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ABSTRACT 

The influence of visuo-spatial skills on numerical magnitude processing is the subject of a 

long-standing debate. As most of the numerical and non-numerical magnitude abilities 

underpinning mathematical development are visual by nature, they are often assessed in the 

visual modality, thereby confusing visuo-spatial and numerical processing. In order to assess 

the influence of visuo-spatial processing on numerical magnitude representation, we 

examined magnitude processing in patients with 22q11.2 deletion syndrome (22q11DS), a 

genetic condition characterized by a cognitive profile with a relative weakness in visuo-spatial 

abilities but with preserved verbal abilities. Twenty-seven participants with 22q11DS were 

compared to two control groups (one matched on verbal intelligence and the other on visuo-

spatial abilities) on several magnitude comparison tasks each with different visuo-spatial 

processing requirements. Our results showed that participants with 22q11DS present a 

consistent pattern of impairment in magnitude comparison tasks requiring the processing of 

visuo-spatial dimensions: comparison of lengths and collections. In contrast, their 

performance did not differ from the control groups in a visual task with no spatial processing 

requirement (i.e. numerical comparison of flashed dot sequences) or in auditory tasks (i.e., 

duration comparison and numerical comparison of sound sequences). Finally, a specific 

deficit of enumeration processes was observed in the subitizing range. Taken together, these 

results show that deficits in magnitude can occur as a consequence of a visuo-spatial deficit. 

This highlights the influence of the nature of the tasks selected to assess magnitude 

representation. 
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INTRODUCTION 

One of the most influential models in the field of numerical cognition assumes that 

there is a specific system for the representation of number magnitude. As the resulting 

representation is thought to be approximate, this system has been called the approximate 

number system (ANS). The ANS is believed to be shared by many species and would allow 

the discrimination, the comparison, the addition, and the subtraction of numerosities presented 

in and across different formats and modalities (i.e. comparing the number of objects seen or 

touched, the number of tones or voices, the number of perceived events; Féron, Gentaz, & 

Streri, 2006; Izard, Sann, Spelke, & Streri, 2009; Kobayashi, Hiraki, & Hasegawa, 2005). The 

resulting approximate number representation is therefore considered to be independent of the 

modality (Barth, Kanwisher, & Spelke, 2003; Barth et al., 2006; Meck & Church, 1983). One 

seminal model has been proposed by Dehaene and Changeux (1993) to explain how this 

amodal number magnitude representation is extracted from visual arrays. Detailing this model 

is beyond the scope of this paper but the crucial assumption for the issue considered here is 

that each element in the visual display would be represented with a constant amount of 

activation in the process, regardless of its size or its other perceptual properties, resulting in a 

cumulated activity which is highly correlated with the numerosity of the set. Thus, the 

numerosity representation would not be derived from perceptual cues such as area, density, 

etc., but extracted from specific mechanisms of perceptual normalization that eliminate the 

perceptual cues confounded with numerosity.   

However, an increasing amount of empirical evidence argues against the amodality of 

the number magnitude representation and indicates that numerical processing is dependent on 

perceptual and visuo-spatial processing at different levels. Indeed, a large number of studies 

have shown that numerical judgments are highly influenced by the visual perceptual 
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properties of the stimulus (e.g. density, sum of perimeter, surface area, length, size…) in 

children and adults (Dormal & Pesenti, 2007; Gebuis, Cohen Kadosh, de Haan, & Henik, 

2009; Rousselle & Noël, 2008; Rousselle, Palmers, & Noël, 2004). Some studies even fail to 

find any evidence of a sensitivity to numerical differences when the perceptual variables, 

which naturally covary with numerosities, are strictly controlled for (Clearfield & Mix, 1999, 

2001; Feigenson, Carey, & Spelke, 2002; Mix, 2002; Rousselle et al., 2004). Actually, much 

behavioral and electrophysiological evidence suggests that numerical magnitude processing of 

large numerosities relies on the integration of multiple perceptual cues (Gebuis, Cohen 

Kadosh, & Gevers, 2016; Gebuis & Reynvoet, 2012a, 2012b, 2013; Hurewitz, Gelman, & 

Schnitzer, 2006). With regard to small numerosities, visuo-spatial abilities is also involved in 

the subitizing process, another core ability for later achievement in mathematics (Carey, 2004; 

Feigenson, Dehaene, & Spelke, 2004; Kahneman, Treisman, & Gibbs, 1992), which allows 

adults and children to form an exact representation of a small number (up to four visual 

elements) in a very short time. Basically, subitizing is relying on a process of parallel visuo-

spatial tagging with a limited number of spatial indexes (about three or four) coding 

simultaneously for the position of each object visually presented (Ester, Drew, Klee, Vogel, & 

Awh, 2012; Piazza, Fumarola, Chinello, & Melcher, 2011; Trick & Pylyshyn, 1994). This 

process is thus also of particular interest in terms of the link between numerical cognition and 

visuo-spatial skills. 

To sum up, an increasing number of studies highlight that large number representation 

could be the result of the processing and integration of several other perceptual dimensions 

such as density, area, rhythm, duration and so on (see Gebuis et al., 2016 for a recent review 

and an alternative theoretical proposition to the ANS view). Regarding small numerosities, 

the subitizing process, which leads to the formation of an exact representation of small 

numbers, also exploits visuo-spatial pre-attentional processing. Together, these results stress 
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the need to consider the influence of perceptual and visuo-spatial properties on numerical 

magnitude processing and suggest that visuo-spatial abilities could influence number 

magnitude processing on at least two levels: (1) at a visuo-perceptual level, in visual tasks 

requiring participants to process large numerosities disregarding the visuo-perceptual 

properties of the array, (2) at a pre-attentional level, in visual tasks requiring participants to 

process small visual numerosities by assigning a limited number of visuo-spatial tags – as is 

assumed to be the case in subitizing tasks. 

One way to address the link between numerical and visual perceptual cognition is to 

focus on individuals with impaired visuo-spatial skills who are less able to process the visuo-

spatial dimensions of visual stimuli (such as area, density, convex hull and so on). If 

perceptual skills influence large number magnitude processing, people with low visuo-spatial 

abilities could also demonstrate poor performance in visual number magnitude processing 

which requires integrating the visuo-spatial dimensions of visual arrays to extract 

numerosities (such as area, density, convex hull and so on). They should also demonstrate 

lower subitizing ability in processing small numerosities. On the other hand, these people 

should perform in the normal range in number magnitude comparison tasks which have no 

visuo-spatial processing requirement - for instance in the auditory modality (i.e. comparing 

the numerosities of sequences of sounds).  

In this paper, the question of the influence of visuo-spatial processing on basic 

numerical cognition was addressed by examining the impact of visuo-spatial impairments on 

number magnitude processing in different modalities with distinct perceptual processing 

constraints. To that end, we examined a genetic neurodevelopmental disorder which impacts 

visuo-spatial and mathematical learning abilities, namely, the 22q11.2 deletion syndrome 

(22q11DS). This genetic condition results from a microdeletion of a series of genes situated at 

the locus q11.2 on the long arm of one of the two copies of chromosome 22, most of them 
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occurring de novo (85%; Swillen et al., 1999). It is one of the most common microdeletion 

syndromes with a prevalence from 1:2000 to 1:6000 (Gothelf, Frisch, Michaelovsky, 

Weizman, & Shprintzen, 2009). The phenotypic manifestations of this condition are highly 

variable, including approximately 180 distinct clinical traits. In this population, total IQ is 

generally in the borderline range (70-79) with half of the individuals scoring in the normal 

range and the other half exhibiting intellectual disability (i.e. IQ score under 70). 

Interestingly, it has been repeatedly shown that most people with 22q11DS showed higher 

verbal than visuo-spatial abilities (Bearden et al., 2001; De Smedt, Devriendt, et al., 2007; 

Swillen et al., 1997; Woodin et al., 2001). A range of visuo-spatial processing impairments 

are frequently reported in this syndrome including a deficit in visuo-perceptual and visuo-

motor integration skills (Moss et al., 1999; Niklasson & Gillberg, 2010; Van Aken, 

Caeyenberghs, Smits-Engelsman, & Swillen, 2009) as well as difficulties in visuo-

constructive activities such as in puzzles or in tasks requiring the arrangement of blocks or 

geometric shapes (De Smedt, Swillen, Ghesquière, Devriendt, & Fryns, 2003; Moss et al., 

1999; Niklasson & Gillberg, 2010). Moreover, learning disabilities are regularly observed in 

22q11DS, with poorer arithmetic than reading (where mainly decoding is impaired) and 

writing skills (Bearden et al., 2001; De Smedt et al., 2009; Jacobson, 2010).  

With regard to their mathematical abilities, all studies highlighted very poor 

performance in general standardized achievement for children with 22q11DS compared to 

typically developing children (Moss et al., 1999; Wang, Woodin, Kreps‐Falk, & Moss, 2000; 

Woodin et al., 2001). More in-depth studies provide evidence for poorer calculation abilities 

compared to control participants matched on age and IQ, especially in calculation tasks 

requiring the deployment of calculation procedures such as addition and subtraction with a 

carry, and multi-digit calculations (De Smedt et al., 2009; De Smedt, Reynvoet, Swillen, 

Verschaffel, & Ghesquière, 2008; De Smedt et al., 2006; De Smedt, Swillen, et al., 2007; 
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Simon, Bearden, Mc-Ginn, & Zackai, 2005). Furthermore, despite demonstrating preserved 

transcoding abilities (De Smedt et al., 2009; De Smedt et al., 2006; De Smedt, Swillen, et al., 

2007) individuals with this disorder often displayed difficulties in the counting range in a dot 

numerical estimation task (3-8 dots, Simon et al., 2005; Simon et al., 2008).  

The processing of magnitude has been mainly explored in symbolic numerical tasks.  

People with 22q11DS were found to present slower reaction times, lower accuracy and 

atypical sensitivity to numerical difference when comparing the magnitude of symbolic 

numbers (De Smedt et al., 2009; De Smedt, Swillen, et al., 2007; Simon et al., 2005; Simon et 

al., 2008). To our knowledge, only one study examined non-symbolic numerical processing 

and reported lower numerical acuity in the 22q11DS group while comparing collections of 

dots (Oliveira et al., 2014). With regard to non-numerical magnitude, some studies also found 

that people with 22q11DS had poorer performance when processing spatial and temporal 

continuous dimensions. Compared to age-matched controls, they were slower at comparing 

length (Simon et al., 2005; Simon et al., 2008), demonstrated less ability to reproduce 

rhythmic patterns as well as less sensitivity to temporal interval differences (Debbané, Glaser, 

Gex-Fabry, & Eliez, 2005; Gabriel Mounir, Debbane, Schaer, Glaser, & Eliez, 2011). These 

results1 are consistent with the Theory of Magnitude proposed by Walsh (2003) who assumed 

the existence of a common metric system for representing number, space and time. In line 

with this theoretical framework, some authors have speculated about the existence of a basic 

core deficit of magnitude processing in people with 22q11DS. For example, Simon (2008) 

claimed that a numerical magnitude processing deficit in 22q11DS would result from a 

primitive deficit in processing temporal and spatial magnitude.  

																																																													
1	Some of these results have to be taken cautiously considering methodological issues such as small sample size (N=12, 
Oliveira et al., 2014) and/or large IQ differences with the control group (Oliveira et al. 2014; Simon 2005).	
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Finally, subitizing abilities (i.e. the fast and precise apprehension of small 

numerosities up to three or four) yielded inconsistent results depending on the reference 

group. The subitizing range has been shown to be reduced in 22q11DS children compared to a 

control group matched on chronological age (but with more than 30 points’ difference in IQ, 

Simon et al., 2008) while other studies observed a similar subitizing range in 22q11DS 

children compared to control children who were closer in terms of verbal IQ (De Smedt et al., 

2006; 2007).  

In sum, very few studies have explored non-symbolic numerical abilities in 22q11DS 

and most of them have provided inconclusive or inconsistent results. Moreover, all of these 

studies assessed number magnitude processing in visual tasks which typically require the 

processing of visuo-spatial cues. As a consequence, it is not possible to determine whether 

their difficulties result from a deficit of the ANS or from a more general difficulty in the 

processing visual spatial/perceptual dimensions.  

 The present study aims at investigating the influence of visuo-spatial abilities on visual 

magnitude processing by examining people with 22q11 DS, a genetic neurodevelopmental 

disorder known to affect visuo-spatial and mathematical learning disabilities. Twenty-seven 

children with 22q11DS were compared to two carefully selected control groups matched 

either on verbal (verbal control group) or non-verbal estimated IQ (non-verbal control group). 

A series of non-symbolic magnitude comparison tasks with different visuo-spatial processing 

requirements (none vs. low vs. high visuo-spatial processing required) and different kinds of 

magnitude (continuous vs. discrete) were administered. A classical collection comparison was 

used to assess numerical magnitude processing but, as discussed earlier, this task placed 

strong emphasis on visuo-spatial processing since stimuli varied in terms of global surface, 

area and perimeter. Accordingly, a complementary method was used to assess numerical 

processing using two numerical comparison tasks with sequences of visual and auditory 



9 
	

events (dots or sounds), as used in previous studies (Breukelaar & Dalrymple-Alford, 1998; 

Dormal, Andres, Dormal, & Pesenti, 2010; Dormal, Seron, & Pesenti, 2006). The dot 

sequence comparison task minimizes the visuo-spatial load since a single dot is repeatedly 

flashed at the centre of the screen (visual processing but low spatial demand). The sound 

sequence comparison task goes one step further with no visual information to be processed, 

thus ensuring that visual information does not influence numerical magnitude processing in 

any way. Finally, non-numerical magnitude judgment tasks were administered to examine the 

hypothesis of a core deficit in magnitude processing and to determine whether the visuo-

spatial load interferes only with numerical extraction processes or more globally, with all 

visuo-spatial magnitude processing. Accordingly, a length comparison task requiring visuo-

spatial processing was contrasted with a duration comparison task with no visuo-spatial 

processing requirement. Finally, a dot estimation task was administered to explore the 

influence of visuo-spatial skills on subitizing abilities.  

Three distinctive patterns of performance were hypothesized. First, an impairment in 

all magnitude comparison tasks would suggest a generalized magnitude deficit for the 

processing of number, time and space, in keeping with the Theory of Magnitude proposed by 

Walsh (2003).  A second pattern of result would show an impairment restricted to all 

numerical tasks (numerical magnitude judgment tasks) and would suggest a number sense 

deficit in accordance with the ANS view and with previous studies that already showed a less 

precise magnitude representation for symbolic and non-symbolic numerical stimuli in 

22q11DS participants (Oliveira et al., 2014; De Smedt et al, 2007; Simon et al., 2008, 2005). 

Finally, a deficit restricted to comparison tasks with high visuo-spatial processing demands 

would attest to the impact of visuo-spatial impairment on general magnitude processing and 

would add further support to the authors who claim that the extraction of numerosity varies 

across the mode and modality of presentation of the numerical stimuli. Finally, if subitizing is 
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dependent on visuo-spatial attentional process (Trick & Pylyshyn, 1994), the apprehension of 

small quantities should be impaired in the 22q11DS group. As some of our tasks placed high 

demands on short-term and working memory, these components were examined in order to 

control for their possible contribution to the results in magnitude comparison tasks. Moreover, 

mathematical achievement was assessed in all participants in order to examine group 

differences in mathematical abilities. 

METHODS 

Participants 

Twenty-seven children and adults with the microdeletion 22q11.2 aged between 5 and 

23 years old (M = 127.5 months, SD = 49.7 months) and comprising 12 females participated 

in this study. Participants were recruited through 22q11DS associations and the department of 

pediatric cardiology of the Saint-Luc University Hospital in Belgium. Diagnosis was 

confirmed with two-colour fluorescent in situ hybridization (FISH). The 22q11DS group was 

mainly composed of children from 5 to 12 years-old (N=22) and adolescents from 13 to 17 

(N=4) and one adult participant of 23 years-old. As regards participants’ academic trajectory, 

10 participants were attending schools which provide special needs support while 17 

participants were enrolled in mainstream education (see the Appendix for more information 

about participants with 22q11DS). 

Participants with 22q11DS were compared to two control groups: one matched on 

verbal intelligence and the other on visuo-spatial abilities. The first control group - here 

labelled as the TDVERBAL group-was composed of 27 typically developing (TD) children (14 

girls) aged between 3 and 13 years old (M = 94.6 months, SD = 28.4 months) and individually 

matched to participants with 22q11DS on verbal intelligence measures using two verbal 

subtests (Vocabulary and Similarities) from the Wechsler Preschool and Primary Scale of 
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Intelligence-3rd edition (WIPPSI-III; Wechsler, 2004) or the Wechsler Intelligence Scale for 

Children-4th edition (WISC-IV; Wechsler, 2005) depending on their age. The second control 

group – here called the TDVSSP group- included 27 TD children (17 girls) aged between 3 and 

12 years old (M = 86.7 months, SD = 30.4 months) and matched to each participant with 

22q11DS on their visuo-spatial abilities using the Block design subtest from the WIPPSI-III 

or the WISC-IV, depending on their age. In both groups, each control participant was paired 

with  one participant with 22q11DS on the basis of the raw score (+/- 4 gap points) obtained 

in the subtests on which the matching was carried out that is, in the Vocabulary and Similarity 

subtests in the TDVERBAL group and in the Block design subtest in the TDVSSP group, 

respectively.  

Material 

Magnitude comparison tasks 

Five magnitude comparison tasks with different visuo-spatial processing requirements 

(no vs. low vs. high visuo-spatial processing) and presenting different kinds of magnitude 

(continuous vs. discrete) were administered to participants (see Table 1 for a description). In 

all tasks, participants had to compare two magnitudes and to select the larger one. All 

magnitude comparison tasks were carried out on a tablet PC (HP Elitebook 2740p, Screen: 

12.1-inch WXGA (1280x800)). Stimuli were presented on a navy blue background using E-

Prime experimental software (Version 1.1, Psychology Software Tools, Inc., Pittsburgh, PA). 

Participants were instructed to touch the screen with a tactile pen on the side of the correct 

response. The tactile screen was divided by an invisible vertical midline defining two equal 

response zones, one on the left and the other on the right. Instructions emphasized both speed 

and accuracy. 

Table 1. Description of magnitude comparison tasks. 
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No visuo-spatial 

requirement 
Low visuo spatial 

requirement 
High visuo-spatial 

requirement 

Continuous magnitude 
comparison tasks Duration comparison  Length comparison  

Discrete magnitude 
comparison tasks 

Sound sequence 
comparison 

Dot sequence 
comparison 

Collection 
comparison 

	

For all magnitude comparison tasks, the difference between the quantities to be 

compared varied along six different ratios: 1/2, 2/3, 3/4, 5/6, 7/8, 8/9. Two different pairs of 

magnitudes were presented by ratio. Table 2 presents the pairs of numerosities which were 

used in the discrete numerical comparison tasks for each ratio. These ratios of increasing 

complexity were introduced progressively throughout the task to determine individual 

sensitivity to magnitude difference in each task. Participants always started with stimuli pairs 

which varied according to the two easiest ratios, that is, 1/2 and 2/3. Less and less 

discriminable ratios were then progressively introduced (3/4, 5/6, 7/8, and finally 8/9), 

depending on the participant’s correct response rate for each ratio. Pairs of consecutive ratios 

were always intermixed with each other so that stimulus pairs of one ratio were never 

presented alone. The task was discontinued when a participant performed at chance level for 

two out of three consecutive ratios. This procedure was adopted to take into account the 

participant’s individual limits regarding their sensitivity to magnitude differences but also 

their own attentional capacities. Indeed, presenting participants with so many ratios that they 

are not able to discriminate could be discouraging. This could lead them to adopt ‘‘guessing’’ 

strategies (Halberda & Feigenson, 2008) which would add a lot a noise to the data, including 

on easy ratios which could be in fact well discriminated. In each task, the side of the correct 

response was counterbalanced: each pair appeared four times, twice with the larger magnitude 

on the right side and twice with the larger magnitude on the left side. When all ratios were 

presented, participants were administered a total of 48 stimulus pairs in each task (2 pairs x 2 
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sides x 2 presentations x 6 ratios). Throughout the experiment, pairs were presented in a 

pseudo-random order (i.e. no identical pairs in two consecutive trials, no more than three 

consecutive correct responses on the same side and no more than two identical ratios in 

succession). Before beginning each task, participants performed six practice trials with pairs 

of magnitudes differing by a 1/3 ratio to check the understanding of the instructions.  

Table 2. Pairs of magnitudes presented in non-symbolic magnitude comparison tasks. 

Ratios 

 1/2 2/3 3/4 5/6 7/8 8/9 

Small 7-14 6-9 6-8 5-6 7-8 8-9 

Large 8-16 10-15 12-16 10-12 14-16 16-18 

Continuous magnitude comparison tasks. These tasks, already used in Rousselle et al. 

(2013), involved no numerical processing and required participants to process the duration or 

the length of continuous stimuli which were presented in the auditory (no visuo-spatial 

processing) or in the visual modality (visuo-spatial processing requirement) respectively. 

In the duration comparison task, participants had to compare the duration of two identical 

sounds presented successively. Participants had to touch the screen on the side of the ear that 

‘‘heard’’ the longest sound (from 225 to 1350 ms). In the length comparison task, participants 

had to compare the length of two white lines (the line size varied between 2.3° and 10.3° of 

visual angle) presented successively and they were instructed to touch the screen on the side 

of the longest line (see Rousselle et al., 2013 for more details). 

Discrete numerical comparison tasks. The three non-symbolic numerical comparison tasks 

assessed participants’ ability to process the discrete numerical properties of sets presented 

either sequentially (Dot Sequence or Sound Sequence, low- or no-visuo-spatial processing 

requirement) or simultaneously (Collection, high visuo-spatial processing load). 
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In the Sound sequence comparison task, participants had to compare the numerosities of the 

two series of tones presented in rapid succession and had to choose the ear that ‘‘heard’’ the 

sequence containing the most sounds by touching the right side of the screen. The stimuli 

were composed of a sound (audio format: 44100 Hz, 32 bits, Mono) presented rapidly. To 

prevent participants from basing their judgment on perceptual non-numerical dimensions, the 

sequences were constructed using non-periodic signals so that temporal ratios did not 

constitute a potentially confusing variable, and rhythm biases and pattern recognition were 

avoided (for more details, see Breukelaar & Dalrymple-Alford, 1998; Dormal et al., 2010; 

Dormal et al., 2006). The durations of the interstimuli interval (ISI) and of the sound 

presentation time (S) were added within each sequence to obtain the total cumulative 

duration. The total duration of sequences varied from 1500 ms to 4500 ms while each ISI and 

S duration varied from 66.7 to 300 ms. The shortest and the longest ISI and S duration were 

the same within the sequences to be compared (smallest: 66.7 ms, longest: at least 200 ms). 

Furthermore, numerosity and total duration were manipulated in two congruity conditions. In 

congruent trials (which represented half of the sample), the larger number of sounds also had 

the larger total duration while in incongruent trials, the larger number had the smaller total 

duration. In addition, sound frequency by time unit covaried with numerosity. The trial started 

with the presentation of two red fixation crosses displayed respectively on the left and right 

sides of the screen. When the participant was judged to be visually attending to the display, 

the experimenter triggered the disappearance of the left cross followed by the appearance of 

the first sequence, on the left. Then, the left fixation cross reappeared and the right cross 

disappeared and was replaced by the second sequence on the right side of the screen. 

Instructions emphasized that the duration of the sequence was not important. Participants 

were instructed not to count the flashed sounds as they would not have the time to do so. They 

could respond as soon as they had the answer with no time limit after stimuli disappearance. 
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In the Dot sequence comparison task, participants had to compare the numerosities of two 

sequences of flashed dots presented in rapid succession. The stimulus was a single white dot 

(diameter: 3.5 cm) flashed rapidly in a single location on the left and then on the right side of 

the screen. This task was the exact counterpart of the Sound sequence comparison task but in 

the visual modality, with dots flashed in a single position instead tones. Participants had to 

touch the screen on the side where more dots had been displayed. They could respond as soon 

as they had the answer with no time limit after stimuli disappearance. 

In the Collection Comparison task, participants were asked to compare the numerosities of 

two collections displayed simultaneously on the screen. Stimuli consisted of two white boxes 

containing black puzzle pieces. In order to control as much as possible for the influence of 

perceptual non-numerical dimensions on the participants’ judgment, the numerosity and the 

total cumulated black area and the perimeter were manipulated in two congruity conditions. In 

congruent trials, the larger array in number was also the one with the larger cumulative black 

area and the larger density, while in incongruent trials, the larger array in number was the one 

with the smaller cumulative black area and perimeter. Also, the density covaried with the 

numerosities. The form of the individual pieces was manipulated so that the variations of 

cumulative black area were interspersed with those of cumulative individual perimeter (i.e. 

sum of individual piece perimeters) and brightness. To avoid the larger collection in number 

being systematically the one with the smaller elements, the area of the smaller and larger 

pieces was the same in both arrays to be compared. Finally, the convex hull (external 

perimeter of collections formed by the most external pieces) was equated for all trials. The 

trial started with the simultaneous presentation of two fixation crosses displayed on the left 

and right sides of the screen respectively. The two collections were then simultaneously 

presented on the screen for two seconds, one on the left and the other on the right side of the 

screen, both covering a visual angle of approximately 24.8°x 9.1°. To answer, participants had 
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to touch the screen on the side of the box that contained more pieces as soon as they got the 

answer with no time limit after stimuli disappearance. Instructions emphasized that the size of 

the pieces was of no importance. 

Subitizing task. Participants were briefly presented with arrays of 1 to 7 dots and were asked 

to say out loud ‘how many’ dots were presented as quickly and accurately as they could. 

Stimulus presentation and response recording were carried out on a tablet PC (HP Elitebook 

2740p, Screen: 12.1-inch WXGA (1280x800)) using both a voice key (latency recording) and 

a numerical pad (accuracy measurement). Stimuli were presented on a grey background using 

E-Prime experimental software (Version 1.1, Psychology Software Tools, Inc., Pittsburgh, 

PA). Each trial started with the presentation of a central red fixation cross for 500 ms, 

followed by the display of the target collection of 1 to 7 dots for 200 ms. The collection was 

then immediately hidden by a mask for 500 ms. Finally, a screen with a question mark was 

presented until participants gave their response orally. The verbal response triggered a voice 

key (latencies) and the experimenter then recorded the participant’s response on a numerical 

pad (accuracy). The stimuli consisted of 1 to 7 randomly arranged black dots of equal size 

(6mm in diameter), plotted randomly in the cells of a 6x6 virtual matrix, comprising the same 

5.3x5.3x8 area as the premask. Each numerosity was presented six times in different 

configurations. The mask consisted of dots of heterogeneous size and covered the whole 

surface of the screen. The experiment started with seven practice trials. 

A control task was administered just before the subitizing task in order to ensure that 

participants understood the task and perceive the array in such a small time window (200 ms). 

This control task was exactly the same as the subitizing task but with no numerical processing 

as the participant simply had to say out loud the color of the dots included in the array which 
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were either blue, green, yellow or red. As in the subitizing task, arrays were presented 200 ms 

followed by a mask screen for 500 ms. 

Control measures 

Mathematical level. To assess mathematical achievement, two kinds of tasks were presented 

depending on participants’ age. Children younger than 7 years old were administered a 

pictorial additive fluency task while children 7 years and above were assessed using single-

digit arithmetic fluency tasks (Rousselle et al., 2013).  

The pictorial additive fluency task aims to assess first simple additions in preschoolers. This 

task was used in Rousselle et al. (2013) and adapted from Noël (2009). It includes ten 

additions presented orally with a pictorial support representing the first operand (e.g., “Look, 

here are three cows; if three more come, how many cows will there be?”). The set comprised 

five ties (1+1, 2+2, 3+3, 4+4, 5+5) and five additions with the larger operand presented first 

(2+1, 3+2, 4+3, 5+4, 6+5). Items were presented in order of increasing complexity with 

smaller sums presented first and larger sums presented last (sum order: 2, 4, 3, 6, 5, 7, 8, 10, 9 

and 11). The participant had 150 seconds to solve a maximum of problems. Each period of 

five seconds not used to resolve all problems was considered as 1 bonus point added to the 

total score calculated on the correct response.  

Single-digit arithmetic fluencies were also used in Rousselle et al. (2013) and consisted of 

three tasks involving additions, subtractions and multiplications respectively. For each 

operation, participants were presented with a sheet of written arithmetic problems and had 

150 seconds to solve as many problems as possible (via written response). Addition and 

multiplication problems were drawn from all possible combinations of the integers 1–9 and 

the set of subtractions was the exact counterpart of the addition set. These combinations 

resulted in a total of 81 problems for each operation.  
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Working memory. The three main components of WM defined in Baddeley and Hitch’s 

model (Baddeley, 1986; Baddeley & Hitch, 1974), namely, the phonological loop, the visuo-

spatial sketchpad and the central executive component, were individually examined in tasks 

that did not require the recall or manipulation of numerical content. Phonological loop 

capacity was assessed in a forward letter span task. The visuo-spatial sketchpad was assessed 

with two-dimensional visuo-spatial span tasks inspired by the Corsi Block test. And finally, a 

category-span task was used to examine the central executive component. The stimuli and 

procedure used in those tasks have been described extensively in Rousselle et al. (2013). 

Experimental procedure 

Participants were tested individually in a quiet room. Testing was completed in two 

approximately 75-minute sessions, depending on participant’s performance and attentional 

level. The first session started with the IQ subtests followed by the three WM subtests. The 

tasks assessing arithmetic opened the second session and were followed by computerized 

basic numerical comparison tasks proposed in a Latin square order. 

RESULTS 

Population description 

Table 3 presents the results for age, general cognitive and mathematical measures in 

the 22q11DS and control groups. Paired-samples t-tests were run to compare each 22q11DS 

participant to his own verbal and nonverbal-matched control participant. As expected, 

participants with 22q11DS did not differ from the TDVERBAL group in the two verbal 

intelligence subtests (vocabulary: t(26) = -1.68, η2 = .10, p = .10; similarities: t(26) = 1.61, η2 

= .09, p = .12) and from the TDVSSP group in the block design subtest (t(26) = -0.47, η2 = .00, 

p = .64), measures on which they were matched (see Table 3). Moreover, the three groups did 

not significantly differ from each other on the intelligence measures (22q11DS vs. TDVSSP on 

vocabulary, t(26) = -0.24, η2 = .00, p = .81 ; 22q11DS vs. TDVSSP on similarities, t(26) = 1.20, 
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η2 = .05, p = .24 ; 22q11DS vs. TDVERBAL on block design, t(26) = -1.79, η2 = .11, p = .08). 

Finally, the 22q11DS group differed marginally from the TDVERBAL group (t(26) = -2.06, η2 = 

. 14, p = .05) but not from the TDVSSP group (t(26) = 1.19, η2 = .05, p = .24) on the concept 

identification subtest (i.e. the reasoning test which was presented visually). However, paired-

samples t-tests revealed significant differences between groups on age, the 22q11DS 

participants being older than the TDVERBAL group which itself was older than the TDVSSP 

group, as detailed in the Method section (all ts (26) > 4.18, all η2 > .40, ps <.001).  

In order to estimate the severity of difficulties of the 22q11DS group, raw scores of 

each measure were converted into standard scores using the norms provided by the Wechsler 

scales (three older participants were compared to the higher level of age for the test). The 

mean of the standard score in the 22q11DS group for the vocabulary subtest was 5.69 ± 2.59 

(range from 1 to 11), 7.74 ± 3.43 (range from 1 to 13) for the similarities subtest, 5.52 ± 3.30 

(range from 1 to 12) for the block design subtest and 6.63 ± 3.26 (range from 1 to 13) for the 

concept identification subtest. In this population authors have usually observed better 

performance for nonverbal than verbal IQ (Chow, Watson, Young, & Bassett, 2006; Swillen 

et al., 1999; Woodin et al., 2001). However recent studies tend to show that this difference is 

quite small and in some cases, the reverse profile has been observed (De Smedt et al., 2007; 

2009; Simon et al., 2007). In line with this, the mean standard scores for the verbal subtests 

(i.e. vocabulary and similarities subtests) were slightly higher than those of the block design 

subtest for most 22q11DS participants (i.e. 13 participants had 2 to 6 points more on average). 

Only three participants presented the reverse profile (visuo-spatial higher than verbal mean 

standard score) and eleven participants showed no significant difference between these two 

scores (between -1 to 1 point). With regard to the control participants, the TDVERBAL group 

achieved standard scores in the mean for each subtest (vocabulary: 9.89 ± 1.65; similarities: 

10.63 ± 1.57; block design: 9.78 ± 1.65; concept identification: 10.63 ± 2.26) as the TDVSSP 
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group2 (vocabulary: 11.3. ± 2.41; similarities: 11.25 ± 3.19; block design: 9.40 ± 1.47; 

concept identification: 9.85 ± 1.98).  

Memory abilities 

At a general cognitive level (see Table 3), paired-samples t-tests showed no significant 

differences between groups on STM measures (visuo-spatial or verbal), or on the verbal WM 

measure (all Ts (26) <1.40, all η2 < .07, ps >.05). However, it is important to note that the 

22q11DS group performed slightly lower than the TDVERBAL group on the visuo-spatial STM 

measure (t(26) = -1.86, η2 = .12, p =.07) but obtained similar scores in the verbal STM task, 

while the reverse pattern was true compared to the TDVSSP group.  

 

Table 3. Data and paired t-tests for general measures in 22q11DS, verbal and visuo-spatial 

control groups.  

 22q11DS TDVERBAL TDVSSP 
 Mean  SD Mean  SD Mean  SD 
Age 127.52 49.69 94.59*** 28.38 86.74*** 30.44 
IQ measures (raw score)       

Vocabulary 22.44 7.78 23.63 8.25 23.00 10.52 
Similarities 18 5.88 17.04 5.32 15.63 8.65 
Block design  25.19 10.64 29.19 9.64 25.37 10.54 
Concept identification  14.48 3.83 15.93 3.32 13.15 4.64 

Working memory       
Visuo-spatial 
sketchpad 

4.48 1.67 5.11 1.63 4.19 1.44 

Phonological loop 6.04 2.01 6.04 1.43 5.67 1.57 
Central executive 5.00 2.22 5.26 1.70 4.96 1.74 

Mathematical fluency       
Pictorial additive 
fluency  

8.00 6.13 11.27 a 5.71 10.82 a 6.29 

Pictorial additive 
fluency (errors)  

4.45 3.33 1.00 a *  1.55 2.00 a * 1.90 

Addition fluency 24.93  13.19 19.07 b 10.96 20.60 c 7.37 
Subtraction fluency 19.40  11.35 16.27 b 9.96 19.60 c 6.33 

																																																													
2 This analysis included only 20 participants since the IQ of 7 control children was assessed with a scale not 
suitable to their age, the standard score thus being unavailable. 
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Multiplication fluency 18.80  12.62 12.60 b 9.65 16.90 c 11.29 
a N=11, b N=15, c N=10; * p < .05, *** p < .001 

Mathematical abilities 

With regard to the mathematical achievement levels for young children (N = 11), there 

was no significant difference between the three groups on the number of problems solved 

correctly (for 22q11DS vs. TDVERBAL groups, t(10) = -1.66, η2 = .21, p = .13; for 22q11DS vs. 

TDVSSP groups, t(10) = -1.49, η2 = .18, p = .16). With regard to the number of errors produced 

in the Pictorial additive fluency task, the 22q11DS group differed significantly from both 

control groups (22q11DS vs. TDVERBAL: t(10) = 3.02, η2 = .48, p < .05; 22q11DS vs. TDVSSP: 

t(10) = 2.32, η2 = .35, p < .05), their performance in simple addition being more error-prone 

(see Table 3). 

 Regarding the older participants who performed the single-digit arithmetic fluencies, 

we did not observe significant differences between 22q11DS and both control groups (all ts < 

1.67, ps> .11). The 22q11DS group actually presented better performance than the two other 

groups since they were older and were generally in higher-level school classes than the 

control groups.  

Magnitude representation tasks 

To investigate the precision of the underlying non-symbolic magnitude 

representations, analyses were carried out on the Weber fractions (following Pica et al., 2004 

and Halberda and Feigenson, 2008, see Supplement S1 of Rousselle et al., 2013 for an 

extensive description of the Weber fraction estimation method). The Weber fraction is a 

reliable index of a participant’s sensitivity to magnitude difference and reflects the variation 

of performance as a function of the ratio between the magnitudes to be compared. Moreover, 

the Weber fraction was more robust than accuracy as our tasks were adaptative and 

consequently, all participants did not necessarily achieve the same number of items. Paired t-

tests on Weber fractions showed a specific deficit for the length comparison task: the 
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22q11DS group in fact presented higher Weber fractions, indicating lower precision of the 

underlying magnitude representation than both control groups (22q11DS vs. TDVERBAL 

groups, t(26) = 2.72, η2 = .22, p < .01; 22q11DS vs. TDVSSP groups, t(26) = 2.52, η2 = .20, p < 

.05). However, no such difference appeared in the comparison of the duration of auditory 

stimuli (22q11DS vs. TDVERBAL groups: t(26) = 0.93, η2 = .03, p = .46 and 22q11DS vs. 

TDVSSP groups: t(26) = 0.07, η2 = .00, p = .94).  

Regarding discrete numerical magnitude processing, only the representation of 

magnitude in the collection comparison task was impaired, with a significantly higher Weber 

fraction in the 22q11DS group compared to the TDVERBAL group (t(26) = 3.12, η2 = .27, p < 

.01) but a marginally significant difference compared to the TDVSSP group (t(26) = 1.96, η2 = 

.13, p = .06). Moreover, as we can see in Figure 1, the Weber fraction did not differ between 

the three groups in both sequential tasks, whether stimuli were visual or auditory (all ts <.90, 

ps >.38) 3. In sum, these first results indicate a specific deficit in magnitude comparison tasks 

requiring more visuo-spatial processing, regardless of the kind of magnitude processing 

involved, whether for continuous or discrete stimuli. 

Figure 1. Mean and the standard error of Weber fractions in the magnitude comparison tasks 

for the three groups.  

																																																													
3 The same analyses conducted on a subsample of patients with 22q11DS with a restricted age range (22 
participants with 22q11DS aged from 5 to 12 years old) confirmed the results obtained with the initial group 
(including adolescents and one adult) by showing globally a specific deficit in both continuous and discrete 
magnitude when visuo-spatial processing requirement is higher.	
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In order to determine the extent to which the visuo-spatial abilities interact with the 

extraction of numerosities, analyses were run to examine the effect of congruency on the three 

non-symbolic number comparison tasks. We predicted that the congruency effect would be 

reduced in children and adolescents with 22q11DS. Indeed, given their visuo-spatial 

impairments, they could be less sensitive to perceptual variations. Consequently, these 

variations would be less likely to interfere with or facilitate the processing of numerosity in 

the incongruent and congruent conditions, respectively. To examine the congruency effect, 

accuracy was computed separately for congruent and incongruent trials in each group. 

Accuracy for congruent and incongruent trials was calculated on the basis of performance on 

the 1/2 and 2/3 ratios, which were the only ratios that were systematically administered to all 

participants. The congruency effect was then computed as the difference between the 

percentage of correct responses for congruent and incongruent trials. Paired samples t-tests 

were conducted to investigate group differences on this congruency effect in the three non-

symbolic numerical comparison tasks. Our analyses showed no significant group differences 

in the collection comparison task nor in the sequential comparison tasks (all ts < 1.23, ps > 

.23).  

Subitizing 
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For each individual, the subitizing range was determined by considering the larger 

numerosity for which at least 5 out of the 6 trials had led to correct responses. We assumed 

that the 22q11DS group would be impaired in the subitzing range, which is dependent on 

visual cues and/or on visual attention processes. One 22q11DS participant could not complete 

the subitizing task because of technical problems and six participants with 22q11DS were 

unable to undertake the control task (color judgment) due to defective experimental material. 

We therefore considered only the 20 participants who were administered both the subitizing 

and the control task. It should be noted that they all succeeded in the control task (all 

participants performed higher than 75 % with a mean of 97,7 % of accuracy). In the control 

tasks paired t-tests showed no difference between the 22q11DS and the TDVERBAL groups 

(t(19) = -1.75, η2 = .14, p = .10) nor between the 22q11DS and the TDVSSP groups (t(19) = -

1.23, η2 = .07, p = .23). With regard to the subitizing task, paired-samples t-tests showed a 

significantly reduced subitizing range for the 22q11DS group (2.70±1.98) in comparison with 

the TDVERBAL group (3.75±1.07) (t(19) = -3.05, η2= .33, p < .01) but not when compared to 

the TDVSSP group (2.90±1.33) (t(19) = -0.38, η2 = .01, p = .71).  

Figure 2. Accuracy for the different numerosities in the three groups.  

 

In order to investiagate group differences, paired-samples t-tests were run to compare 

groups on each quantity within the subitizing range (generally considered from 1 to 3) and 
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within the counting range (from 4 to 7 in this task). Theses analyses showed significant 

differences between the 22q11DS group and the TDVERBAL group for the four first 

numerosities (all ts > 2.48, ps < .02) with the exception of the numerosity 2 (t(19) = -1.30, p = 

.21) but not for the three last numerosities (all ts < 1.39, ps > .18). With regard to the TDVSSP 

group, the 22q11DS group did not differ significantly for the numerosity in the subitzing or 

counting range (all ts < 1.64, ps > .12) 4.  

DISCUSSION 

 The main purpose of this research was to investigate the influence of visuo-spatial 

skills on numerical magnitude processing. According to the ANS view, number magnitude 

representation is constructed by disregarding perceptual dimensions. Thus, the acuity of the 

ANS should be similar whatever the modality or mode of presentation of the stimuli and 

should not be affected by low visuo-spatial skills. On the other hand, another line of evidence 

suggests that numerical acuity could vary across tasks depending on the modality or mode of 

presentation of the stimuli. According to this view, poor abilities in processing visuo-spatial 

dimension can impact the acuity of numerical representations in the visual modality and 

especially in tasks with high visuo-spatial processing requirements. Moreover, as subitizing 

abilities are assumed to rely on visuo-spatial attentional processes and visuo-spatial working 

memory, low visuo-spatial skills were also expected to reduce the subitizing range (Ester et 

al., 2012; Piazza et al., 2011; Trick & Pylyshyn, 1994). 

The present study aims at contrasting these views by examining magnitude 

representation in people with 22q11DS, a genetic condition characterized by a frequent 

																																																													
4	The analyses on the 26 participants with 22q11DS administered the subitizing task only showed globally the 
same significant differences between the 22q11DS group and the TDVERBAL group for the four first numerosities 
(all ts > 2.30, ps < .03) but not for the three last numerosities (all ts < 1.08, ps > .29). With regards to the TDVSSP 
group, the 22q11DS group differed significantly only for the numerosity one and three (all ts > 2.28, ps < .03), 
but not for the numerosity two or within the counting range (4 to 7, all ts < 1.58, ps > .13).	
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association of visuo-spatial impairment and mathematical learning disabilities. A series of 

magnitude judgment tasks contrasting different visuo-spatial processing requirements (no vs. 

low vs. high visuo-spatial processing), with different kinds of magnitude processing 

(continuous vs. discrete non-symbolic magnitude), were administered to a group of 

participants with 22q11DS and to two control groups matched on verbal or visuo-spatial 

abilities, respectively.  

In the non-numerical magnitude tasks, results revealed that people with 22q11DS 

exhibited a specific deficit in processing length but showed unimpaired acuity while 

processing durations relative to both control groups. This dissociation suggests a specific 

alteration of visuo-spatial magnitude processing. In the number magnitude comparison tasks, 

participants with 22q11DS exhibited a significantly lower precision than the verbal control 

group when they were asked to simultaneously compare the numerosities of two arrays of 

stimuli. By contrast, these differences were no longer significant when they had to compare 

the numerosities of sequences of dots or sounds, that is, tasks involving no or low visuo-

spatial processing. Finally, the subitizing range was reduced in participants with 22q11DS 

compared to the verbal control group resulting in lower achievement in numerical estimation 

within the subitizing range, relative to the verbal control group.  

These results are consistent with recent findings in people with 22q11DS, highlighting 

both a deficit of continuous visual quantities (length comparison task, Simon et al., 2005) as 

well as a deficit in non-symbolic number magnitude processing as reported in a numerical 

collection comparison task (Oliveira et al., 2014). As previous studies compared performance 

of the 22q11DS group to those of a control group matched on chronological age, the present 

results add to the existing literature, confirming the existence of these deficits when 

comparing 22q11DS participants to verbal IQ matched control participants. With regard to 

duration judgement, our results are inconsistent with previous data showing temporal 
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perception impairment in people with 22q11DS (Debbané et al., 2005; Gabriel Mounir et al., 

2011). However, in those experiments, different methodological choices were made in order 

to measure the least significant difference that the participant could subjectively perceive, 

which could account for our divergent results.  

Our study sheds new lights on the current literature by demonstrating that this deficit 

is restricted to magnitude comparison tasks with high visuo-spatial processing load. In fact, 

performance was in the range of TD children on several tasks with minimal visuo-spatial 

processing requirements, for instance, when comparing the numerosity of auditory or visual 

stimuli presented in sequence or when comparing duration. Our data in patients with 

22q11DS indicates that they do not present a defective ANS but rather a deficit in building 

numerical representation in high-demanding visuo-spatial processing conditions. Poorer 

visuo-spatial processing experience accumulates, leading to poorer precision of the resulting 

number magnitude representation compared to typically developing children who can count 

on appropriate visuo-spatial experiences.  

This study confirms and strengthens findings reported in other genetic syndromes with 

poor visuo-spatial abilities. For example, individuals with Williams syndrome also showed 

lower performance in numerical and spatial magnitude comparison tasks in comparison with a 

control group matched on verbal IQ, suggesting a direct influence of visuo-spatial deficit on 

magnitude processing (Rousselle et al., 2013). Moreover, individuals with low visuo-spatial 

skills but with no associated genetic disorder were found to show atypical number magnitude 

representation, at least when measured in some specific conditions (Bachot et al., 2005; 

Crollen & Noël, 2015).  

In summary, the present study provides evidence of (1) poorer numerical acuity in 

numerical comparison tasks which have high visuo-spatial demands but not in the other 

numerical comparisons, (2) lower skills in processing length but not duration, (3) and a 
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reduced ability to quickly extract numerosities in the subitizing range in participants with 

22q11DS. Taken together, these findings call into question the construction of an amodal 

numerical representation, as posited by the ANS model. Rather, it suggests that the numerical 

magnitude representation resulting from non-symbolic numerical processing are highly 

dependent on the perceptual demands of the numerical task at hand. This does not preclude 

that the resulting magnitude representation could be compared across modality but current 

models should now take into account the influence of perceptual processing in the sequence 

of steps leading to the extraction of numerical magnitude information.  

Our results thus add to the large body of evidence showing that processing visuo-

perceptual dimensions is part of the construction of number magnitude representations. Of 

course, it is misleading to think that number magnitude acuity could be measured in a “pure” 

way, i.e., independently of non-numerical perceptual dimensions. For instance, it has been 

shown that 3 year-old children performed at random on a numerosity judgment task in 

conditions that controlled for surface area, indicating that their “numerical” judgment is based 

on surface processing (Rousselle et al., 2004). Later on, the influence of parallel surface 

processing decreases (Rousselle & Noël, 2008) but even adults continue to be sensitive to 

perceptual dimensions in their numerical judgments (Gebuis & Reynvoet, 2012a, 2012b; 

Szucs, Nobes, Devine, Gabriel, & Gebuis, 2013). Even if the majority of studies currently try 

to control the influence of perceptual variables when assessing non-symbolic magnitude 

processing (Halberda & Feigenson, 2008; Halberda, Mazzocco, & Feigenson, 2008; 

Mazzocco, Feigenson, & Halberda, 2011; Piazza et al., 2010; Piazza, Izard, Pinel, Le Bihan, 

& Dehaene, 2004), the visual stimulus properties (e.g., surface, density) cannot be controlled 

for in each individual trial (Gebuis & Reynvoet, 2011, 2012a).  

In this study, a deficit of subitizing abilities was also expected, considering that these 

are assumed to rely on visuo-spatial attentional processes and visuo-spatial working memory, 
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(Ester et al., 2012; Piazza et al., 2011; Trick & Pylyshyn, 1994). However, other authors 

consider that subitizing does not depend that heavily on visuo-attentional processes (Piazza, 

Mechelli, Butterworth, & Price, 2002; Sathian et al., 1999). Our results are in line with the 

idea that subitizing ability operates under the direct influence of visuo-spatial processes. In 

this respect, the current literature has yielded inconsistent results, with some studies indicating 

impaired subitizing abilities in children with 22q11DS (Simon et al., 2005) while others 

reported no such deficit compared to a control group matched on chronological age (Simon et 

al., 2008; De Smedt et al., 2006; 2007). Here, subitizing abilities of participants with 

22q11DS were found to be impaired compared to a control group matched on verbal IQ, as 

attested by their reduced subitizing range (around 3 vs. 4 for the control group) and their 

lower precision in apprehending small numerosities from 1 to 4. Several methodological 

limitations could explain the contradictory results reported in previous studies: First, some 

studies had very small sample sizes (N<15 in De Smedt et al.’s studies); second, the timing of 

the stimulus presentation was often unlimited whereas, in the present study, collections were 

presented for a very short duration (200 ms) and were followed by a mask to clearly prevent 

any attempt of counting; finally, other studies chose to compare participants with 22q11DS to 

controls matched on chronological age only. As IQ differences between groups were not 

properly controlled for, the source of the difficulties could not be clearly established (even if 

De Smedt et al., 2006, 2007 used IQ performance as a covariate).  

Although this study was run mainly on children, one limit is that it fails to adopt a 

developmental approach. With regard to the relationship between perceptual and numerical 

cognition, it make sense to consider that visuo-spatial and temporal processing are necessary 

for a truly abstract numerical representation to emerge in the course of development (Bueti & 

Walsh, 2009; Simon, 2008; Walsh, 2003). These basic processing abilities may be 

determinant for numerical processing development during early childhood but may no longer 
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play a role later during adolescence or adulthood. The only way to address this issue in a truly 

developmental perspective is to examine the full developmental trajectories of basic 

numerical processing in atypical develpment to assess how the pattern of performance 

changes progressively from early childhood onwards and more particularly, how the changes 

in visuo-spatial and temporal perception interact with numerical ontogenesis at different times 

across development. Another limitation is that we did not collect information about the 

presence of effective mathematical learning impairment in our sample of patients while it is 

known  that all people with 22q11DS do not struggle with mathematical learning by the time 

of their schooling.  Here, comparing mathematical abilities across groups tells us that people 

with 22q11DS had lower mathematical achievement as a group compared to their verbal-

matched typically developing peers but it does not reveal anything about how their deficit in 

basic numerical cognition has influenced their formal learning of mathematics.  Again, 

longitudinal studies, especially in genetic syndromes associated with a higher risk of 

mathematical learning disabilities, would be helpful to determine how differences in these 

basic magnitude processing predict later outcomes in mathematics. 

 To conclude, the present findings further indicate that magnitude processing is deeply 

rooted in our ability to process perceptual dimensions. Number magnitude representation is 

typically assessed using collection comparison tasks. However, this study demonstrated that 

performance in this type of task is clearly influenced by visuo-spatial abilities. Indeed, the 

deficit observed in non-symbolic magnitude representation in the 22q11DS population was 

mainly due to their visuo-spatial processing impairments as it was observed only in the tasks 

that loaded heavily on this dimension. These results thus highlight the importance of 

examining magnitude representation with non-visual tasks, especially in children with low 

visuo-spatial skills, as the influence of visual variables cannot be completely ruled out in 

numerosity processing.  
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