Offline Policy-search in Bayesian Reinforcement Learning

Castronovo Michael

University of Liège, Belgium
Advisor: Damien Ernst

15th March 2017

Contents

- Introduction
- Problem Statement
- Offline Prior-based Policy-search (OPPS)
- Artificial Neural Networks for BRL (ANN-BRL)
- Benchmarking for BRL
- Conclusion

Introduction

What is Reinforcement Learning (RL)?
A sequential decision-making process where an agent observes an environment, collects data and reacts appropriately.

Example: Train a Dog with Food Rewards

- Context: Markov-decision process (MDP)
- Single trajectory (= only 1 try)
- Discounted rewards (= early decisions are more important)
- Infinite horizon (= the number of decisions is infinite)

The Exploration / Exploitation dilemma (E/E dilemma)

An agent has two objectives:

- Increase its knowledge of the environment
- Maximise its short-term rewards
\Rightarrow Find a compromise to avoid suboptimal long-term behaviour

In this work, we assume that

- The reward function is known (= agent knows if an action is good or bad)
- The transition function is unknown (= agent does not know how actions modify the environment)

Reasonable assumption:

Transition function is not unknown, but is instead uncertain:
\Rightarrow We have some prior knowledge about it
\Rightarrow This setting is called Bayesian Reinforcement Learning

What is Bayesian Reinforcement Learning (BRL)?

A Reinforcement Learning problem where we assume some prior knowledge is available on start in the form of a MDP distribution.

Intuitively...

A process that allows to simulate decision-making problems similar to the one we expect to face.

Example:

A robot has to find the exit of an unknown maze.

\rightarrow Perform simulations on other mazes beforehand
\rightarrow Learn an algorithm based on those experiences (e.g.: Wall follower)

Contents

- Introduction
- Problem Statement
- Offline Prior-based Policy-search (OPPS)
- Artificial Neural Networks for BRL (ANN-BRL)
- Benchmarking for BRL
- Conclusion

Problem statement

Let $M=\left(X, U, x_{0}, f_{M}(\cdot), \rho_{M}(\cdot), \gamma\right)$ be a given unknown MDP, where

- $X=\left\{x^{(1)}, \ldots, x^{\left(n_{x}\right)}\right\}$ denotes its finite state space
- $U=\left\{u^{(1)}, \ldots, u^{\left(n_{u}\right)}\right\}$ denotes its finite action space
- x_{M}^{0} denotes its initial state.
- $x^{\prime} \sim f_{M}(x, u)$ denotes the next state when performing action u in state x
- $r_{t}=\rho_{M}\left(x_{t}, u_{t}, x_{t+1}\right) \in\left[R_{\text {min }}, R_{\max }\right]$ denotes an instantaneous deterministic, bounded reward
- $\gamma \in[0,1]$ denotes its discount factor

Let $h_{t}=\left(x_{M}^{0}, u_{0}, r_{0}, x_{1}, \cdots, x_{t-1}, u_{t-1}, r_{t-1}, x_{t}\right)$ denote the history observed until time t.

An E / E strategy is a stochastic policy π that, given the current history h_{t} returns an action u_{t} :

$$
u_{t} \sim \pi\left(h_{t}\right)
$$

The expected return of a given E/E strategy π on MDP M :

$$
J_{M}^{\pi}=\mathbb{E}_{M}\left[\sum_{t} \gamma^{t} r_{t}\right]
$$

where

$$
\begin{aligned}
x_{0} & =x_{M}^{0} \\
x_{t+1} & \sim f_{M}\left(x_{t}, u_{t}\right) \\
r_{t} & =\rho_{M}\left(x_{t}, u_{t}, x_{t+1}\right)
\end{aligned}
$$

RL (no prior distribution)

We want to find a high-performance E/E strategy π_{M}^{*} for a given MDP M:

$$
\pi_{M}^{*} \in \arg \max _{\pi} J_{M}^{\pi}
$$

BRL (prior distribution $p_{\mathcal{M}}^{0}(\cdot)$)
A prior distribution defines a distribution over each uncertain component of $\mathcal{M}\left(f_{M}(\cdot)\right.$ in our case).

Given a prior distribution $p_{\mathcal{M}}^{0}(\cdot)$, the goal is to find a policy π^{*}, called Bayes optimal:

$$
\pi^{*}=\arg \max _{\pi} \mathfrak{J}_{p_{\mathcal{M}}^{0}(\cdot)}^{\pi}
$$

where

$$
\mathfrak{J}_{p_{\mathcal{M}}^{0}(\cdot)}^{\pi}=\underset{M \sim p_{\mathcal{M}}^{0}(\cdot)}{\mathbb{E}} J_{M}^{\pi}
$$

Contents

- Introduction
- Problem Statement
- Offline Prior-based Policy-search (OPPS)
- Artificial Neural Networks for BRL (ANN-BRL)
- Benchmarking for BRL
- Conclusion

Offline Prior-based Policy-search (OPPS)

1. Define a rich set of E / E strategies:
\rightarrow Build a large set of N formulas
\rightarrow Build a formula-based strategy for each formula of this set
2. Search for the best E / E strategy in average, according to the given MDP distribution:
\rightarrow Formalise this problem as an N-armed bandit problem

1. Define a rich set of E / E strategies

Let \mathbb{F}^{K} be the discrete set of formulas of size at most K. A formula of size K is obtained by combining K elements among:

- Variables:

$$
\hat{Q}_{1}^{t}(x, u), \hat{Q}_{2}^{t}(x, u), \hat{Q}_{3}^{t}(x, u)
$$

- Operators:

$$
+,-, \times, /,|\cdot|, \frac{1}{\cdot}, \sqrt{\cdot}, \min (\cdot, \cdot), \max (\cdot, \cdot)
$$

Examples:

- Formula of size 2: $F(x, u)=\left|\hat{Q}_{1}^{t}(x, u)\right|$
- Formula of size 4: $F(x, u)=\hat{Q}_{3}^{t}(x, u)-\left|\hat{Q}_{1}^{t}(x, u)\right|$

To each formula $F \in \mathbb{F}^{K}$, we associate a formula-based strategy π_{F}, defined as follows:

$$
\pi_{F}\left(h_{t}\right) \in \underset{u \in U}{\arg \max } F\left(x_{t}, u\right)
$$

Problems:

- \mathbb{F}^{K} is too large
($\left|\mathbb{F}^{5}\right| \simeq 300,000$ formulas for 3 variables and 11 operators)
- Formulas of \mathbb{F}^{K} are redundant (= different formulas can define the same policy)

Examples:

1. $Q_{1}^{t}(x, u)$ and $Q_{1}^{t}(x, u)-Q_{3}^{t}(x, u)+Q_{3}^{t}(x, u)$
2. $Q_{1}^{t}(x, u)$ and $\sqrt{Q_{1}^{t}(x, u)}$

Solution:

\Rightarrow Reduce \mathbb{F}^{K}

Reduction process

\rightarrow Partition \mathbb{F}^{K} into equivalence classes, two formulas being equivalent if and only if they lead to the same policy
\rightarrow Retrieve the formula of minimal length of each class into a set $\overline{\mathbb{F}}^{K}$

Example:
$\left|\overline{\mathbb{F}}^{5}\right| \simeq 3,000$ while $\left|\mathbb{F}^{5}\right| \simeq 300,000$

Computing $\overline{\mathbb{F}}^{K}$ may be
expensive. We instead use an efficient heuristic approach to compute a good approximation of this set.

2. Search for the best E / E strategy in average

A naive approach based on Monte-Carlo simulations (= evaluating all strategies) is time-inefficient, even after the reduction of the set of formulas.

Problem:

In order to discriminate between the formulas, we need to compute an accurate estimation of $\mathfrak{J}_{p_{\mathcal{M}}^{0}(\cdot)}^{\pi}$ for each formula, which requires a large number of simulations.

Solution:

Distribute the computational ressources efficiently.
\Rightarrow Formalise this problem as a multi-armed bandit problem and use a well-studied algorithm to solve it.

What is a multi-armed bandit problem?

A reinforcement learning problem where the agent is facing bandit machines and has to identify the one providing the highest reward in average with a given number of tries.

Formalisation

Formalise this research as a N-armed bandit problem.

- To each formula $F_{n} \in \overline{\mathbb{F}}^{K}(n \in\{1, \ldots, N\})$, we associate an arm
- Pulling the arm n consists in randomly drawing a MDP M according to $p_{\mathcal{M}}^{0}(\cdot)$, and perform a single simulation of policy $\pi_{F^{n}}$ on M
- The reward associated to arm n is the observed discounted return of $\pi_{F^{n}}$ on M
\Rightarrow This defines a multi-armed bandit problem for which many algorithms have been proposed (e.g.: UCB1, UCB-V, KL-UCB, ...)

Learning Exploration/Exploitation in Reinforcement Learning

M. Castronovo, F. Maes, R. Fonteneau \& D. Ernst (EWRL 2012, 8 pages)

BAMCP versus OPPS: an Empirical Comparison
M. Castronovo, D. Ernst \& R. Fonteneau (BENELEARN 2014, 8 pages)

Contents

- Introduction
- Problem Statement
- Offline Prior-based Policy-search (OPPS)
- Artificial Neural Networks for BRL (ANN-BRL)
- Benchmarking for BRL
- Conclusion

Artificial Neural Networks for BRL (ANN-BRL)

We exploit an analogy between decision-making and classification problems.

A reinforcement learning problem consists in finding a policy π which associates
an action $u \in U$ to any history h.

A multi-class classification problem consists in finding a rule $\mathcal{C}(\cdot)$ which associates a class $c \in\{1, \ldots, K\}$ to any vector $v \in \mathbb{R}^{n}(n \in \mathbb{N})$.
\Rightarrow Formalise a BRL problem as a classification problem in order to use any classification algorithms such as Artificial Neural Networks

1. Generate a training dataset:
\rightarrow Perform simulations on MDPs drawn from $p_{\mathcal{M}}^{0}(\cdot)$
\rightarrow For each encountered history, recommend an action
\rightarrow Reprocess each history h into a vector of fixed size
\Rightarrow Extract a fixed set of features (= variables for OPPS)
2. Train ANNs:
\Rightarrow Use a boosting algorithm

1. Generate a training dataset

In order to generate a trajectory, we need a policy:

- A random policy?

Con: Lack of histories for late decisions

- An optimal policy? $\left(f_{M}(\cdot)\right.$ is known for $\left.M \sim p_{\mathcal{M}}^{0}(\cdot)\right)$

Con: Lack of histories for early decisions
\Rightarrow Why not both?

Let $\pi^{(i)}$ be an ϵ-Optimal policy used for drawing trajectory i (on a total of n trajectories).

$$
\text { For } \epsilon=\frac{i}{n}: \pi^{(i)}\left(h_{t}\right)=u^{*} \text { with probability } 1-\epsilon
$$

and is drawn randomly in U else.

To each history $h_{0}^{(1)}, \ldots, h_{T-1}^{(1)}, \ldots, h_{0}^{(n)}, \ldots, h_{T-1}^{(n)}$ observed during the simulations, we associate a label to each action:

- 1 if we recommend the action
- -1 else

Example:

$U=\left\{u^{(1)}, u^{(2)}, u^{(3)}\right\}: h_{0}^{(1)} \leftrightarrow(-1,1,-1)$
\Rightarrow We recommend action $u^{(2)}$

We recommend actions which are optimal w.r.t. M
($f_{M}(\cdot)$ is known for $M \sim p_{\mathcal{M}}^{0}(\cdot)$).

Reprocess of all histories in order to fed the ANNs with vectors of fixed size.
\Rightarrow Extract a fixed set of N features: $\phi_{h_{t}}=\left[\phi_{h_{t}}^{(1)}, \ldots, \phi_{h_{t}}^{(N)}\right]$

We considered two types of features:

- Q-Values:

$$
\phi_{h_{t}}=\left[Q_{h_{t}}\left(x_{t}, u^{(1)}\right), \ldots, Q_{h_{t}}\left(x_{t}, u^{\left(n_{U}\right)}\right)\right]
$$

- Transition counters:

$$
\begin{aligned}
& \phi_{h_{t}}=\left[C_{h_{t}}\left(<x^{(1)}, u^{(1)}, x^{(1)}>\right), \ldots,\right. \\
&\left.C_{h_{t}}\left(<x^{\left(n_{x}\right)}, u^{\left(n_{u}\right)}, x^{\left(n_{x}\right)}>\right)\right]
\end{aligned}
$$

2. Train ANNs

Adaboost algorithm:

1. Associate a weight to each sample of the training dataset
2. Train a weak classifier on the weighted training dataset
3. Increase the weights of the samples misclassified by the combined weak classifiers trained previously
4. Repeat from Step 2

Problems

- Adaboost only addresses two-class classification problems (reminder: we have one class for each action) \Rightarrow Use SAMME algorithm instead
- Backpropagation does not take the weights of the samples into account
\Rightarrow Use a re-sampling algorithm for the training dataset

Approximate Bayes Optimal Policy Search using NNs

M. Castronovo, V. François-Lavet, R. Fonteneau, D. Ernst \& A. Couëtoux (ICAART 2017, 13 pages)

Contents

- Introduction
- Problem Statement
- Offline Prior-based Policy-search (OPPS)
- Artificial Neural Networks for BRL (ANN-BRL)
- Benchmarking for BRL
- Conclusion

Benchmarking for BRL

Bayesian litterature

Compare the performance of each algorithm on well-chosen MDPs with several prior distributions.

Our benchmark
Compare the performance of each algorithm on a distribution of MDPs using a (possibly) different distribution as prior knowledge.

Prior distribution $=$ Test distribution \Rightarrow Accurate case
Prior distribution \neq Test distribution \Rightarrow Inaccurate case
Additionally, computation times of each algorithm is part of our comparison criteria.

Motivations:

\Rightarrow No selection bias
($=$ good on a single MDP \neq good on a distribution of MDPs)
\Rightarrow Accurate case evaluates generalisation capabilities
\Rightarrow Inaccurate case evaluates robustness capabilities
\Rightarrow Real-life applications are subject to time constraints ($=$ computation times cannot be overlooked)

The Experimental Protocol

An experiment consists in evaluating the performances of several algorithms on a test distribution $p_{\mathcal{M}}(\cdot)$ when trained on a prior distribution $p_{\mathcal{M}}^{0}(\cdot)$.

One algorithm \rightarrow several agents (we test several configurations)

We draw N MDPs $M^{(1)}, \ldots, M^{(N)}$ from the test distribution $p_{\mathcal{M}}(\cdot)$ in advance, and we evaluate the agents as follows:
\rightarrow Build policy π offline w.r.t. $p_{\mathcal{M}}^{0}(\cdot)$
\rightarrow For each sampled MDP $M^{(i)}$, compute estimate $\bar{J}_{M^{(i)}}^{\pi}$ of $J_{M^{(i)}}^{\pi}$
\rightarrow Use these values to compute estimate $\overline{\mathfrak{J}}_{p_{\mathcal{M}}(\cdot)}^{\pi}$ of $\mathfrak{J}_{p_{\mathcal{M}}(\cdot)}^{\pi}$

Estimate J_{M}^{π} :
Truncate each trajectory after T steps:

$$
\begin{gathered}
\eta=0.001 \\
T=\left[\frac{\log (\eta \times(1-\gamma))}{R_{\max }} / \log \gamma\right\rceil \\
J_{M}^{\pi} \approx \bar{J}_{M}^{\pi}=\sum_{t}^{T} r_{t} \gamma^{t}
\end{gathered}
$$

where η denotes the accuracy of our estimate.

Estimate $\mathfrak{J}_{p_{\mathcal{M}}(\cdot)}^{\pi}$:
We compute $\mu_{\pi}=\overline{\mathfrak{J}}_{\rho_{\mathcal{M}}(\cdot)}^{\pi}$ and σ_{π}, the empirical mean and
standard deviation of the results observed on the N MDPs drawn from $p_{\mathcal{M}}(\cdot)$.

The statistical confidence interval at 95% for $\mathfrak{J}_{p_{\mathcal{M}}(\cdot)}^{\pi}$ is computed as:

$$
\begin{gathered}
\mathfrak{J}_{P_{\mathcal{M}}(\cdot)}^{\pi} \approx \overline{\mathfrak{J}}_{p_{\mathcal{M}}(\cdot)}^{\pi}=\frac{1}{N} \sum_{1 \leq i \leq N} \bar{J}_{M^{(i)}}^{\pi} \\
\mathfrak{J}_{p_{\mathcal{M}}(\cdot)}^{\pi} \in\left[\overline{\mathfrak{J}}_{p_{\mathcal{M}}(\cdot)}^{\pi}-\frac{2 \sigma_{\pi}}{\sqrt{N}} ; \overline{\mathfrak{J}}_{p_{\mathcal{M}}(\cdot)}^{\pi}+\frac{2 \sigma_{\pi}}{\sqrt{N}}\right]
\end{gathered}
$$

Time constraints

We want to classify algorithms based on their time performance.
More precisely, we want to identify the best algorithm(s) with respect to:

1. Offline computation time constraint
2. Online computation time constraint

We filter the agents depending on the time constraints:

- Agents not satisfying the time constraints are discarded
- For each algorithm, we select the best agent in average
- We build the list of agents whose performances are not statistically different than the best one observed (Z-test)

Experiments

GC - Generalised Chain

GDL - Generalised
Double-loop

Grid
$\operatorname{GC}\left(n_{x}=5, n_{U}=3\right) ; \operatorname{GDL}\left(n_{x}=9, n_{U}=2\right) ; \operatorname{Grid}\left(n_{x}=25, n_{U}=4\right)$

Simple algorithms

- Random
- ϵ-Greedy
- Soft-Max

State-of-the-art BRL algorithms

- BAMCP
- BFS3
- SBOSS
- BEB

Our algorithms

- OPPS-DS
- ANN-BRL

Results

Figure: Best algorithms w.r.t offline/online periods (accurate case)

Agent	Score on GC	Score on GDL	Score on Grid
Random	31.12 ± 0.90	2.79 ± 0.07	0.22 ± 0.06
e-Greedy	40.62 ± 1.55	3.05 ± 0.07	6.90 ± 0.31
Soft-Max	34.73 ± 1.74	2.79 ± 0.10	0.00 ± 0.00
BAMCP	35.56 ± 1.27	$\mathbf{3 . 1 1} \pm \mathbf{0 . 0 7}$	6.43 ± 0.30
BFS3	39.84 ± 1.74	2.90 ± 0.07	3.46 ± 0.23
SBOSS	35.90 ± 1.89	2.81 ± 0.10	4.50 ± 0.33
BEB	41.72 ± 1.63	3.09 ± 0.07	6.76 ± 0.30
OPPS-DS	$\mathbf{4 2 . 4 7} \pm \mathbf{1 . 9 1}$	3.10 ± 0.07	$\mathbf{7 . 0 3} \pm \mathbf{0 . 3 0}$
ANN-BRL (Q)	42.01 ± 1.80	$\mathbf{3 . 1 1} \pm \mathbf{0 . 0 8}$	6.15 ± 0.31
ANN-BRL (C)	35.95 ± 1.90	2.81 ± 0.09	4.09 ± 0.31

Table: Best algorithms w.r.t Performance (accurate case)

Figure: Best algorithms w.r.t offline/online periods (inaccurate case)

Agent	Score on GC	Score on GDL	Score on Grid
Random	31.67 ± 1.05	2.76 ± 0.08	0.23 ± 0.06
e-Greedy	37.69 ± 1.75	2.88 ± 0.07	0.63 ± 0.09
Soft-Max	34.75 ± 1.64	2.76 ± 0.10	0.00 ± 0.00
BAMCP	33.87 ± 1.26	2.85 ± 0.07	0.51 ± 0.09
BFS3	36.87 ± 1.82	2.85 ± 0.07	0.42 ± 0.09
SBOSS	38.77 ± 1.89	2.86 ± 0.07	0.29 ± 0.07
BEB	38.34 ± 1.62	2.88 ± 0.07	0.29 ± 0.05
OPPS-DS	$\mathbf{3 9 . 2 9} \pm \mathbf{1 . 7 1}$	$\mathbf{2 . 9 9} \pm \mathbf{0 . 0 8}$	1.09 ± 0.17
ANN-BRL (Q)	38.76 ± 1.71	2.92 ± 0.07	$\mathbf{4 . 2 9} \pm \mathbf{0 . 2 2}$
ANN-BRL (C)	36.30 ± 1.82	2.84 ± 0.08	0.91 ± 0.15

Table: Best algorithms w.r.t Performance (inaccurate case)

BAMCP versus OPPS: an Empirical Comparison

M. Castronovo, D. Ernst \& R. Fonteneau (BENELEARN 2014, 8 pages)

Benchmarking for Bayesian Reinforcement Learning
M. Castronovo, D. Ernst, A. Couëtoux \& R. Fonteneau (PLoS One 2016, 25 pages)

Contents

- Introduction
- Problem Statement
- Offline Prior-based Policy-search (OPPS)
- Artificial Neural Networks for BRL (ANN-BRL)
- Benchmarking for BRL
- Conclusion

Conclusion

Summary

1. Algorithms:

- Offline Prior-based Policy-search (OPPS)
- Artificial Neural Networks for BRL (ANN-BRL)

2. New BRL benchmark
3. An open-source library

BBRL: Benchmarking tools for Bayesian Reinforcement Learning

https://github.com/mcastron/BBRL/

Future work

- OPPS
\rightarrow Feature selection (PCA)
\rightarrow Continuous formula space
- ANN-BRL
\rightarrow Extension to high-dimensional problems
\rightarrow Replace ANNs by other ML algorithms (e.g.: SVMs, decision trees)
- BRL Benchmark
\rightarrow Design new distributions to identify specific characteristics
- Flexible BRL algorithm
\rightarrow Design an algorithm to exploit both offline and online phases

Thanks for your attention!

