92.7% TL100% TL 100% TL
optmass 2415 9.09 -99.6% TL 66.5% 0.0% TL 0.0% TL 100% TL
orthrds2 25.7 35.2 27.0% 35.6 27.9% 100% TL 100% TL 100% TL
osborneb TL 145 -98.0% 130 -98.2% 0.0% TL 100% TL 100% TL
palmer1a 6.99 0.34 -95.2% 0.34 -95.2% 74.4% TL100% TL 100% TL
palmer1b 0.77 0.35 -54.6% 0.37 -51.6% 36.0% TL100% TL 100% TL
palmer2a TL 0.35 -100% 0.35 -100% 0.0% TL 100% TL 100% TL
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60% primal gap time (s) Gap closed (%)
Problem CouenneTest 2 Gain Test 6 Gain Couenne Test 2 Test 6
palmer3 0.49 193 99.7% 180 99.7% 100% 100% 100%

palmer3a TL 0.37 -100% 0.34 -100% 0.0% TL 100% TL 100% TL
palmer3b 0.26 0.37 27.7% 0.37 28.5% 75.3% TL100% TL 100% TL
palmer4 0.43 163 99.7% 142 99.7% 83.2% TL 100% 100%

palmer4b 0.40 0.35 -13.3% 0.26 -35.5% 100% TL 100% 100%

palmer6a 55.0 0.31 -99.4% 0.31 -99.4% 100% TL96.6% TL 96.6% TL
palmer7a TL 31.1 -99.6% 15.0 -99.8% 0.0% TL 100% TL 74.9% TL
palmer7e 3.27 TL 100% TL 100% 100% TL 0.0% TL 0.0% TL
palmer8a 1.98 1.69 -14.5% 0.21 -89.4% 72.0% TL72.0% TL 86.2% TL
penalty2 6309 16.7 -99.7% 8.99 -99.9% 4.9% TL 97.5% TL 97.5% TL
pindyck TL 5.32 -99.9% 5.68 -99.9% 0.0% TL 100% TL 100% TL
qp1 TL 85.1 -98.8% 95.2 -98.7% 0.0% TL 100% TL 100% TL
qp2 TL 71.4 -99.0% 77.4 -98.9% 0.0% TL 100% TL 100% TL
qp3 TL 6.24 -99.9% 6.48 -99.9% 0.0% TL 100% TL 100% TL
s368 194 206 6.0% 227 14.4% 100% TL99.4% TL 99.4% TL
sineali 56.5 21.8 -61.4% 123 54.2% 100% TL72.7% TL 69.3% TL
snake 142 527 73.0% 68.4 -51.9% 100% 100% TL 100%

ssnlbeam TL 0.53 -100.0% 1.04 -100% 0.0% TL 100% TL100.0% TL
swopf TL 6.73 -99.9% 5.38 -99.9% 0.0% TL 100% TL 86.9% TL
weeds 4.10 2.45 -40.1% 2.67 -34.8% 100% TL88.5% TL 88.5% TL

Mean -59.30% -61.14%

Table 3: Results for the hard problems

Although this paper focuses on continuous variables, we also benchmarked
mixed-integer nonlinear problem (MINLP) instances from the MINLPlib library
to assess the e↵ects of our algorithm on instances with both continuous and integer
variables. As for the continuous problems, we let Couenne choose the variable
to branch on (whether integer or continuous) and refer the reader to [3]. In the
Continuous variant, we choose the diving side as in test 6 only if the branching
variable is continuous, never modifying the diving side of integer variables. In the
All variant, we apply test 6 on both continuous and integer variables. Table 5
compares the time gains of the 60 easy or medium instances, whereas Table 5
compares the 21 hard instances. Since all the hard instances hit the time limit of
two hours, the right columns of Table 5 show the gap closed instead of the total
time gain.

By default, Couenne dives left on an integer variable if x̄
b

� bx̄
b

c < dx̄
b

e � x̄
b

and dives right otherwise. While the guided dive gives a noticeable improvement
if it is performed on continuous variables, it brings no further improvement if
also performed on integer variables. However in [12], the guided dive was quite
e↵ective in MIP. While the guided dive performs well on integer variables in MIP
and on continuous variables in NLP and MINLP, it has little e↵ect if performed
on integer variables in MINLP. [3] benchmarked several MINLP instances with
most variable selection strategies. The comparison did not show a clear winner
and [3] stated that the performance is highly dependent on the instance. We also
run tests with the original Couenne and several variable selection strategies (most
fractional, random, strong branching, reliability branching, three variants of the
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strong branching, violation transfer) and obtained similar results. From our results,
the di↵erence in gain (average on the easy and medium MINLP problems) with
the 60% primal gap and with the total running time is below 2.28% between the
variable selection strategies. We believe that the guided dive is une↵ective on the
integer variables of MINLP problems for the same reason.

60% primal gap time (s) Total time (s)
Problem Coue.Cont. Gain All Gain Coue.Cont. Gain All Gain
alan 0.05 0.05 4.9% 0.05 7.4% 0.08 0.07 -13.1% 0.07 -6.8%
batch 0.62 0.70 10.2% 1.10 43.1% 0.63 0.70 10.2% 1.10 43.3%

csched1a 0.66 0.48 -28.2% 0.28 -57.8% 0.67 0.48 -27.8% 0.44 -33.6%
du-opt 2.60 2.59 -0.4% 3.20 18.7% 26.4 20.0 -24.0% 17.2 -34.8%
du-opt5 3.06 2.31 -24.3% 4.92 37.9% 47.9 28.8 -39.9% 31.6 -34.1%

elf 1.05 0.65 -37.8% 1.01 -3.7% 2.98 2.45 -17.7% 2.21 -25.8%
eniplac 359 281 -21.6% 199 -44.6% 428 377 -11.9% 263 -38.7%
ex1243 2.51 1.53 -39.0% 2.08 -16.9% 3.54 2.14 -39.6% 2.53 -28.6%
ex1244 2.94 1.77 -39.8% 4.46 33.9% 7.58 4.69 -38.2% 7.22 -4.8%
ex1252 2.54 2.77 8.2% 9.39 73.0% 14.0 5.09 -63.7% 13.9 -0.9%
ex1252a 1.14 0.47 -58.7% 0.48 -58.2% 9.01 5.02 -44.3% 4.84 -46.3%
ex1263a 4.29 1.83 -57.3% 2.81 -34.6% 6.55 3.03 -53.7% 4.60 -29.7%
ex1264a 0.49 0.31 -37.2% 0.31 -37.6% 1.06 0.65 -39.1% 0.65 -38.9%
ex1265a 1.10 0.68 -37.8% 0.71 -35.4% 6.58 4.75 -27.8% 4.15 -36.9%
ex1266a 0.84 0.57 -32.4% 0.81 -3.4% 9.63 6.47 -32.8% 9.66 0.3%

ex4 14.7 8.58 -41.5% 2.27 -84.5% 29.3 18.5 -37.0% 4.40 -85.0%
fac2 15.5 12.1 -21.9% 8.63 -44.5% 16.5 13.1 -20.7% 9.21 -44.3%
fac3 1.37 1.30 -5.3% 0.89 -35.1% 1.37 1.30 -5.3% 0.89 -35.1%

feedtray2 15.8 12.2 -22.7% 12.3 -22.1% 15.8 12.2 -22.7% 12.3 -22.1%
fo7 ar2 1 32.6 32.2 -1.1% 21.6 -33.6% 2255 1727 -23.4% 1421 -37.0%
gastrans 4.65 2.20 -52.8% 2.22 -52.3% 7.87 2.20 -72.1% 2.22 -71.8%
gear 0.02 0.01 -46.5% 0.01 -69.5% 0.02 0.01 -46.5% 0.01 -69.5%
gear2 0.12 0.08 -29.4% 0.10 -15.6% 0.12 0.08 -29.6% 0.10 -15.1%
gear3 0.04 0.02 -44.1% 0.02 -52.4% 0.04 0.02 -44.1% 0.02 -52.4%
gear4 0.15 0.07 -55.3% 0.07 -53.0% 0.81 0.48 -40.0% 0.47 -41.9%

ghg 1veh 270 1.54 -99.4% 1.53 -99.4% 1095 973 -11.1% 876 -20.0%
m3 2.05 1.33 -35.3% 0.99 -51.9% 2.06 1.33 -35.3% 1.16 -43.7%
m6 2.42 1.58 -34.8% 2.28 -5.8% 64.2 43.1 -32.9% 40.8 -36.4%
m7 10.1 6.81 -32.2% 6.78 -32.6% 839 587 -30.0% 593 -29.4%

m7 ar25 1 4.36 2.91 -33.3% 2.79 -36.1% 36.5 25.2 -30.9% 26.3 -28.0%
m7 ar2 1 22.5 15.5 -31.0% 10.0 -55.5% 128 90.3 -29.2% 88.1 -30.9%
m7 ar3 1 9.02 6.11 -32.3% 6.39 -29.2% 284 306 7.3% 211 -25.8%
m7 ar4 1 29.9 31.6 5.2% 35.2 14.9% 231 218 -5.5% 251 8.1%
m7 ar5 1 86.7 61.4 -29.2% 101 13.8% 459 331 -27.9% 400 -12.9%
meanvarx 0.71 0.44 -37.4% 0.47 -33.7% 1.35 0.80 -40.7% 0.91 -32.7%
meanvarxsc 0.67 0.45 -33.2% 0.28 -57.9% 1.32 0.80 -39.4% 0.82 -37.8%
minlphix 1.49 0.95 -36.5% 0.92 -38.3% 2.52 1.59 -37.0% 1.59 -36.9%
nous2 16.4 10.7 -34.7% 10.7 -34.7% 16.4 10.7 -34.7% 10.7 -34.7%
nvs13 0.32 0.16 -50.7% 0.17 -48.1% 0.49 0.26 -46.9% 0.27 -44.4%
nvs17 0.43 0.47 8.2% 0.48 9.9% 3.64 2.23 -38.7% 2.18 -40.0%
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60% primal gap time (s) Total time (s)
Problem Coue.Cont. Gain All Gain Coue.Cont. Gain All Gain
nvs18 0.22 0.14 -38.7% 0.13 -39.9% 1.16 0.77 -34.0% 0.68 -41.0%
nvs19 0.52 0.28 -46.5% 0.29 -44.6% 14.0 8.43 -39.8% 8.45 -39.7%
nvs20 0.52 0.81 35.6% 0.80 35.0% 1.30 0.92 -29.2% 0.92 -29.7%
nvs23 0.79 0.39 -50.2% 0.40 -49.5% 34.3 13.6 -60.4% 13.7 -60.2%
nvs24 0.95 0.62 -35.0% 0.62 -35.4% 86.1 37.8 -56.1% 37.7 -56.2%
parallel 30.0 20.3 -32.4% 50.8 40.9% 252 75.0 -70.2% 105 -58.4%
pump 1.10 4.19 73.7% 4.03 72.6% 7.53 5.54 -26.5% 5.43 -27.9%
sep1 0.74 0.39 -47.2% 0.28 -62.0% 0.75 0.39 -47.6% 0.31 -59.0%

spectra2 1.37 0.87 -36.8% 0.44 -67.8% 43.3 26.3 -39.2% 3.41 -92.1%
spring 0.24 0.16 -34.4% 0.25 6.2% 0.45 0.29 -35.6% 0.31 -30.3%
st e31 5.83 3.41 -41.5% 1.52 -73.9% 11.6 6.30 -45.6% 6.24 -46.2%
st e40 0.20 0.19 -2.2% 0.20 -0.2% 0.22 0.22 -0.9% 0.22 -0.8%

st testgr1 0.05 0.03 -48.1% 0.03 -48.3% 0.11 0.07 -38.7% 0.07 -39.7%
st testgr3 0.84 10.2 91.8% 0.30 -64.4% 8.13 12.6 35.6% 2.86 -64.9%
synthes3 0.28 0.18 -35.1% 0.18 -35.4% 0.28 0.18 -35.2% 0.18 -35.3%

tln4 0.18 5.92 97.0% 5.95 97.0% 301 189 -37.1% 174 -42.2%
tloss 1.03 1.00 -2.8% 0.59 -42.7% 7.01 6.41 -8.5% 4.56 -34.9%
tls2 0.51 0.31 -39.5% 0.32 -38.2% 0.51 0.31 -39.5% 0.32 -38.2%
tltr 5.20 1.49 -71.4% 1.49 -71.3% 6.12 2.31 -62.2% 2.15 -64.8%
util 2.04 1.20 -41.3% 1.14 -44.1% 6.74 4.04 -40.0% 2.16 -68.0%

Mean -25.40% -24.86% -32.48% -36.09%

Table 4: Results for the easy and medium size MINLP problems

60% primal gap time (s) Gap closed (%)
Problem CouenneCont. Gain All Gain Couenne Cont. All

fo7 3.18 3.12 -1.9% 2.72 -14.7% 100% TL 100% TL 100% TL
fo7 2 2.06 2.03 -1.3% 2.04 -1.0% 100% TL 100% TL 100% TL

fo7 ar25 1 29.0 29.6 2.1% 31.2 7.1% 100% TL 100% TL 100% TL
fo7 ar3 1 4.64 4.41 -4.9% 4.23 -8.7% 100% TL 100% TL 100% TL
fo7 ar4 1 9.09 9.20 1.3% 8.98 -1.1% 100% 100% TL 100%

fo7 ar5 1 164 106 -35.7% 56.2 -65.8% 80.1% TL100% TL80.1% TL
ghg 2veh TL 15.5 -99.8% 9.76 -99.9% 0.0% TL 100% TL 100% TL
no7 ar25 1 10.1 6.83 -32.5% 6.15 -39.2% 100% TL 100% TL 100% TL
no7 ar3 1 6.50 6.95 6.5% 6.13 -5.6% 100% TL 100% TL97.8% TL
no7 ar4 1 65.7 105 37.6% 76.5 14.2% 100% TL 100% TL 100% TL
no7 ar5 1 18.7 19.1 2.1% 18.3 -1.7% 100% TL93.9% TL100% TL

o7 7.41 6.10 -17.7% 6.51 -12.2% 100% TL 100% TL 100% TL
o7 2 6.62 6.72 1.5% 6.48 -2.1% 100% TL 100% TL 100% TL

o7 ar25 1 4.40 2.53 -42.3% 2.64 -39.9% 100% TL 100% TL 100% TL
o7 ar2 1 26.2 26.1 -0.4% 21.6 -17.8% 100% TL 100% TL 100% TL
o7 ar3 1 30.3 30.6 1.0% 30.8 1.6% 100% TL 100% TL 100% TL
o7 ar4 1 6.98 10.8 35.2% 10.8 35.6% 100% TL 100% TL 100% TL
o7 ar5 1 6.51 3.83 -41.1% 4.04 -38.0% 100% TL 100% TL 100% TL
water3 12.9 7.39 -42.9% 7.34 -43.2% 100% TL91.1% TL91.1% TL
waters 30.7 55.9 45.1% 39.7 22.7% 100% TL 100% TL 100% TL
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60% primal gap time (s) Gap closed (%)
Problem CouenneCont. Gain All Gain Couenne Cont. All
watersbp 20.0 11.8 -41.0% 22.4 10.6% 100% TL 100% TL 100% TL

Mean -10.91% -14.25%

Table 5: Results for the MINLP hard problems

4.2 Multiway branching

Figure 5 and Figure 6 show the e↵ect of the � parameter, which corresponds to
the minimum width for a new node candidate to be accepted. The gains are an
average over the easy and medium size problems. The 4-way partitioning is used
if all the 3 new node candidates (parts 2, 3 and 4 in Figure 4) have a minimum
width of � (part 1 in Figure 4 is always kept as is). If not, the 3-way partitioning
is considered with the same condition on the minimum width. If the condition is
still not matched by the 3-way partitioning, the 2-way partitioning is used.

If � = 0, all the new node candidates of the 4-way partitioning are always
considered wide enough. However, this does not mean that the 4-way partitioning
is possible in all configurations. If h

b

is close to l
b

(resp. u
b

), then the margin �
1

(resp. �
2

) may set the branching point h
b

� �
1

(resp. h
b

+ �
2

) outside of the
allowed range [l

b

, u
b

], making the 4-way partitioning sometimes impossible with
the margins �

1

and �
2

. If the previous situation occurs or if one node candidate
is rejected because its width is below � > 0, the algorithm falls back on the 3-way
partitioning.

Unlike the 4-way partitioning, the 3-way partitioning is always possible because
the new branching point can either be set on the left or on the right of h

b

, as long
as �

1

,�
2

 1�↵

4

(u
b

� l
b

) and the nodes are not merged because of �. The tightest
condition on the maximum value of �

1

and �
2

occurs if x̄
b

has its rightmost value
(i.e. the distance between x̄

b

and u
b

is as small as possible) and h
b

= ¯

xb+ub
2

. The
rightmost value of x̄

b

is obtained for x
b

= u
b

, which yieds x̄
b

= 1�↵

2

l
b

+ 1+↵

2

u
b

. If
h
b

= ¯

xb+ub
2

, the 3-way partitioning is possible if �
1

,�
2

 ub�¯

xb
2

= 1�↵

4

(u
b

� l
b

).
Although the 3-way partitioning is possible at all nodes with this condition, the
2-way partitioning must be used if one node is not wide enough because of �, if no
known incumbents have their variable value x

b

within [l
b

, u
b

] or if the algorithm
chooses not to use any incumbent to direct the diving at a node.

Figure 5 and Figure 6 show the node and the time gain, against the node
acceptance width �. The two plots confirm the insight that the multiway branching
should be scarcely used. Creating too many nodes because of a low � results in
more small nodes and more computing time. As � is increased, the multiway is
used less and starts reducing the number of nodes explored to achieve 60% of the
primal gap, while not significantly increasing the total number of nodes.

If part 2 is possible (Figure 4), it is considered too small if h
b

��
1

� x̄
b

< �.
The largest range [x̄

b

, h
b

��
1

] is obtained with x
b

= l
b

and h
b

= u
b

. The condition
becomes 1+↵

2

(u
b

� l
b

) � �
1

< �. If part 4 is possible (Figure 4), it is considered
too small if 1+↵

2

(u
b

� l
b

) � �
2

< � with a similar reasoning. Therefore, if � >
1+↵

2

� min(�
1

,�
2

), the parts 2 and 4 are always considered too small and the
algorithm performs a 2-way partitioning. Figure 7 plots the average repartition of
the branching types over all the instances. With ↵ = 1

4

,�
1

= 0.07(u
b

� l
b

),�
2

=
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0.13(u
b

�l
b

), beyond � = 1+↵

2

�min(�
1

,�
2

) = 0.555(u
b

�l
b

), the 2-way partitioning
(with either the guided dive or not) is always used. Slightly below this threshold,
the 3-way and 4-way partitionings are also unlikely to be used because x

b

and
h
b

would need to be very close to l
b

and u
b

. The key point is to use the 3-way
branching scarcely. Moreover, the 4-way branching is too prohibitive and should
not be used at all.

One parameter limits the depth at which IPOPT can be called, to prevent
spending too much time in the NLP solver. However, by creating 4 or 3 nodes
instead of only 2, IPOPT is called at more nodes overall. The sBB algorithm is
therefore more likely to find new incumbents. As a consequence, the number of
nodes gain is improved at the cost of wasting time. This bias would prevent a
fair comparison between the 2-way and multiway branching procedures. We add
a maximum number of times that IPOPT may be called. Depending on whether
the 2-way, 3-way or 4-way partitionings are used at the nodes, they may lead the
branch-and-bound to di↵erent scenarios, but the overall time spent in IPOPT will
be roughly the same. This helps comparing the partitionings more fairly.

Minimum node width for acceptance (% of ub-lb)
0 10 20 30 40 50 60 70 80 90 100

N
od
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0:5 +
,

2
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2-way 60% gap nodes gain
multiway 60% gap nodes gain

Fig. 5: Node gain for 60% primal gap and convergence with
(�

1

,�
2

) = (0.07, 0.13)

5 Conclusion

This paper has presented an adaptation of the guided dive for solving NLP prob-
lems to global optimality in a spatial Brand-and-Bound algorithm. We first mo-
tivated the original idea of using the incumbent to direct the dive even if it does
not belong to the current node. We showed which feasible solution to use if sev-
eral di↵erent feasible solutions are able to direct a dive. The heuristics described
were benchmarked in Couenne with a wide range of easy, medium size as well as
hard problems from the Coconut library. An insight of the results of the guided
dive for easy, medium and hard MINLP problems from the MINLPlib library was
presented.
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Minimum node width for acceptance (% of ub-lb)
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Fig. 6: Time gain for 60% primal gap and convergence with
(�

1

,�
2

) = (0.07, 0.13)

Fig. 7: Multiway branching repartition for (�
1

,�
2

) = (0.07, 0.13)

An adaptative multiway branching tailored for the guided dive has been de-
scribed and benchmarked. While the results of the guided dive for the 2-way par-
titioning are very encouraging without the need to fine tune the parameters, the
results for the multiway branching are more mitigated. A noticeable gain can only
be achieved if the parameters are somewhat benchmarked.

There is still room for improvement in the branching process. We focused on
the local branching around a known feasible solution, but all the known feasible
solutions still carry more information about the whereabouts of the other feasible
solutions. While most parameters in our heuristics need not be fine-tuned, one
may obtain better results if they could be adapted online.
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Appendix

See Table 6.
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