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PIV-based estimation of unsteady loads on a flat plate at
high angle of attack using momentum equation approaches

A. Guissart ¨ L.P. Bernal ¨ G. Dimitriadis ¨ V.E. Terrapon

Abstract This work presents, compares and discusses

results obtained with two indirect methods for the cal-

culation of aerodynamic forces and pitching moment

from 2D Particle Image Velocimetry (PIV) measure-

ments. Both methodologies are based on formulations

of the momentum balance: the integral Navier-Stokes

equations and the “flux equation” proposed by Noca

et al. (1999), which has been extended to the com-

putation of moments. The indirect methods are ap-

plied to spatio-temporal data for different separated

flows around a plate with a 16:1 chord-to-thickness ra-

tio. Experimental data are obtained in a water channel

for both a plate undergoing a large amplitude imposed

pitching motion and a static plate at high angle of at-

tack. In addition to PIV data, direct measurements of

aerodynamic loads are carried out to assess the qual-

ity of the indirect calculations. It is found that indirect
methods are able to compute the mean and the tem-

poral evolution of the loads for two-dimensional flows

with a reasonable accuracy. Nonetheless, both method-

ologies are noise sensitive and, the parameters impact-

ing the computation should thus be chosen carefully.

It is also shown that results can be improved through

the use of Dynamic Mode Decomposition (DMD) as a

pre-processing step.
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1 Introduction and motivation

Aerodynamic forces and moments are conventionally

measured by means of a load balance. However, this ap-

proach has some limitations, such as high relative errors

for small aerodynamic loads. Moreover, when the body

is moving, these devices measure not only the aero-

dynamic forces and moments but also the structural

response which contaminates the measurements (Ri-

val et al., 2009). For such cases, another option is to

calculate the loads directly from the flow field. This

calculation can be performed by using pressure sensi-

tive paint (McLachlan and Bell, 1995), Pitot tube wake

rakes (Jones, 1936) or pressure taps (Tropea et al.,

2007). Although these approaches have been proven

to be reliable and accurate, they also have limitations.

Their accuracy can decrease with decreasing airspeed,

they can be affected by zero drifting in time, they can be

limited in frequency sampling or they have an intrusive

effect, disturbing the flow (Tropea et al., 2007; Barlow

et al., 1999). An interesting alternative to these meth-

ods is to use Particle Image Velocimetry (PIV) (Adrian,

1991; Raffel et al., 2013) velocity fields to indirectly cal-

culate the aerodynamic loads.

A first methodology was proposed by Lin and Rock-

well (1996) who used the vorticity field computed from

PIV data to estimate the instantaneous lift. As the

method requires the knowledge of the entire vorticity

history, the PIV window should theoretically be infi-

nite if the vorticity is convected by the flow. Lin and

Rockwell (1996) circumvented this limitation by apply-

ing the formulation to an oscillating cylinder in a still

fluid, so that the vorticity remained confined in a finite

domain that could be captured by the PIV window.

The method was then extended by Noca et al. (1997)

to eliminate the domain size limitation. Derived from
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the integral form of the momentum equation applied

to a control surface surrounding the geometry of inter-

est, his formulation expresses the forces solely in terms

of the velocity field and its derivatives by re-writing

the pressure term. This approach requires an accurate

evaluation of the vorticity on the entire control surface,

including the region near the body. However, obtain-

ing the velocity field in the vicinity of geometries, espe-

cially moving ones, can be challenging due to reflections

of the laser sheet. To overcome this drawback, Noca

et al. (1999) proposed alternative approaches, where

the knowledge of the velocity and vorticity fields are re-

quired only on the contours of the control surface. These

formulations were used by Tan et al. (2005) to com-

pute the instantaneous forces on a cylinder. More re-

cently, Sterenborg et al. (2014) used the same method-

ology to estimate the unsteady loads on an airfoil with

an actuated flap.

In parallel to the work of Noca et al. (1999), Unal

et al. (1997) showed that the classical integral form of

the momentum equation can be directly used to es-

timate the loads on a body. In this case both con-

tour and surface integrals of the velocity and pressure

fields are required. Nonetheless, the pressure can be

obtained from the PIV data through the application

of the Navier-Stokes equations. This methodology has

been applied to numerous cases (van Oudheusden et al.,

2006; Kurtulus et al., 2007; Gharali and Johnson, 2014;

Villegas and Diez, 2014).

In the present work, the so-called “flux equation”

proposed by Noca et al. (1999) and the integral form

of the Navier-Stokes equations are applied to spatio-

temporal data obtained for the flow around a static

or pitching flat plate. The former has been here ex-

tended to the calculation of moments since the original

“flux equation” of Noca et al. (1999) had only been

formulated for forces. Although these approaches are

outwardly simple, several difficulties must be overcome

to ensure accurate results. First, the velocity cannot

be measured in shadow regions inherent to most PIV

setups, thus preventing the straightforward application

of the control volume approach. In the context of this

work, the missing data points are found by leveraging

the symmetry of the problem. As mentioned above, an-

other challenge of the methodology based on the inte-

gral formulation of the Navier-Stokes equations stems

from the fact that PIV measurements do not provide

the pressure field. Therefore, it must be indirectly deter-

mined from the velocity field. This can be achieved by

either integrating the pressure gradient calculated from

the velocity field through the Navier-Stokes equations

or by solving the pressure Poisson equation, as detailed

in the review paper of van Oudheusden (2013). The

latter approach has been used in several studies which

focus on the pressure field calculation from PIV (Gurka

et al., 1999; Dabiri et al., 2014; Laskari et al., 2016). In

the present work the pressure is required only along a

contour so that the former method is less costly and

has thus been chosen here.

As shown by David et al. (2009) and Gharali and

Johnson (2014), the velocity noise impacts the accu-

racy of the pressure calculation and thus of the force

estimation. Moreover, the quality of the results is also

affected by different parameters such as the location

and size of the PIV window, the spatio-temporal reso-

lution (David et al., 2009; Albrecht et al., 2013; Ghar-

ali and Johnson, 2014) or the type of flow. The present

work aims to extend these results by considering two

different PIV-based indirect load calculations and by

investigating the effect of several parameters. In partic-

ular, it analyses the aerodynamic loads, including the

pitching moment, for the flow around a flat plate in dif-

ferent configurations. First, a large-amplitude pitching

motion is imposed and three pivot axes are considered.

Note that this case is closely related to the work of

Gharali and Johnson (2014) who studied the dynamic

stall of an airfoil. In a second step, the flow around

a static plate at different angles of attack is analyzed,

a case also studied by Albrecht et al. (2013). Finally,

aerodynamic forces and moment obtained by the two

indirect methods are assessed by comparison to direct

measurements with a load balance.

This article is organized as follows. Section 2 sum-

marizes the mathematical background of the indirect

calculation methods and their implementation. It also

discusses different sources of error and proposes some

improvement strategies. Section 3 describes the spe-

cific applications considered and the experimental pro-

cedure. The results of the indirect load calculations

and the comparison with direct measurements are then

shown and discussed in Sect. 4. Finally, conclusions and

future work are presented in Sect. 5.

2 Methodology

This section describes the mathematical formulation for

both methodologies based on the integral Navier-Stokes

equations (inse) and the “flux equation” proposed by

Noca et al. (1999) (noca). The calculation of the pres-

sure required by the first method is also detailed and

the implementation of both methods is explained. Fi-

nally, Dynamic Mode Decomposition (DMD) is intro-

duced as a possible strategy for improving the quality

of the results.
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2.1 Indirect load calculations

The flows studied in this work being turbulent, only

statistical mean fields are considered (denoted by ¯̈). In

this context, averaging the different equations appear-

ing in both the inse and noca methods introduces a

new term, the Reynolds stress tensor u1iu
1
j (where ¨1

denotes fluctuations around the mean). Furthermore,

as the velocity field is obtained from 2D-PIV measure-

ments at low Mach number, only the two-dimensional

incompressible case is considered.

2.1.1 Load calculation based on the inse formulation

The indirect calculation of the aerodynamic forces and

moment is here based on the integral form of the Navier-

Stokes equations applied to a control surface S defined

by an external contour C8 surrounding the geometry of

interest (Unal et al., 1997). The average aerodynamic

force vector is expressed as

F i “´ dt

ż

S
ρui dS ´

¿

C8

pni dC

`

¿

C8

´

´ρuiuj ` τ ij ´ ρu1iu
1
j

¯

nj dC,
(1)

and the pitching moment Mz about point R, defined

positive nose up, is

Mz “´ dt

ż

S
ρuirkεik dS ´

¿

C8

pnirkεik dC

`

¿

C8

´

´ρuiuj ` τ ij ´ ρu1iu
1
j

¯

njrkεik dC,
(2)

where ρ is the constant density, ui the average veloc-

ity vector, p the average pressure, τ ij the average vis-

cous stress tensor, ri the location vector with respect

to point R and εij is the two-dimensional Levi-Civita

symbol. The above expressions contain both surface in-

tegrals over the control surface S and closed-path inte-

grals along its external contour C8. The vector ni rep-

resents the unit outward vector normal to the contour.

A schematic of the configuration is shown in Fig. 1.

Each term in the above expression can be calcu-

lated from the average velocity field ui obtained from

PIV measurements. In particular, the average viscous

stress tensor τ ij is computed from the average velocity

gradient

τ ij “ µ pBiuj ` Bjuiq , (3)

where the dynamic viscosity µ is constant. The average

pressure field p is generally unknown but can also be

derived from the average velocity field. Two approaches

can be considered, both based on the knowledge of the

average pressure derivatives calculated by using the av-

eraged Navier-Stokes equations:

Bip “ ´ρBtui ´ ρujBjui ` µB
2
jjui ´ Bju

1
ju
1
i. (4)

The first option is to solve the Poisson equation ob-

tained by taking the divergence of Eq. (4). Boundary

conditions of Neumann type can be applied by using

Eq. (4). The second option consists in integrating along

C8 the component of the pressure gradient Bip that is

tangential to the contour. Because the use of the pres-

sure Poisson equation increases the computational time

without improving results significantly (Albrecht et al.,

2012), the second option has been chosen here. Since

the integration path is closed, the average pressure com-

puted at the last point E (see Fig. 1) should be equal

to the initial value at point A, i.e., pE “ pA “ pinit.

In practice, a discrepancy between these two values is

typically observed because the PIV data are only avail-

able at discrete points and entail measurement errors.

Nonetheless, the integration error εp “ pA ´ pE can be

used to improve the pressure calculation.

The approach used here is based on the one pro-

posed by Kurtulus et al. (2007), who estimated the

pressure from the Bernoulli equation outside the vis-

cous wake (segments A-B-B1 and C1-C-D-E in Fig. 1)

and integrated Eq. (4) in the wake region (segment B1-

C1). The value obtained in C1 was then compared to

the one computed from the Bernoulli equation and the

discrepancy was redistributed with a linear weighting

along B1-C1. Here, Eq. (4) is used along the entire con-

tour C8 but the correction is only applied in the wake
region. The assumption that most of the error is gen-

erated in the wake (and then simply propagated along

the rest of the contour) seems reasonable since the edge

B-C is the zone where the spatio-temporal variations of

the velocity and pressure are the largest, and, thus, the

numerical integration of the pressure gradient is the

most challenging. Based on this assumption, the error

εp is simply removed from the computed value p along

edges E-D-C-C1. Similarly to Kurtulus et al. (2007), it

is assumed that the error εp increases linearly in the

wake (segment B1-C1) and the pressure is corrected ac-

cordingly. The wake is here defined as the region of

large-scale vorticity. In the context of this work, it is

identified by the Γ2 function (Graftieaux et al., 2001)

which provides the location of the large-scale vortex

boundary based on the topology of the velocity field.

This method was preferred to the one based on the

vorticity proposed by Kurtulus et al. (2007), as the ve-

locity field is less noisy than its spatial derivatives. The

value of the Γ2 function at a point P on the boundary
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Fig. 1: Schematic view of the control surface S and its

contours C8 and Cb around the geometry B of interest

is given by the integral over a small area A around P

Γ2 “
1

A

ż

MPA

“

pxM ´ xPq ˆ
`

uM ´ ũP
˘‰

¨ ez

}pxM ´ xPq}}uM ´ ũP
}

dA, (5)

where xM is the location of a point M that lies on the

surface A, and ez is the unit vector normal to the mea-

surement plane. Finally, uM is the velocity vector asso-

ciated to M and ũP is a local convection velocity around

P defined as ũP
“ 1{A

ş

A
u dA. The Γ2 function is com-

puted for each point along the edge B-C. The wake is

then identified as the region for which }Γ2} ą Γ thres
2 ,

where Γ thres
2 is a threshold value to be chosen.

To summarize, the pressure p is obtained in two

steps: first, the pressure is computed on C8 by inte-

grating the pressure gradient from A to E and by cal-

culating the error εp. Then the pressure distribution on

edge B-C is corrected in three steps: on C1-C, the error

εp is removed from the initially computed pressure; on

B1-C1, εp is removed linearly; and on B-B1, the initially

calculated pressure is not corrected.

2.1.2 Load calculation based on the noca formulation

In addition to the methodology described above, the

forces and pitching moment are also indirectly calcu-

lated by using one of the formulations proposed by Noca

et al. (1999). In particular, the present work uses the

two-dimensional version of the “flux equation” with

which forces expresses the forces as

F i “

¿

C8

´

γFt
ji ` γ

Fp
ji ´ ρujui ` τ ji ´ ρu

1
ju
1
i

¯

nj dC

´ dt

¿

Cb

ρnjujxi dC,
(6)

where tensors γFt
ij and γFp

ij are defined as

γFt
ij “ ´ ρBtuixj ,

γFp
ij “ ´ ρuixkωzεjk `

ρ

2
ukukδij ` ρxiBtuj

´ ρxkBtukδij ` xlBkτklδij ´ xiBkτkj

` ρxiBku1ku
1
j ´ ρxlBku

1
ku
1
lδij .

(7)

In Eqs. (6)-(7), xi is a location vector with respect to an

arbitrarily defined origin, Cb is the closed-path defining

the body boundary as shown in Fig. 1, δij is the Kro-

necker delta, and ωz is the average vorticity which can

be obtained from the average velocity gradient as

ωz “ Blumεlm. (8)

This formulation can be derived from the Navier-Stokes

momentum integral equations, where γFp
ij represents

the pressure contribution, while the sum of γFt
ij and

the last integral in Eq. (6) corresponds to the temporal

term. Note that unlike Eq. (1), Eq. (6) enables the cal-

culation of loads by using only closed-path integrals and

does not need the knowledge of pressure. Finally, the

last term in Eq. (6) requires the spatio-temporal evolu-

tion of the body location. This can be difficult to obtain

directly from PIV measurements due to reflections ap-

pearing near the surface. Nonetheless, in cases of rigid

body motions, these terms can be directly expressed in

terms of the overall body kinematics (Noca et al., 1999).

The body displacement can be decomposed into a rigid

translation at velocity uti and rotation around axis z

at angular velocity 9αr
z (defined positive clockwise). The

body motion is then

ubi “ uti ´ 9αr
z px

r
k ´ xkq εik, (9)

where xri is the position of the center of rotation. Fi-

nally, the integral along Cb in Eq. (6) can be re-written

as

´dt

¿

Cb

ρnjujxi dC “ ρBdtu
t
i ` ρBxrjdt 9αrεij , (10)

where B is the area of the body profile, and xri the

location vector of the body’s centroid defined with re-

spect to the pivot point. The term requiring the spatio-

temporal evolution of the body location is thus calcu-

lated from the known kinematics without using PIV

measurements.

Starting from Eq. (2), a similar formulation to the

one described by Eqs. (6)-(7) can be derived for the

calculation of moment (the reader can find the com-

plete derivation in App. A). Similarly to the forces, the

moment can be expressed solely in terms of contour in-

tegrals. However, the rewriting of the temporal term
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consists partly of an integral along the body surface in-

volving the vorticity (see App. A), which is very difficult

to compute accurately from PIV data. In this context,

it is better to keep the temporal term as a surface inte-

gral. Therefore, the pitching moment around R is here

calculated by rewriting only the pressure term and is

expressed as

Mz “´ dt

ż

S
ρuixkεik dS `

¿

C8

niγ
Mp
i dC

`

¿

C8

´

´ρuiuj ` τ ij ´ ρu1iu
1
j

¯

njxkεik dC,
(11)

where the vector γMp
i represents the pressure contribu-

tion and is defined as

γMp
i “´

ρ

2
xkxkBtujεij ´

ρ

2
xkxkωzui

`
ρ

2
ukukxjεij `

1

2
xkxkBlτ ljεij

´
ρ

2
xkxkBlu1lu

1
jεij .

(12)

Note that the origin must be defined at point R, so

that ri “ xi. To estimate the pitching moment about

a different point, the contribution of forces calculated

by Eq. (6) have to be added to the value provided by

Eq. (11).

2.2 Implementation

The different formulations must be discretized in order

to be applied to discrete PIV data. For both inse and

noca methods, spatial derivatives are only required

along the contour C8. They are calculated by using cen-

tral finite difference schemes of fourth order for the first

spatial derivatives and of second order for the second

spatial derivatives. The temporal derivatives Btui ap-

pearing in the noca methodology are computed with

a fourth order central scheme.

The average pressure needed for the inse method-

ology is calculated by integrating the average pressure

gradient obtained from Eq. (4) along the closed path

C8 as illustrated in Fig. 1. The integration path starts

at point A where the pressure is chosen to be pinit and

goes along C8 counterclockwise until point E “ A. For

each of the N points, a relation between the pressure

and its derivatives can be written by using a finite differ-

ence scheme. To avoid an odd-even decoupling, a non-

symmetric third order scheme is used for all points ex-

cept the corners A, B, C, D and E, where a third order

forward/backward scheme is used. This discretization

can be expressed as a system of N equations that is

solved for the N unknown pressure values. Once this

system is solved, the pressure is corrected according to

the methodology described in Sect. 2.1.1, the correction

requiring the knowledge of the function Γ2 on edge B-

C. To be more general, Γ2 is calculated on the entire

surface S by applying Eq. (5) in which A is a square

of length l. It has been demonstrated that length l has

no significant impact on vortex detection (Graftieaux

et al., 2001).

Finally, the integrations on the contour C8 and sur-

face S appearing in Eqs. (1), (2), (6) and (11) are per-

formed by using the rectangle rule.

2.3 Removing noise by using DMD

Results can be improved through a pre-processing step

that decreases the noise level in measurements. This

was shown by Charonko et al. (2010) who used Proper

Orthogonal Decomposition (POD) to improve the esti-

mation of the pressure field obtained from PIV. Alter-

natively, a DMD approach can be used. In this case, the

spatio-temporal data is decomposed into spatial modes

φi oscillating at a single complex frequency λi with

corresponding initial amplitude ai (Schmid, 2010). The

original data fpx, y, tq can thus be written as

f px, y, tq “
K
ÿ

k“1

akφk px, yq exp pλktq , (13)

where K is the total number of modes. To decrease

the noise in ui and u1iu
1
j , these quantities are first de-

composed by using DMD. The modes are then sorted

with respect to their initial amplitude ak and only the

first few modes are used to reconstruct the fields. In

other words, the sum in Eq. (13) is truncated, keep-

ing only the most significant modes. The reconstructed

fields are therefore only an approximation of the initial

fields. They are used here to compute the aerodynamic

loads.

The accuracy of this reconstruction depends not

only on the number of modes used but also on the com-

plexity of the initial data. As the flow considered here

is expected to be periodic with a few dominant frequen-

cies/modes corresponding to the shedding/pitching fre-

quency and its harmonics, a few modes should be suf-

ficient to obtain a good approximation. Note that the

spatio-temporal resolution of the initial data should be

high enough to obtain relevant modes.

3 Flow configurations and experimental setup

The two indirect load calculation methods are applied

to three different cases of unsteady flow around a plate.



6 A. Guissart et al.

As large angles of attack are considered, the flow is mas-

sively separated and unsteady, which represents a major

challenge for the indirect methods. The three cases and

their specificities are first discussed. In a second step,

the experimental setup is described.

3.1 Description of the different cases

The first case considers a forced pitching oscillation

with a large amplitude. The objective is to assess the

ability of the indirect methods to deal with moving bod-

ies. A sinusoidal pitching motion α “ α`∆α sin p2πftq

is imposed, with a mean angle of attack α “ 0˝ and

an amplitude ∆α “ 30˝. The reduced frequency k “

πfc{U8 is 0.2 corresponding to the maximal reduced

frequency studied by Sterenborg et al. (2014). Three

pivot axes are considered: at mid-chord and at the lead-

ing and trailing edges. The Reynolds number is Re “

U8c{ν “ 2 ¨ 104, where U8 is the freestream velocity,

and ν the kinematic viscosity. The imposed pitching is

used to synchronize the PIV apparatus with the motion

of the plate so that several PIV frames can be obtained

at the same specific phase of the motion. Consequently,

the velocity field can be phase-averaged.

The second case corresponds to a static plate at two

different angles of attack, 30˝ and 45˝, and a Reynolds

number Re “ 4 ¨ 104. As the shedding is not perfectly

periodic, it cannot be used to synchronize the PIV sys-

tem. Moreover, the sampling frequency of the apparatus

is too low to ensure a sufficient resolution for a single

cycle. Therefore, only the mean flow is considered here.

The objective is to assess whether the indirect load cal-

culations are able to predict the mean aerodynamic co-

efficients based on the mean velocity field. More specif-

ically, in this particular case, the averaging operation

in inse and noca formulations can be understood as

time-averaging, or more precisely an ensemble average

over all PIV fields.

The third case attempts to alleviate the lack of ref-

erence for phase-averaging by forcing the periodic shed-

ding at a given frequency. To this end, a sinusoidal

pitching motion α “ α`∆α sin p2πftq with a very small

amplitude ∆α is imposed around the mean angle of at-

tack α. The pivot axis is located at the center of the

plate and the frequency is chosen to be as close as possi-

ble to the mean shedding frequency of the static plate.

The PIV system can then be synchronized with the

forcing frequency without strong alteration of the nat-

ural flow dynamics compared to the static plate (Lam

and Leung, 2005). PIV velocity fields can therefore be

obtained at selected phases and phase-averaging can

be applied to analyze the time response of the veloc-

ity field and aerodynamic forces and moment within a

cycle. Here again the Reynolds number is Re “ 4 ¨ 104

and both 30˝ and 45˝ are used as mean angles of attack.

The imposed amplitude ∆α around the mean angle is

0.77˝ for the lowest mean incidence and 1.33˝ for the

highest. In both cases, the non-dimensional frequency,

i.e., the Strouhal number, St “ fc sinα{U8 is 0.155,

where f is the forcing frequency.

3.2 Experimental setup

The different experimental measurements are conducted

in the low-turbulence free-surface water channel facil-

ity at the University of Michigan (Vandenheede et al.,

2012). The freestream velocity ranges from 5 cm{s to

55 cm{s with a turbulence intensity of about 1%. The

channel test cross-section has dimensions 61 cmˆ61 cm

as shown in Fig. 2, which corresponds to 8c ˆ 8c. The

model is a stainless-steel flat plate with 7.6 cm chord

length spanning the cross-section of the facility. The

plate thickness is 4.7 mm and the leading and trail-

ing edges are rounded with radii half the plate thick-

ness. The plate is mounted vertically in the water chan-

nel and the immersed span corresponds to 7.6c, as de-

picted in Fig. 2a. The distance between the model and

the bottom wall of the test section is about 3 mm or

0.04c. The water channel bottom wall boundary layer

thickness at the plate location is around 2.5 cm, ap-

proximately three times larger than the gap between

the plate and the bottom wall. The two freestream ve-

locities used here are 26 cm{s and 52 cm{s, which cor-

respond to Re “ 2 ¨ 104 and 4 ¨ 104, respectively. At

these flow conditions the water surface does not de-

form significantly and, therefore, the free surface acts as

a symmetry plane suppressing three-dimensional wing

tip effects. Similarly the small gap compared to the

bottom wall boundary layer thickness minimizes three-

dimensional wing tip effects at the bottom wall. It fol-

lows that PIV flow measurements at the center plane

are not significantly affected by endwall effects, which

for unsteady flow phenomena may reach approximately

one chord away from the walls (Gardner et al., 2014).

Unsteady velocity fields are obtained through PIV

measurements. A double-pulsed Nd-YAG laser (Spec-

tra Physics PIV 300) illuminates a horizontal plane lo-

cated at 3.7c from the channel bottom, i.e. around the

mid span of the plate, as shown in Fig. 2a. The water

channel is seeded with 3 µm titanium dioxide particles

and images are acquired by a digital camera (Cooke

Corp. PCO.4000) equipped with Micro-Nikkor 105 mm

lens which leads to a magnification of approximately

18 pixels{mm. The maximum acquisition frequency is

1 Hz, which precludes the acquisition of more than one

image per period for some of the cases described above.
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Fig. 2: Schematic views of the plate mounted in the

water channel. The seven small discs on the left of the

plate represent the location of the dye rake

Images are post-processed by using an in-house code.

The particle displacement, and thus the velocity, are de-

termined in multi-passes through cross-correlation anal-

ysis. The first low-resolution and second high-resolution

passes are performed by using an interrogation window

size of 64ˆ64 pixels and 32ˆ32 pixels, respectively. The

particle displacement is set to 8 pixels at the freestream

velocity. Assuming an accuracy of 0.1 pixel (Raffel et al.,

2013), the uncertainty on the velocity is thus 1.25% of

the freestream velocity. Two filters are then applied to

remove outliers: a median filter based on spatially adja-

cent values and a 3´ σ filter based on a pre-computed

mean and standard deviation at one particular point.

After post-processing, PIV fields are obtained on a carte-

sian grid with a spacing of c{85 from which a window

Smax of size 2.4cˆ2c is extracted. This window, shown

in Fig. 2b, corresponds to the largest window on which

the indirect calculation of loads can be applied.

For the second test case, a series of 200 snapshots

are taken at a frequency lower than the shedding fre-

quency. As these images do not correspond to a spe-

cific phase, the velocity field is averaged to obtain the

mean flow, as explained above. For the first and third

cases, the pitching motion is imposed by a rotary stage

(Velmex B4872TS Rotary Table) with an accuracy of

0.0125˝. The laser pulses are then synchronized with

the kinematics in order to acquire data at a specific

phase for phase-averaging. Two hundreds PIV images

are collected for one given phase. The experiment is

then repeated for subsequent values of the phase, up to

a total of 20 phases uniformly distributed within the pe-

riod of oscillation. A convergence study on the number

of snapshots can be found in App. B.

As previously mentioned, part of the flow around

the plate lies in the shadow region. To obtain the veloc-

ity field in that area, the experiment is repeated with

the plate mounted symmetrically with respect to the

freestream direction. For the first case, it has been ver-

ified that the symmetrical pitching motion leads to a

symmetrical flow with respect to the freestream direc-

tion (Godoy-Diana et al., 2008). Therefore, the informa-

tion on one side of the plate is sufficient. The complete

velocity field at a specific plate incidence α is thus built

from two symmetrical configurations: one with α ą 0 to

measure the velocity field above the plate and another

α ă 0 to obtain the velocity field below it. Since data

are missing in the shadow area only, regions exist where

the velocity field is obtained for the two configurations.

These overlap regions are used to align the two sets of

results, the horizontal and vertical shifts between them

being determined by finding the best match in veloc-

ity magnitude. The two sets of results are then stitched

together, the velocity field on the overlap regions being

a weighted-average of the results obtained for the two

incidences.

Dynamic Mode Decomposition is applied as a pre-

processing step to the small amplitude pitching case

only. In the case of the plate undergoing large oscil-

lations, the time resolution of the PIV fields was not

sufficient to allow a useful decomposition. By defini-

tion, DMD is applied to unsteady data and is thus not

applicable in the context of the static plate since only

the time-averaged velocity is available.

In addition to PIV measurements, loads are mea-

sured directly to compare with the indirect calcula-

tion. A six-components ATI Mini 40 force/torque trans-

ducer mounted on top of the plate is used for that

purpose. Expressed in terms of non-dimensional lift,

drag and pitching moment coefficients for Re “ 20 000,

the sensor resolution is 1.3 ¨ 10´2 and 4.3 ¨ 10´3 for

forces and pitching moment, respectively. For Re “

40 000, these values are four times lower. The aero-

dynamic loads are obtained by subtracting from the

sensor output structural static and dynamic loads due

to gravity and inertia of the model, respectively. Mea-



8 A. Guissart et al.

sured forces and moments are filtered with a cutoff fre-

quency of 10 Hz and time or phase-averaged. Forces

and moments coefficients are non-dimensionalized, re-

spectively, by 1{2ρU2
8clw and 1{2ρU2

8c
2lw, where lw is

the length of the plate under water. The moment is

measured referenced to the pitching axis and plate cen-

ter for the pitching and steady state cases, respectively.

The pitching moment coefficient about the plate cen-

ter is calculated a posteriori. The direct load measure-

ments results include endwall effects at the water sur-

face and at the channel’s bottom wall. These effects are

small and the results agree well with data reported in

the literature for two-dimensional steady and unsteady

conditions (Fage and Johansen, 1927; Granlund et al.,

2013).

Finally, dye visualization is used to obtain a quali-

tative overview of the flow. The apparatus consists of a

dye rake made of seven horizontal dye streams that are

uniformly distributed over a distance of 2c, as shown in

Fig. 2b. The corresponding streaklines are used to iden-

tify three-dimensional effects, as discussed in Sect. 4.4.

4 Results

The two indirect load calculation methods are applied

to the different cases described in Sect. 3.1 to calculate

the corresponding lift, drag and pitching moment coef-

ficients, the latter being calculated about the half-chord

point. First, in Sect. 4.1, parameters appearing in both

methodologies are varied and their impacts are stud-

ied in the context of the large amplitude pitching case.

Then, a particular set is chosen, and the accuracy of

the inse and noca methods are compared for the three

test cases. The results are presented in Sects. 4.2, 4.3

and 4.4.

4.1 Impact of parameters

The large pitching amplitude case is used first to study

the impact of user-defined parameters. This includes

the choice of the origin for the location vector xi in the

noca method, the control surface S required to apply

both formulations, and the threshold value Γ thres
2 for

the pressure correction in the inse methodology. The

pressure contribution to the loads has been shown to

be sensitive to the choice of parameters (Jardin et al.,

2009; David et al., 2009; Gharali and Johnson, 2014).

The same conclusions are drawn in the present work,

whether the pressure calculation is performed directly

for inse, or through γFp and γMp for noca.

To highlight the effect of S, the three control sur-

faces depicted in Fig. 3 and differing by the location xd

III

III

c

2c

2c

xd = 1.2c

xd = c

xd = 0.8c

0.15c

Fig. 3: Schematic view of the location of the control

surfaces with respect to the plate. The solid lines de-

fine the border of the main contour chosen to compare

the indirect methods and the dashed lines denote the

additional main contours used in the parameter study.

The small discs denoted I, II and III represent the lo-

cations considered for the origin in the noca method

of their downstream edge B-C (see Fig. 1) are chosen.

The maximal value of xd is limited by the available PIV

window Smax (see Fig. 2b). Moreover, it is known that

the estimated loads given by the indirect formulations

applied on two adjacent contours C8 can vary signif-

icantly. In order to limit that effect, the aerodynamic

coefficients obtained in this work are presented in terms

of statistics of the non-dimensional loads calculated on

several contours. More specifically, each of the three

control surfaces differing by their xd is associated to a

further twelve surfaces that are up to 0.15c narrower, as

illustrated in Fig. 3 by the shaded zones. The aerody-

namic coefficients presented for the surfaces defined by
xd “ 0.8c, c and 1.2c are thus calculated by ensemble

averaging the results obtained with the corresponding

thirteen control surfaces. In addition, the standard de-

viation associated with these different surfaces is pre-

sented as it measures the sensitivity of the results to

S. Additionally, as depicted by the dark small discs ap-

pearing in Fig. 3, the location of the origin defining xi
in the noca method is set at the middle of the shaded

zones. To demonstrate the influence of this parameter,

results are also compared to those obtained with two

other origin locations, as depicted by the white small

discs in Fig. 3. Finally, the impact of Γ thres
2 is investi-

gated by varying Γ thres
2 using the values 0, 0.025, 0.05

and 0.1.

Although the results obtained by the noca method

should be independent of the choice of the origin, they

depend quite strongly on it in practice. This impact is

illustrated by the calculation of lift and drag for the

large amplitude pitching motion. Figure 4 shows the

coefficient time responses calculated for three different
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origin positions (numbered I to III in Fig. 3) and com-

pares them to the direct load measurements. For both

lift (Fig. 4a) and drag (Fig. 4b), placing the origin in

the wake (I or III) leads to results less noisy than those

obtained when the origin lies on the center of the plate

(II). Moreover, location III leads to a reduction of the

first jump in drag and an increase in the amplitude

of the second one compared to location I. Note that a

vortex core is located near point III at the phase cor-

responding to the first jump (see Sect. 4.2). Assuming

that the largest errors occur in the wake region where

vorticity is large, these results indicate that the contri-

bution from this region is smaller when the distance }x}

in Eqs. (7) and (12) is small. Having an origin in the

critical region thus reduces the overall error and pro-

vides a better estimation of the loads. Consequently, it

should be possible to further improve the noca results

by adapting the location of the origin of x to the flow

topology.

The effects of the size and location of S for the inse

approach have been previously studied. In particular,

David et al. (2009) and Gharali and Johnson (2014)

demonstrated that the load coefficients are not very sen-

sitive to the location of edges A-B, C-D and D-E (see

Fig. 1 for the definition) as long as they are located

outside high vorticity regions. The same authors also

showed that only the drag coefficient is very sensitive

to the location of the downstream boundary B-C, the

variation of results increasing when a vortex center is

close to this edge. The weak impact of the upper, lower

and upstream edges is also observed in the present work

(results left for conciseness). To decrease the sensitivity

of the drag to the downstream boundary, Gharali and

Johnson (2014) proposed to increase the size of the PIV

window in order to find a location for the downstream

boundary far from vortical structures. However, the re-

sulting decrease in spatial resolution becomes problem-

atic when the reduced frequency is k ą 0.05. In the

present case, such a large field of view is not achiev-

able and edge B-C has to be located in a region of high

vorticity. Figure 5 shows the lift and drag coefficients

computed with the inse method by using the three dif-

ferent control surfaces defined in Fig. 3. In all cases,

the pressure correction is applied to the entire edge B-

C (i.e., Γ thres
2 “ 0). The insensitivity of the lift to the

downstream boundary is demonstrated in Fig. 5a. Fig-

ure 5b indicates that having the edge B-C closer to the

body improves the results as the discontinuous jumps

observed between 3T{8 and T{2, and between 7T{8 and T

are in this case much smaller. The same optimal loca-

tion was reported by David et al. (2009) who suggested

that it minimizes the error propagation in the pressure

calculation step. However, this proposed explanation

does not apply in our case because the pressure correc-

tion technique is different. Finally, additional studies of

the present data (left out for conciseness) demonstrate

that the edge B-C cannot be located too close to the

body because the sensitivity to a small change in the

surface location increases in this case. Note that the

same behavior is observed for the noca method.

For the inse method, the amplitude of the jumps

observed in Fig. 5b can be decreased by applying the

linear correction of pressure only in the region of large-

scale vorticity (edge B1-C1 in Fig 1) as defined by Γ thres
2 .

Varying Γ thres
2 and S, it is found that applying the cor-

rection only on a portion of edge B-C decreases the

height of the discontinuous jumps in the drag response.

This effect can be visualized by comparing results shown

in Fig. 5b to those in Fig. 6b where Γ thres
2 has been set

to 0.05. The systematic analysis of this impact reveals

that a trade-off between the border location xd and the

threshold Γ thres
2 should be made to minimize the am-

plitude of oscillations: the farther away from the plate

the border B-C lies, the higher Γ thres
2 should be.

Based on these findings, the following results have

been obtained using a control surface of 2cˆ2c, Γ thres
2 “

0.05 and the origin located in the wake, at a distance

0.925c from the plate center.

4.2 Large amplitude pitching plate

The time response of the load coefficients during a com-

plete cycle of the large amplitude motion with the pivot

axis located at the plate center are shown in Fig. 6

and compare rather well with results obtained by di-

rect measurements. In particular, the loads are very

well estimated during the middle stages of the upstroke

and downstroke, i.e. during the growth of the leading

edge vortex, but their amplitudes are underestimated

for other parts of the cycle, i.e. when the plate is stalled.

Similar results were obtained by Gharali and Johnson

(2014). Both the drag and moment coefficients show

discontinuous jumps, whose amplitudes depend on the

method and the chosen parameter values. Note that the

symmetric stitching of PIV fields is clearly visible in the

time evolution of the coefficients. The results obtained

for the two other pivot locations are not depicted here

but exhibit a similar behavior with a better accuracy

in load response amplitudes. Note that for these cases,

the last term in Eq. (6) contributes to the lift coef-

ficient. However, this contribution corresponds to less

than 0.3% of the maximum lift and the impact of the

body motion can then be considered as negligible.

As previously discussed, the lack of accuracy vis-

ible in Fig. 6 can be linked to vortex shedding and

the impact of vortices on the integration path in the
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Fig. 4: Impact of the origin defining the location vector x on the evolution of the lift and drag coefficients within a

pitching period T for large amplitude plate oscillations about a pivot axis at the plate center: indirect calculations

using noca with different origin locations (symbols) and direct measurements (thick continuous line). The error

bars correspond to the sensitivity of the results to the control surface used in the indirect methods
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Fig. 5: Impact of the control surface location on the evolution of the lift and drag coefficients within a pitching

period T for large amplitude plate oscillations about a pivot axis at the plate center: indirect calculations using

inse with Γ thres
2 “ 0 and different edge B-C positions (symbols) and direct measurements (thick continuous line).

The error bars correspond to the sensitivity of the results to the control surface used in the indirect methods
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Fig. 6: Evolution of aerodynamic coefficients within a pitching period T for large amplitude plate oscillations about

a pivot axis at the plate center: indirect calculations (symbols) and direct measurements (thick continuous line).

The error bars correspond to the sensitivity of the results to the control surface used in the indirect methods
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wake, i.e. edge B-C in Fig. 1. Figure 7 shows the veloc-

ity and vorticity fields at phases corresponding to the

beginning of the downstroke (shaded area in Fig. 6).

The field of view of the snapshots in Fig. 7 corresponds

to the control surface S. The large leading edge vortex

still located near the plate in Fig. 7a is convected down-

stream and crosses the right edge of Figs. 7b and 7c,

which corresponds to the integration path in the wake.

The comparison of aerodynamic coefficients response in

the gray parts of Fig. 6 with the flow fields depicted in

Fig. 7 shows that the accuracy of the load estimation

decreases with the increase of flow disturbance on the

downstream edge of S (see Fig. 7a), a jump in the es-

timation appearing when vortices cross this edge (see

Fig. 7b and 7c). The increased measurement noise asso-

ciated with high vorticity regions probably induces an

increase of numerical errors and finally a less accurate

estimation of load responses.

Time-averaged and root-mean-square (RMS) statis-

tics of the aerodynamic coefficients are summarized in

Tab. 1 and should be analyzed in light of Fig. 6. The

mean lift and moment coefficients are both close to zero.

This result is expected as the pitching motion is sym-

metric with respect to the freestream but also because

two velocity fields distant in time by half a cycle are

built from the same PIV snapshots, as explained in

Sect. 3.2. The mean and RMS of the drag coefficient are

generally lower than expected because of the underesti-

mation of their response amplitude. Similarly, the RMS

value of the lift coefficient estimated by both indirect

methods is slightly lower than the direct measurements.

Finally, the RMS value of the moment coefficient is ar-

tificially improved by the presence of the jumps in its

time response.

In conclusion, both indirect methods are able to es-

timate reasonably well the aerodynamic coefficients of a

flat plate undergoing large amplitude pitching motion,

the noca method being more sensitive to noise even if

the user-defined parameters are carefully chosen. How-

ever, the estimated load responses must be considered

with caution for detached flows especially when a vor-

tex crosses the downstream edge of the control surface.

4.3 Static plate

The mean load coefficients calculated for the static plate

by using indirect methods are shown in Tab. 2, together

with the mean results obtained from direct measure-

ments. Note that, due to the time-averaging used in

this case, the major contribution to the term u1iu
1
j stems

from the unsteady flow dynamics (i.e., vortex shedding)

and not from the turbulence itself. As described above,

Pivot at leading edge

cl crms
l cd crms

d cm crms
m

inse 0.03 1.45 0.48 0.64 0.00 0.40
noca 0.03 1.45 0.50 0.65 0.00 0.37
Direct ´0.01 1.57 0.54 0.68 ´0.01 0.24

Pivot at center

cl crms
l cd crms

d cm crms
m

inse 0.01 1.36 0.49 0.63 0.01 0.22
noca 0.01 1.36 0.54 0.75 0.00 0.26
Direct ´0.05 1.56 0.60 0.75 ´0.01 0.25

Pivot at trailing edge

cl crms
l cd crms

d cm crms
m

inse ´0.02 1.35 0.57 0.68 0.01 0.27
noca ´0.01 1.36 0.61 0.77 0.01 0.23
Direct ´0.02 1.55 0.58 0.74 0.00 0.22

Table 1: Mean and RMS values of aerodynamic coeffi-

cients for large amplitude plate oscillations around dif-

ferent pivot axes at Re “ 2 ¨ 104 computed with the in-

direct methods and obtained from direct measurements

Angle of attack 30˝

cl cd cm
inse 1.00˘ 0.00 0.56˘ 0.04 0.12˘ 0.01
noca 1.00˘ 0.00 0.57˘ 0.04 0.12˘ 0.01
Direct 0.99 0.63 0.12

Angle of attack 45˝

cl cd cm
inse 1.00˘ 0.01 1.12˘ 0.07 0.15˘ 0.01
noca 0.99˘ 0.02 1.13˘ 0.07 0.16˘ 0.02
Direct 1.01 1.09 0.12

Table 2: Mean values of aerodynamic coefficients for

static plate at 30˝ and 45˝ at Re “ 4 ¨ 104 computed

with the indirect methods and obtained from direct

measurements. The standard deviations indicated for

the indirect calculation represent the sensitivity of the

results to the choice of control surface S

the standard deviation is computed from the results

obtained by using different control surfaces S.

Albrecht et al. (2013) studied a similar flow by us-

ing the inse and noca approaches. Their results were

shown to be highly sensitive to the choice of indirect

approach. They concluded that noca should be used

for the lift, while inse provides better results for the

drag. Moreover, a high sensitivity to the location of S
was reported. The present work leads to different con-

clusions. First, the results show that the two indirect

methodologies can provide a reasonably good estima-

tion of the mean aerodynamic coefficients for both an-

gles of attack. In particular, the lift is predicted with a

maximal relative error of about 2%. The relative error

on the mean drag coefficient is higher for both method-
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(a) 0.31T and α “ 28.2˝ (b) 0.36T and α “ 23.6˝ (c) 0.41T and α “ 16.6˝

Fig. 7: Phase-averaged PIV velocity and vorticity fields at three phases in the downstroke of the large amplitude

pitching cycle. The red and blue fields correspond, respectively, to positive and negative vorticity, i.e. counter-

clockwise and clockwise vortices. The field of view corresponds to the surface of reference for inse and noca

methods

ologies with a maximum of 13% at an angle of attack

of 30˝. The highest relative error is found to be 25% for

the pitching moment at an angle of attack of 45˝. How-

ever, it should be considered in light of the relatively

small average value of this coefficient. Finally, the sen-

sitivity to the control surface is low and similar for the

two methods, as shown by the low standard deviations.

4.4 Small amplitude pitching plate

The methods are now applied to the small amplitude

pitching cases. The response of the phase-averaged lift

and drag coefficients during a pitching cycle is shown in

Figs. 8a and 8b for an angle of attack of 30˝. Results for

an incidence of 45˝ are not shown here but exhibit sim-

ilar behavior and the same conclusions can be drawn.

Table 3 shows the mean lift, drag and pitching moment

coefficients. The comparison of results obtained by di-

rect measurements for the static and the small ampli-

tude pitching plate (see Tabs. 2 and 3) shows that the

imposed motion does not significantly impact the flow

dynamics since the relative difference between the mean

coefficients is below 10%.

As shown in Figs. 8a and 8b, the responses of the

estimated lift and drag coefficients are very noisy. Only

global trends can be seen for the lift coefficient com-

puted by both the noca and inse methods, the noise

in the drag response is even higher, to the point where

only the mean drag has a meaningful value. The mo-

ment response is not shown here but is very similar to

that of the drag. Additionally, the large error bars in-

dicate a strong sensitivity of the results to the choice

of the control surface. However, despite the noise in the

Angle of attack
30˝ ˘ 0.77˝ 45˝ ˘ 1.33˝

cl cd cm cl cd cm
inse 1.15 0.66 0.10 1.10 1.12 0.10
noca 1.15 0.68 0.11 1.09 1.11 0.10
Direct 1.08 0.69 0.13 1.07 1.15 0.12

Table 3: Mean values of aerodynamic coefficients for

small amplitude plate oscillations around a mean angle

of attack of 30˝ and 45˝ at Re “ 4 ¨ 104 computed with

the indirect methods and obtained from direct measure-

ments. Results are shown for the original data (without

DMD)

load responses, the mean coefficients are well approxi-

mated, as shown in Tab. 3.

As shown by David et al. (2009), these unsatis-

factory responses can be partially explained by three-

dimensional effects caused by the massive flow separa-

tion. Figure 9 shows pictures acquired with dye visu-

alization. As the snapshots consist in side views of the

plate, they depict flow in the chordwise and spanwise

directions and can demonstrate the existence of three-

dimensional effects. Three plate configurations are con-

sidered: the plate is first aligned with the flow (see

Fig. 9a) and then small and large amplitude pitching

motions are imposed (see Figs. 9b and 9c). While the

flow is clearly two-dimensional at zero incidence (see

Fig. 9a), important three-dimensional structures are

observed for the small amplitude case (see Fig. 9b).

Moreover, the flow varies strongly from one shedding

period to the next and the shedding frequency fluctu-

ates slightly in time, as clearly observed in flow visu-

alization movies and direct measurements. The lack of
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Fig. 8: Evolution of lift and drag coefficients within a pitching period T for small amplitude plate oscillations

around a mean angle of attack of 30˝ with and without DMD pre-processing: indirect calculation (symbols) and

direct measurements (thick continuous line). The error bars correspond to the sensitivity of the results to the

control surface used in the indirect method

(a) Static at 0˝ (b) Small pitching motion around 45˝ (c) Large pitching motion around 0˝

Fig. 9: Dye visualization for three cases similar to the ones considered in this study at Re “ 1.8 ¨ 104. Side view:

the flow is from left to right and the darker region corresponds to the plate

coherence between the snapshots induces noise in the

ensuing averaged PIV fields. As a consequence, the two

sets of data for the top and bottom sides of the plate do

not match well in the overlapping regions, introducing

additional noise in the velocity field during the stitching

phase. These different noise contributions can explain

why the application of inse and noca methods leads to

the unsatisfactory results depicted in Figs. 8a and 8b.

A convergence study has been performed on the num-

ber of snapshots that are averaged to compute the PIV

flow fields at each phase. The results shown in App. B

demonstrate that increasing the number of snapshots

decreases the noise in the estimated time responses of

coefficients. Therefore, it would be possible to further

improve the results by acquiring a higher number of

PIV images at each phase. Finally, as shown in Fig. 9c,

the flow is much more two-dimensional for the large am-

plitude case, the coherence of the flow along the span

being enforced by a more energetic pitching motion.

This explains why better load responses are obtained

in this case.

In order to reduce the noise in the velocity field, the

phase-averaged fields are pre-processed, i.e. filtered by

DMD, where only the first three modes are retained to

approximate the original fields. These modes are cho-

sen as explained in Sect. 2.3 and correspond to the
mean flow, the shedding/pitching frequency and its first

harmonic. This pre-processing step leads to smoother

responses, as shown in Fig. 8c for the lift coefficient.

However, several discrepancies remain, such as the ex-

trema obtained with the noca method that seem to be

slightly shifted in phase compared to the direct mea-

surements. Note that this shift can also be observed

in Fig. 8a, i.e. without the filtering step. Finally, the

DMD pre-processing improves results for lift but not

for drag and moment coefficients (not shown here), the

noise in the PIV fields being too high to determine the

frequency content of their responses.

5 Conclusions

Two indirect methods based on momentum balance

applied to a control surface surrounding a body have

been applied to estimate the aerodynamic forces and

pitching moment from 2D-PIV measurements. The first
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approach uses directly the integral formulation of the

Navier-Stokes equations, while the second is based on

the so-called “flux equation”, proposed by Noca et al.

(1999) for the estimation of forces and extended here

to the calculation of moments. These indirect formu-

lations have been applied to three different unsteady

flows around a plate: large amplitude pitching around

0˝, static at high angle of attack and small amplitude

pitching around a high angle of attack. In order to as-

sess the quality of the indirect calculations, the results

have also been compared to direct load measurements.

It has been shown that the mean loads can be es-

timated with satisfactory accuracy for both static and

dynamic cases, by using either indirect methodology.

However, the time response of unsteady coefficients is

more difficult to capture and the accuracy of the esti-

mation varies with the type of flow considered. As pre-

viously shown by David et al. (2009) and Gharali and

Johnson (2014), the level of noise in spatio-temporal

data impacts the calculation through the estimation of

the pressure contribution to the total loads and can

result in inaccurate load time responses. These prob-

lems are more pronounced in the case of a small ampli-

tude pitching motion around a high angle of attack, for

which the flow is found to be more three-dimensional

and less periodic. In this case, increasing the number

of PIV snapshots acquired at each phase would help to

improve the indirect estimation of load responses. The

time response is better captured in the case of large

amplitude pitching motion since the strong structural

forcing induces better spatial and temporal coherence

of the flow. In that context, both indirect methodologies

perform very well as long as there is no vortical struc-

ture close to the downstream boundary. As reported by

Gharali and Johnson (2014), discrepancies in the ampli-

tude of the estimated load coefficient responses appear

when there are large vortices crossing the boundary of

integration.

The noise in PIV measurements additionally causes

a sensitivity of the results to the choice of the different

user-defined parameters required for both formulations.

The impact of these parameters has been highlighted

and guidelines for setting their values have been pro-

posed. Moreover, it has been shown that the noise sen-

sitivity can be reduced through the use of DMD (or

other filtering methods) as a pre-processing step, as

long as the information is present in the PIV fields.

This procedure filters part of the noise and leads to a

smoother load response while retaining the main fea-

tures of the flow dynamics. It has been applied to a

plate pitching with small amplitude around a high mean

angle and led to an improvement in the estimated lift

response. Nonetheless, discrepancies with direct mea-

surements still remain, as filtering cannot correct er-

rors existing in velocity field or compensate for the lim-

ited spatial and temporal resolution of the original PIV

data.

Further efforts will be directed to improvement in

the estimation of the pressure contribution to the total

loads, which has a major impact on the result accuracy.

For both methods, such improvement could be achieved

through the adaptation of user-defined parameters to

the topology of the flow.
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A Extension of the “flux equation” to the

calculation of moments

It is possible to extend “flux equation” proposed by Noca
et al. (1999) to the calculation of aerodynamic moments about
an arbitrary defined origin. Assumed negative according to
the right-hand rule, the moments can be calculated by using

M “

¿

S8`Sb

n ¨ γMt dS ´
¿

Sb

´

ub ¨ n
¯

pρuˆ xq dS

`

¿

S8

n ¨ γMp dS ´
¿

S8

n ¨ prρuu´ τ s ˆ xq dS,
(14)

with

γMt “´
ρ

2
}x}2 Btuˆ I` ρ puˆ xqu

`
ρ

2
}x}2 uω ´

ρ

2
}x}2 ωu

´
ρ

2
}u}2 xˆ I` ρ pruus ¨ xq ˆ I

` µxω ` µNuˆ I´
µ

2
}x}2∇ω,

(15)

and

γMp “´
ρ

2
}u}2 pxˆ Iq

´
ρ

N
prBtuˆ Is ¨ xqx`

ρ

N
}x}2 pBtuˆ Iq

`
ρ

N
prtuˆ ωu ˆ Is ¨ xqx´

ρ

N
}x}2 ptuˆ ωu ˆ Iq

`
1

N
prt∇ ¨ τu ˆ Is ¨ xqx´

1

N
}x}2 pt∇ ¨ τu ˆ Iq ,

(16)

where x is a location vector with respect the origin, ub is the
body velocity and N the number of dimensions. Note that
for the sake of concision, only instantaneous quantities are
considered. Statistical mean quantities can be retrieved by
averaging equations and by using the Reynolds decomposi-
tion. The derivation of Eqs. (14)-(16) is similar to what was
done by Noca et al. (1999) for the calculation of forces. Start-
ing from the integral Navier-Stokes equations, the moments
can be expressed as

M “ ´dt

ż

V
ρuˆ r dV ´

¿

S8

pn ¨ rpI` ρuu´ τ sq ˆ r dS, (17)
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where r is the location vector with respect to the point R
about which the moment is calculated. The derivation is then
done in two steps, first the elimination of pressure and then
the rewriting of volume integral into surface integrals. Note
that it is assumed here that the external surface S8 is static
and that there is no flow through the body surface.

A.1 Elimination of pressure

To rewrite the pressure, Noca et al. (1999) uses the so-called
Pressure identity. However, it cannot be directly used for the
calculation of moments. Instead, the pressure term can be
rewritten by using the Extended Pressure identity, derived
from the Pressure identity and defined as

´

¿

S

φ pnˆ xq dS “
1

N

¿

S

xˆ rxˆ p∇φˆ nqs dS, (18)

where x is a location vector, N the dimension of space, φ an
arbitrary scalar and n the unit normal to the surface S. Note
that the domain enclosed by S can be multiply-connected.

The pressure term can be rewritten by assuming r “ x
and by using Eq. (18) with φ “ p. Moreover, the pressure
gradient can be expressed as a function of the velocity field
by using the differential form of the Navier-Stokes equations

∇p “ ´ρBtu´∇p
ρ

2
}u}2q ` ρuˆ ω `∇ ¨ τ . (19)

Finally, by using the vector identity

xˆ pxˆ raˆ nsq “ n ¨
`

traˆ Is ¨ xux´ }x}2 raˆ Is
˘

, (20)

the pressure term can be written as

´

¿

S8

p pnˆ xq dS “
¿

S8

n ¨ γMp dS, (21)

where γMp is given by Eq. (16). Note that if N “ 2, the first
term on the right-hand side of Eq. (20) vanishes, leading to
simplification in Eq. (16).

A.2 Elimination of volume integral

The volume integral appearing in Eq. (17) can be first rewrit-
ten by using the Reynolds transport theorem. Thus, by con-
sidering r “ x, this yields to

´dt

ż

V
ρuˆ x dV “

ż

V
ρxˆ Btu dV

´

¿

Sb

´

ub ¨ n
¯

pρuˆ xq dS,
(22)

where ub is the body velocity. Then, the quantity x ˆ Btu

is rewritten in terms of field derivatives. This is achieved by
starting from

xˆ Btu “
1

2
∇ˆ

`

}x}2Btu
˘

´
1

2
}x}2Btω, (23)

and by taking advantage of the vorticity equation

Btω “ pω ¨∇qu´ pu ¨∇qω ` ν∇2ω. (24)

Then, the following relations are used

}x}2 pu ¨∇qω “ ∇ ¨
`

}x}2uω
˘

´ 2 px ¨ uqω, (25)

}x}2 pω ¨∇qu “ ∇ ¨
`

}x}2ωu
˘

´ 2 px ¨ ωqu, (26)

}x}2∇2ω “ ∇2
`

}x}2ω
˘

´∇ ¨ p4xωq ` 2Nω, (27)

px ¨ uqω “ ´∇ˆ
„

1

2
}u}2x´ puuq ¨ x



´∇ ¨ rpuˆ xqus ` px ¨ ωqu, (28)

to finally obtain

xˆ Btu “ ∇ˆ
ˆ

1

2
}x}2Btu

˙

`∇ ¨
ˆ

1

2
}x}2uω

˙

`∇ˆ
ˆ

1

2
}u}2x´ ruus ¨ x

˙

`∇ ¨ pruˆ xsuq ´∇ ¨
ˆ

1

2
}x}2ωu

˙

´∇ ¨
´

∇
”ν

2
}x}2ω

ı¯

`∇ ¨ p2νxωq ´∇ˆ pνNuq .

(29)

At last, the Gauss theorem is used to express the volume
integral as a surface integral:

´dt

ż

V
ρuˆ x dV “

¿

S8`Sb

n ¨ γMt dS

´

¿

Sb

´

ub ¨ n
¯

pρuˆ xq dS,
(30)

with γMt given by Eq. (15). Note that if N “ 2, the vor-
tex stretching term in Eq. (24) vanishes and several terms in
Eq. (15) disappear.

B Convergence study on the number of PIV

snapshots needed for averaging

The inse and noca methods have been applied to PIV fields
obtained by averaging 50, 100, 150 and 200 snapshots, for the
three cases investigated here. The results presented below are
obtained from the inse approach but similar conclusions can
be drawn for the noca methodology.

For the large amplitude pitching plate, it appears that the
load responses are very similar for the four numbers of images
considered, as depicted in Fig. 10. Moreover, the statistics
calculated from each signal are almost the same, with a max-
imum difference of 4%. Therefore, 50 images would be already
enough to obtain a good estimation of the load coefficients.
Note that this number differs significantly from the results of
Gharali and Johnson (2014) who reported a minimum of 500
images required for a similar case.

For the static plate, the data based on 50 snapshots lead
to a reasonable estimation of the mean coefficients. However,
150 images are needed to obtain a sensitivity to the location
of S similar to the results reported in Tab. 2. Note that the
number of images required for this case increases compared to
the large amplitude pitching case. This is probably because
the coherence between snapshots decreases.

For the small amplitude pitching plate case, the mean
coefficients are similar whether computed with PIV fields ob-
tained from 50, 100, 150 or 200 images. Nonetheless, it seems
that increasing the number of snapshots leads to a decrease of
the noise in the coefficient responses, as depicted in Fig. 11.
Therefore, it could be expected that a higher number of snap-
shots could further improve the results.
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Fig. 10: Impact of the number of snapshots used on the evolution of lift and drag coefficients within a pitching

period T for large amplitude plate oscillations around a mean angle of attack of 0˝: indirect calculation using inse

(symbols) and direct measurements (thick continuous line). The error bars correspond to the sensitivity of the

results to the control surface used in the indirect method
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Fig. 11: Impact of the number of snapshots used on the evolution of lift and drag coefficients within a pitching

period T for small amplitude plate oscillations around a mean angle of attack of 30˝: indirect calculation using

inse (symbols) and direct measurements (thick continuous line). The error bars correspond to the sensitivity of

the results to the control surface used in the indirect method
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