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INTRODUCTION
Multiple myeloma (MM) is a haematological malignancy 
characterised by the clonal proliferation and accumu- 
lation of malignant plasma cells in the bone marrow 
and associated end-organ damage.1 Underlying MM 
are the oncogenic transformation of plasma cells and 
an altered bone marrow microenvironment that further 
contributes to MM development and progression. MM 
is the second most common haematological malignancy 
and has a yearly incidence of approximately 600 new 
cases in Belgium.2 In the past decade, considerable  
therapeutic advances have been made by introducing 
hematopoietic stem cell transplantation and new targeted 
drugs such as immunomodulatory agents, proteasome 

inhibitors and monoclonal antibodies. Unfortunately,  
MM remains an incurable disease with a median overall 
survival of approximately six years for newly diagnosed 
patients.3

MM bone disease is a hallmark of MM and a major 
cause of morbidity and mortality in MM patients. It is 
characterised by the development of persistent lytic 
bone lesions and an uncoupling of the bone remodelling 
process. Pain related to so-called skeletal-related events 
(SREs) is the most frequent presenting symptom of 
MM patients.4 In fact, up to 20% of patients present with 
a pathologic fracture.5 More than 80% of MM patients 
develop MM bone disease and almost 60% develop a 
pathologic fracture during the course of the disease.5,6 

Multiple myeloma bone disease:
from mechanisms to next generation 
therapy
 

SUMMARY
Multiple myeloma bone disease is a major cause of morbidity and mortality in multiple myeloma patients and 
persists even in patients in remission. Multiple myeloma bone disease is caused by an uncoupling of bone 
remodelling, with increased osteoclast activity and decreased osteoblast activity, culminating in lytic bone 
destruction. Bisphosphonates are the current standard-of-care but new therapies are needed. As the mole-
cular mechanisms controlling multiple myeloma bone disease are increasingly understood, new therapeutic 
targets are extensively explored in the preclinical setting and initial clinical trials with novel compounds show 
promising results. In this review, we provide a comprehensive overview of the biology of multiple myeloma 
bone disease, summarise its current clinical management and discuss preclinical and clinical data on next 
generation therapies.  
(BELG J HEMATOL 2017;8(2):66-74)
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These fractures occur most often in the spine, which 
can result in spinal cord compression, and other com-
mon sites include the femur, pelvis, ribs and humerus.7 
Also, MM-induced bone loss underlies the hypercalcemia 
that is often observed in MM patients, which contributes 
to renal insufficiency and causes morbidities such as 
nausea, vomiting and confusion.8 Aside from negatively 
impacting the quality of life and causing morbidity, MM 
bone disease has also been linked to patient survival, 
as the occurrence of a pathologic fracture increases the 
risk of death by more than 20%.9,10 This is the result of 
a vicious cycle of MM expansion and bone destruction, 
which occurs via several mechanisms. 
In this review, we will discuss the molecular mechanisms 
underlying MM bone disease, provide an overview of 
the current clinical management and discuss novel thera-
peutic strategies that are currently being developed. 

UNCOUPLING OF BONE REMODELLING 
IN THE MULTIPLE MYELOMA BONE 
MARROW MICROENVIRONMENT
In physiologic conditions, the resorption of bone by  
osteoclasts and the deposition of new bone by osteo-
blasts are tightly coupled processes that occur in the 
bone remodelling compartment, a specialised structure 
lined by canopy cells which contains the bone remodel-
ling unit, separating the latter from the rest of the bone 
marrow.11 MM cells physically disturb this compartment, 
allowing the exchange of soluble factors and direct cell-
cell interactions between MM cells and bone cells, i.e. 
osteoclasts, osteoblasts and osteocytes.12 Furthermore, 
direct and indirect interactions between MM cells  
and other cells in the MM microenvironment, such as  
immune cells and stromal cells, result in the release of 
a wide range of factors that modulate the activity of 
bone cells.13,14 Cumulatively, these mechanisms result 
in an uncoupled bone remodelling process, with an  
increased bone resorption by osteoclasts and a decreased 
bone formation by osteoblasts (Figure 1). 

INCREASED BONE RESORPTION BY 
OSTEOCLASTS
The receptor activator of NF-κB (RANK) - RANK ligand 
(RANKL) - osteoprotegerin (OPG) axis plays a central 
role in the regulation of osteoclast activity and bone 
remodelling. RANK is expressed by osteoclast precursors 
and binding of RANKL to RANK induces osteoclast 
differentiation. OPG, a decoy receptor for RANKL, is 
secreted by osteoblasts and bone marrow stromal cells 
and the RANKL/OPG ratio is a critical regulator of  

the bone resorption rate.15 RANKL/OPG is markedly 
increased in the MM microenvironment and serum 
RANKL/OPG negatively correlates with patient survival.16 
There is no consensus in the literature on whether MM 
cells themselves secrete RANKL. Farrugia et al. reported 
that patient-derived CD38+++ plasma cells express 
RANKL and can induce osteoclast differentiation.17  
Similarly, Sezer et al. reported RANKL expression in 
CD38++/CD138+ MM patient-derived plasma cells.18 
However, these findings are in contrast with multiple 
other studies, all indicating that MM cells themselves 
are not a source of RANKL but rather induce RANKL 
expression in the MM microenvironment, e.g. in  
stromal or immune cells.19-22 In addition, osteocytes, 
which are embedded in the bone matrix and are the 
most abundant bone cell, are also a major source of 
RANKL. Interestingly, MM cells induce apoptosis in 
osteocytes which results in increased RANKL produc-
tion by these cells, leading to increased osteoclast  
formation.23,24

MM cells secrete or induce the secretion of a range of 
other osteoclast activating factors in the MM micro- 
environment. This induction can be direct via cell-cell 
contact or occur via soluble factors. For example, the 
interaction between α4β1 integrin on MM cells and 
vascular cell adhesion molecule-1 (VCAM-1) on stromal 
cells induces RANKL production by the latter.25 Also, 
direct interactions between MM cells and osteoclasts 
can lead to osteoclast activation and bidirectional  
jagged-notch signalling has been implicated in this 
process.26,27 Moreover, MM cell-osteoclast interactions 
can enhance angiogenesis, resulting in increased osteo- 
clastogenic activity by endothelial cells.28 Finally, reports 
suggest that osteoclast differentiation from myeloid  
derived suppressor cells or fusion events of MM cells 
also contribute to bone resorption.12,29,30

Aside direct cell-cell interactions, many soluble factors 
that promote osteoclast differentiation have been iden-
tified in the MM microenvironment. Many of these  
act indirectly, i.e. by inducing the expression or poten-
tiating the activity of RANKL or other osteoclast  
activating factors in the MM microenvironment. These 
include cytokines and growth factors such as inter- 
leukin-6 (IL-6), macrophage inflammatory protein -1α 
(MIP-1α), interleukin-3 (IL-3), growth differentiation 
factor 15 (GDF-15), parathyroid hormone related protein 
(PTHrP) and the glycosphingolipid GM3, which incor-
porates into lipid rafts on the osteoclast surface and 
ensures efficient RANKL-induced downstream signal-
ling.31-36 In addition, a number of cytokines in the MM 
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microenvironment have been shown to directly induce 
osteoclast differentiation, independent of RANKL sig-
nalling, or stimulate osteoclast activity. These include 
IL-6, MIP-1α, tumour necrosis factor-α (TNF-α), hepa-
tocyte growth factor (HGF), activin A and matrix- 
metalloproteinase 13 (MMP-13).37-43 Of note, many of 
these signalling cascades are interwoven and contain 
feedback loops. For example, MIP-1α is secreted by MM 
cells and stimulates osteoclast formation directly and 

via the potentiation of RANKL signalling.32,44 Moreover, 
MIP-1α increases the expression of β1 integrin in MM 
cells leading to increased adhesion of these cells to 
stromal cells. This causes an increased secretion of 
RANKL, IL-6 and TNF-α by stromal cells, further  
enhancing tumour growth and bone resorption.45 Of 
note, serum MIP-1α levels most strongly correlate with 
MM bone disease and patients survival.46 A decrease of 
factors that normally hamper osteoclast differentiation 

FIGURE 1. Extracellular factors involved in MM bone disease. MM cells physically disrupt the bone remodelling compartment 

and secrete a range of factors that stimulate osteoclast activity and inhibit osteoblast activity. In addition, direct and indirect 

interactions between MM cells and stromal cells and the induction of osteocyte apoptosis by MM cells leads to the release 

of factors that also contribute to MM bone disease. Increased osteoclast activity leads to the release of growth factors such 

as TGF-β from the bone matrix and also reciprocally stimulates MM tumour growth. Conversely, inhibition of osteoblast activity 

results in a decrease of OPG and decorin secretion by these cells, leading to enhanced bone resorption and MM tumour 

growth. Pointed arrows indicate stimulatory interactions while flat arrows indicate inhibitory interactions. 
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also contributes to increased osteoclastogenesis in  
the MM microenvironment. Pennisi et al. reported  
that bidirectional ephrin B2/EphB4 signalling between  
osteoclasts and stromal cells hampers osteoclast diffe-
rentiation and that stromal expression of these factors 
is decreased in MM.47 In addition, the inhibition of  
osteoblast differentiation in MM causes a decrease in 
the levels of OPG, which is produced by mature osteo-
blasts.48  
Taken together, the increased osteoclastogenesis ob- 
served in MM is due to a complex signalling network 
consisting of direct and indirect pathways. MM cell- 
derived exosomes have been implicated in MM bone 
disease but their exact contribution remains to be elu-
cidated.49 Importantly, the increased osteoclast activity 
in MM not only causes exacerbated bone resorption, but 
also reciprocally stimulates tumour growth via multiple 
mechanisms, such as direct cell-cell contact, the pro-
duction of MM growth factors like IL-6, osteopontin, 
annexin II, a proliferation inducing ligand (APRIL) and 
B cell activating factor (BAFF) by osteoclasts or the  
stimulation of bone marrow angiogenesis.26,50-53 In  
addition, bone resorption could result in the release of 
growth factors such as transforming growth factor-β 
(TGF-β) from the bone matrix.54

DECREASED BONE FORMATION BY 
OSTEOBLASTS
Bone formation by osteoblasts is strongly and persis-
tently inhibited in MM.13,14,55 Even when patients are  
in complete remission for a long period of time, bone 
lesions due to MM bone disease rarely heal. This in- 
dicates that MM cells induce permanent changes in  
the bone marrow microenvironment that maintain  
osteoblast inhibition. Indeed, MM patient stromal cells  
retain an increased production of factors such as activin 
A, RANKL, IL6 and X-box binding protein 1 (XBP1s), 
even after weeks in culture.13,40 In addition, a lack of 
mature osteoblasts further supports MM growth since 
these cells produce decorin, a proteoglycan that sup-
presses MM cell proliferation.56 Interestingly, in the 
early phase of the disease there is an expansion of  
osteoblast precursors which secrete IL-3, IL-6 and granu-
locyte macrophage colony-stimulating factor (GM-CSF) 
and thereby stimulate MM cell growth and osteoclast 
differentiation.57 However, at later stages osteoblast  
formation and function are inhibited which, together 
with increased osteoclast activity, results in bone des- 
truction. 
Runt-related transcription factor 2 (runx2) is a key 

transcriptional regulator of osteoblast differentiation 
from mesenchymal progenitor cells and inhibition of 
runx2 in osteoblast precursors has been observed in 
the MM microenvironment.58 The mechanism under-
lying this inhibition is not completely understood, but 
MM cell-induced overexpression of the transcriptional 
repressors E4BP4 and growth factor independent 1 
(gfi1) in osteoblast progenitors seems to play a role.59,60

Similar to osteoclast activating factors, stromal- or  
MM cell-derived soluble factors have been identified 
that inhibit osteoblast differentiation or activity. Key 
mediators of osteoblast suppression in the MM micro- 
environment are inhibitors of the Wnt signalling  
pathway, including dickkopf-1 (DKK-1), sclerostin and 
secreted frizzled related proteins (sFRPs).61-64 Wnt  
signalling leads to activation and nuclear translocation 
of β-catenin and this pathway plays a pivotal regulatory 
role in osteoblast differentiation. DKK-1 is highly ex-
pressed by MM cells and its expression correlates with 
the extent of MM bone disease.65 However, the exact 
mechanism by which this factor contributes to osteoblast 
suppression remains unclear, as MM patients with 
high DKK-1 levels show equal levels of β-catenin com-
pared to patients without MM bone disease.63 Interes-
tingly, DKK-1 disrupts Wnt3a-regulated expression of 
OPG and RANKL in osteoblasts, which further contri-
butes to osteoclast formation and bone resorption.66  

In addition to RANKL, apoptotic osteocytes also release 
sclerostin, indicating that osteocyte apoptosis has both 
an osteoclast stimulatory and an osteoblast inhibitory 
effect.23 Other pathways contribute to osteoblast sup-
pression in MM bone disease as well. Tumour necrosis 
factor α (TNF-α) is secreted by MM cells, induces 
apoptosis in mature osteoblasts and suppresses osteo-
blast differentiation by downregulating key transcription 
factors such as TAZ, a transcriptional co-activator of 
runx2.67 Suppression of runx2 in osteoblast progenitors 
is further potentiated by IL-7 and appears to occur  
via the induction of gfi1. Also, IL-7 suppresses runx2 
activity rather than transcription.58,60 TGF-β is released 
from resorbed bone matrix and thought to mediate  
osteoblast suppression, as treatment with a TGF-β type 
1 receptor inhibitor restores osteoblast function in 
MM.68 In addition, several osteoblast inhibitory factors, 
including DKK-1, sclerostin, MIP-1α, activin A, HGF, 
IL-3, IL-7 and GDF15, display increased serum or  
bone marrow plasma levels in patients with MM bone 
disease.34,69-74 Also, osteoblast stimulatory factors, such 
as adiponectin, can be reduced in the MM micro- 
environment.75
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DIAGNOSIS AND MANAGEMENT OF 
MULTIPLE MYELOMA BONE DISEASE
Pain related to SREs is the most frequent presenting 
symptom of MM patients. MM bone disease negatively 
impacts patient survival, is a major cause of morbidity 
resulting in a decreased quality of life and increases 
treatment costs.9,10,76,77 In fact, SREs are a so-called 
myeloma-defining event, differentiating MM from its 
precursor diseases monoclonal gammopathy of unde- 
termined significance (MGUS) and smoldering MM 
(SMM).78,79 Thus, early detection and optimal manage-
ment of MM bone disease is of utmost importance. 
A radiographic skeletal survey is routinely performed 
during the initial diagnostic workup, as recommended 
by the International Myeloma Working Group (IMWG).80 
However, a wide range of studies have now shown  
improved sensitivity and specificity for the diagnosis 
and monitoring of MM bone disease when using modern 
techniques such as whole-body low-dose computed  
tomography (WBLDCT), magnetic resonance imaging 
(MRI) and positron emission tomography (PET)-based 
techniques.81 In fact, in many European institutions 
WBLDCT is now the standard technique used for MM 
patients.82 In addition, bone turnover markers such as 
serum c-terminal telopeptide of type 1 collagen (CTX-1) 
or urinary n-terminal telopeptide (uNTx) can be used 
to monitor MM bone disease progression, response to 
treatment or relapse.83 Of note, interpretation of bone 
turnover marker levels should be done with caution  
because of confounding factors such as the renal  
dysfunction often observed in MM patients, which  
interferes with the clearance of these markers, or non- 
malignant causes of altered bone turnover. A number 
of alternative serum biomarkers have recently been 
suggested including GDF15, decorin, bone specific  
alkaline phosphatase (BSALP), complement C4, miR-214 
and miR-135b.34,84-86

Bisphosphonates are the cornerstone of current MM 
bone disease therapy.87 Bisphosphonates are inorganic 
pyrophosphate analogues with a high affinity for calcium, 
causing these molecules to bind to hydroxyapatite and 
accumulate in the bone matrix. During bone resorption, 
bisphosphonates are released from the bone matrix 
and internalised by osteoclasts and their precursors  
via endocytosis.88 Once internalised, bisphosphonates 
prevent osteoclast differentiation, activation and induce 
apoptosis. Their mechanism of action depends on the 
type of bisphosphonate. First generation non-nitrogenous 
bisphosphonates, such as clodronate, are incorporated 
into non-hydrolysable analogues of ATP that accumulate 

and result in apoptosis. Second and third generation 
nitrogenous bisphosphonates, such as pamidronate and 
zoledronic acid, inhibit farnesyl diphosphate synthase 
in the mevalonate pathway, leading to inhibition of 
protein prenylation and ultimately to apoptosis.89 Intra-
venous pamidronate and zoledronic acid, and oral 
clodronate are effective for the prevention of SREs in MM 
and it is recommended that bisphosphonate therapy  
is initiated in MM patients with or without detectable  
osteolytic bone lesions on conventional radiography.80 
Moreover, bisphosphonate therapy should be considered 
for patients with MM precursor diseases, but only if 
these patients suffer from osteoporosis. Interestingly, a 
recent study by Raje et al. demonstrated the feasibility 
of dosing bisphosphonate therapy based on the moni-
toring of bone turnover makers.90 In this study, 4 mg 
zoledronic acid was given every twelve weeks instead of 
every four weeks if patients had uNTx levels lower than 
50 nmol/mmol creatinine and this resulted in a main-
tained low SRE rate. Pamidronate and zoledronic acid 
have comparable efficacy in reducing SREs in MM  
patients. However, zoledronic acid is recommended 
over clodronate because the former is more efficacious 
in preventing SREs and because its use is associated 
with a survival benefit.91 The mechanism by which 
bisphosphonates exert anti-tumour effects is not com-
pletely understood and mechanisms such as decreased 
angiogenesis, induction of MM cell apoptosis and in-
creased anti-tumour immunity have been suggested.92-94 
Based on these data, treatment with zoledronic acid or 
pamidronate is recommended for symptomatic MM  
patients with a recommended dose of 4 mg zoledronic 
acid or 90 mg pamidronate at 3- to 4-week intervals.95 
The advantage of bisphosphonates is not clear for  
patients without bone involvement on MRI or PET/
CT.96 In smoldering MM, bisphosphonates are not  
recommended and in cases of osteoporosis or vertebral 
fractures that are not due to myeloma, bisphosphonates 
should be given in asymptomatic patients with doses 
as given for osteoporosis, i.e. 5 mg zoledronic acid per 
year.79,96 For symptomatic MM patients, the IMWG  
recommends that bisphosphonates should be admini- 
stered for at least twelve months. After 24 months, it  
is at the physician’s discretion whether to continue 
with bisphosphonate therapy. In patients not achieving 
complete response or very good partial response, zole-
dronic acid improved overall survival and reduced 
SREs after receiving treatment for more than two years. 
Whether this beneficial effect also occurs in patients 
achieving at least a very good partial response is not 
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TABLE 1. Major clinical trials on MM bone disease (excluding bisphosphonates).

Target Drug Study design MM pts Outcome/Results Status/Reference

RANKL denosumab phase 2, denosumab 
vs. PAM/ZA

9 more frequent ↓uNTx, less on-study 
SREs

Fizazi et al. 2009

denosumab phase 2, denosumab 96 ↓sCTx in plateau/relapsed pts Vij et al. 2009

denosumab phase 3, denosumab 
vs. ZA

180 noninferior, trend to less on-study SREs, 
greater ↓uNTx, possible worse OS

Henry et al. 2011

denosumab phase 3, denosumab 
vs. ZA

1718 estimated completion: July 2016, 
primary outcome: time to on-study SRE

NCT01345019:  
active, not recruiting

cereblon, 
…

thalidomide Td+ZA 35 ↓sRANKL/OPG, ↓multiple resorption 
markers

Terpos et al. 2005

thalidomide Td+ZA 40 ↓uNTX/crosslaps in pts obtaining > or = 
partial response

Tosi et al. 2006

cereblon, 
…

enalidomide retrospective, Rd 106 ↓sCTx  and DKK-1 in responders Terpos et al. 2014

lenalidomide/ 
bortezomib

Rd or VRd 99 Rd: ↓sCTx in responders; VRd: ↓sCTx, 
sRANKL/OPG and  DKK-1 and ↑bALP 
and OC irrespective of response

Terpos et al. 2014

lenalidomide phase 2, Rd +  
doxorubicin

45 estimated completion: September 2016, 
other outcome: change in multiple bone 
markers

NCT02471820:  
active, not recruiting

26S 
proteasome

bortezomib restrospective, VTd 523 ↑ALP in pts with at least partial response Zangari et al. 2005

bortezomib V or Vd 34 ↓sRANKL, cCTx, TRAP and DKK-1; 
↑bALP and OC irrespective of response

Terpos et al. 2006

bortezomib V or Vd or non-V 
therapy

83 V or Vd: ↑bALP and OC irrespective of 
response

Heider et al. 2006

bortezomib V or Vd 21 ↑osteoblasts on biopsy of pts with at 
least partial response, trend to ↓cCTx

Giuliani et al. 2007

bortezomib Vd+ZA 27 ↑BMD in subset of relapsed pts Terpos et al. 2010

bortezomib phase 3, VMP vs. MP 682 ↑ALP correlating with response, ↓DKK-1 Delforge et al. 
2011

bortezomib Vd+ZA 17 primary outcome: BMD NCT00972959: 
completed

bortezomib Vd + doxorubicin + 
ASCT

19 estimated completion: December 2016, 
primary outcome: change in multiple 
bone markers

NCT01852799: 
active, not recruiting

20S 
proteasome

ixazomib phase 2, ixazomib 20 estimated completion: September 2017, 
primary outcome: change in serum 
osteocalcin

NCT02499081: 
recruiting

20S 
proteasome

carfilzomib phase 2, Cd 10 estimated completion: October 2016, 
secondary outcome: bone remodeling

NCT02020941: 
active, not recruiting
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TABLE 1. Continuation.

Target Drug Study design MM pts Outcome/Results Status/Reference

DKK-1 BHQ880 phase 1, BHQ880+ZA 28 primary outcome: time to on-study SRE, 
change in bone markers

NCT00741377: 
completed

BHQ880 phase 2, BHQ880+Vd 
vs. Vd

9 primary outcome: time to on-study SRE 
in pts with renal insufficiency

NCT01337752: 
completed

BHQ880 phase 2, BHQ880 41 secondary outcome: bone markers and 
BMD in high risk SMM pts

NCT01302886: 
completed

DKN-01 phase 1, DKN-01 39 secondary outcome: multiple bone 
markers

NCT01457417: 
complete

activin A sotatercept phase 2, sotatercept 
+MPT

30 pts off BPs: ↑BMD and bALP Abdulkadyrov  
et al. 2014

sotatercept phase 1, sotatercept 
+Rd

34 secondary outcome: multiple bone 
markers

NCT01562405: 
recruiting

sotatercept phase 2, sotatercept 20 primary outcome: change in bone 
markers

NCT02230917: 
recruiting

Major completed and ongoing (highlighted in red) clinical trials on MM bone disease with next generation therapies. References or 

clinicaltrials.gov identifier numbers are provided where available. Up arrows indicate an increase while down arrows indicate a decrease 

compared to baseline, placebo or control therapies (indicated in study design). 

Pts: patients, PAM: pamidronate, ZA: zoledronic acid, T: thalidomide, d: dexamethasone, R: lenalidomide, V: bortezomib, M: melphalan, 

P: prednisolone, C: carfilzomib, uNTx: urinary N-terminal telopeptide of collagen type 1, SRE: skeletal related event, sCTx: serum 

C-terminal telopeptide of collagen type 1, OS: overall survival, RANKL: receptor activator of NF-κB ligand, OPG: osteoprotegerin, 

DKK-1: dickkopf-1, (b)ALP: (bone specific) alkaline phosphatase, OC: osteocalcin, TRAP: tartrate-resistant acid phosphatase,  

BMD: bone mineral density, SMM: smoldering multiple myeloma, BPs: bisphosphonates.

clear. In these patients, discontinuation of bisphospho- 
nate therapy may be considered to prevent adverse  
effects. Bisphosphonates can be used to control bone 
pain and in a palliative setting radiotherapy can be 
considered to this end.80 Balloon kyphoplasty can  
be considered for symptomatic vertebral compression 
fractures although its effectiveness remains disputed. 
As a result, balloon kyphoplasty is no longer reimbursed 
in Belgium (at a cost per level of ~6000 euro). Ortho-
paedic consultation should be sought in case of impen-
ding fractures or spinal cord complications.80 
Bisphosphonates are generally well tolerated but serious 
adverse effects such as renal impairment or osteonecrosis 
of the jaw can occur. Therefore, preventive strategies 
should be adopted. In addition, bisphosphonate use is 
associated with a number of side effects such as atypical 
fractures, musculoskeletal pain, fever and hypocalcae-
mia.97 These adverse effects may limit bisphosphonate 

use in some patients. Also, bisphosphonates have no 
bone anabolic effect and as such do not allow for healing 
of skeletal lesions. Together, these arguments underline 
the need to develop alternative and more potent therapies 
for MM bone disease.

NOVEL THERAPEUTIC STRATEGIES
Numerous therapeutic strategies are being explored in 
MM bone disease in both preclinical studies in murine 
MM models and in clinical trials (Table 1). Because of 
its central role in osteoclast differentiation, targeting 
the RANK/RANKL/OPG axis holds great potential in 
MM bone disease. Initial studies showed that admini- 
stration of recombinant OPG prevents the development 
of MM bone disease and reduces tumour burden in a 
murine MM model and has a similar efficacy as pamidro- 
nate in MM patients.98,99 In addition, a human mono-
clonal antibody targeting RANKL has been developed, 
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denosumab, which hampers osteoclast differentiation 
and survival and as a result decreases cancer-induced 
bone destruction, including in MM.100 After promising 
initial clinical studies in different cancer types, phase III 
trials in MM patients comparing denosumab with zole-
dronic acid were performed and found that denosumab 
was superior to zoledronic acid in preventing skeletal 
events.101 Although denosumab received FDA approval 
for the prevention of SREs in patients with solid tumours, 
this was not the case for MM, as the mortality rate was 
higher in the denosumab arm compared to the control 
arm in these patients.101 However, Raje et al. recently 
raised valid concerns about differences in the baseline 
patient risk characteristics between the two arms.102  
To resolve this issue, a confirmatory phase III trial of 
denosumab and zoledronic acid in MM patients inclu-
ding adequate randomisation is currently underway 
(NCT01345019). 
In order to increase osteoblast differentiation and acti-
vity, compounds targeting the Wnt signalling pathway 
have been developed. Treatment with a DKK-1 neutra-
lising antibody, BHQ880, resulted in increased osteo-
blast numbers and trabecular bone as well as an inhi- 
bition of MM cell growth in murine MM models.103 
This led to the evaluation of BHQ880 and an alterna-
tive anti-DKK-1 antibody, DKN-01, in a number of cli-
nical trials of which the complete results have yet to be  
reported. Similarly, neutralising anti-sclerostin anti- 
bodies, including romosozumab, show promise in in-
creasing bone formation after pathological bone loss. 
Recently, Eda et al. reported that inhibition of sclerostin 
reversed MM bone disease in a murine xenograft MM 
model.104 
Finally, blockade of MM cell-derived TNF-α and IL-7 
prevented gfi1 induction in osteoblasts in vitro, relie-
ving the suppression of runx2 and restoring osteoblast 
function.60 These results warrant further exploration of 
targeting this pathway in vivo. 
Cytokines that have a stimulatory effect on osteoclasts 
as well as an inhibitory effect on osteoblasts are thera-
peutic targets with great potential for MM bone disease. 
Activin A is a candidate for such an approach and treat-
ment with RAP-011, a soluble activin A receptor preven-
ted the development of bone disease in MM-bearing 
mice.42 A similar compound, sotatercept, was tested in 
a phase II trial and partially repaired bone lesions in 
MM patients.105 Additional clinical trials with sotater-
cept are currently recruiting patients. Other dual effect  
cytokines for which further exploration as therapeutic  
targets is warranted include MIP-1α, TNF-α, HGF, 

IL-3 and GDF15. Finally, many of the previously des-
cribed factors involved in the biology of MM bone  
disease have been targeted via different means in  
different murine MM models, including ephrinB2/
ephB4, adiponectin, MIP-1α and its receptor C-C motif 
chemokine receptor 1 (CCR1), BAFF, notch and 
TGF-β.47,75,106-110 In all these studies, an inhibition of 
MM bone disease was observed.
Recently, a number of preclinical studies explored the 
therapeutic potential of small-molecule inhibitors of  
intracellular signal transduction pathways in MM bone 
disease. Bruton’s tyrosine kinase (BTK) is expressed  
by MM cells and osteoclasts and regulates osteoclast 
differentiation.111 BTK inhibition with ibrutinib inhibits 
MM growth and osteoclast activation in murine MM 
models, resulting in a decrease in MM bone disease.112 
Similar to BTK, SRC kinase is also involved in osteoclast 
activation and negatively regulates osteoblast function. 
Targeting of SRC kinase with saracatinib resulted in a 
prevention of MM bone disease in different murine 
models and initial reports suggest dasatinib treatment 
has a similar effect.113,114 Similar to cytokine-targeted 
compounds, a wide range of small molecules targeting 
many cellular processes have been explored in preclinical 
studies as therapies for MM bone disease, with varying 
degrees of success. Amongst others, positive results 
were obtained by inhibiting phosphatidylinositol-4,5- 
bisphosphate 3-kinase (PI3K) and mammalian target 
of rapamycin (mTOR), glycosphingolipid synthesis,  
sequestosome1/p62, p38 mitogen activated protein  
kinase (MAPK), AKT kinase and nicotinamide phos- 
phoribosyltransferase (NAMPT).36,115-120

Drugs that are part of standard MM care not only reduce 
tumour load and thereby decrease the effect of MM 
cells on the bone marrow microenvironment, leading 
to less bone destruction, but also directly affect bone 
cell function. Proteasome inhibition leads to apoptosis 
of MM cells and several proteasome inhibitors have 
been approved for the treatment of MM patients, i.e. 
bortezomib, carfilzomib and ixazomib. Proteasome  
inhibition has a bone anabolic effect by promoting  
osteoblast differentiation.121 In murine MM models, 
bortezomib induced an increase in bone formation and 
mineral density and similar results have recently been 
reported with ixazomib.122,123 Also, bortezomib decreased 
DKK-1 levels in bone cells and in MM patients and  
inhibits osteoclast function.65,124,125 This anabolic effect 
is clinically important as a healing of lytic lesions has 
been observed in some MM patients treated with these 
agents, with increased serum markers of osteoblast  
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activity such as alkaline phosphatase.126 Therefore,  
further studies are needed on how proteasome inhi-
bitors should be used optimally.127 Immunomodulatory 
drugs (IMiDs) also directly affect bone cell function. 
IMiDs reduce osteoclastic resorption by inhibiting dif-
ferent factors such as PU.1 and BAFF.128,129 In addition, 
IMiDs hamper the interactions between MM cells  
and other cells in the MM microenvironment such as  
stromal cells, osteoclasts and immune cells, interrupting 
the vicious cycle of bone destruction.130 Similar to  
proteasome inhibitors, this is reflected in a number of 
clinical trials that show decreased bone turnover mar-
kers, DKK-1 levels and RANKL/OPG ratios in patients 
treated with IMiDs. 

CONCLUSION
MM patients are benefiting from novel therapies that 
are being developed at a fast rate and markedly increase 
survival rates. However, MM bone disease persists in 
the vast majority of these patients and is a major cause 
of morbidity. Also, MM bone disease is involved in  
a vicious cycle of bone destruction and MM growth 
and thus directly contributes to increased mortality. 
Therefore, prediction, early detection and monitoring 
of MM bone disease are of great importance, warranting 

continued optimisation and exploration of imaging 
techniques and reliable biomarkers. Also, the develop-
ment of new therapies is needed to prolong patient  
survival and improve their quality of life. In recent 
years, a large amount of studies have explored new  
therapeutic targets for MM bone disease, many of 
which show promising results in a preclinical setting. 
Of particular interest are those compounds that have  
a combined effect on osteoclasts and osteoblasts or 
compounds with a strong bone anabolic effect, as bone 
lesions in MM patients rarely heal. Also, new insights 
in the biology of MM bone disease resulted in the  
identification of important processes which have yet to 
be explored in a therapeutic setting, such as osteocyte 
apoptosis or the signalling pathways that suppress 
runx2 in osteoblast progenitors. Clinical trials with 
denosumab showed promising results and trials with 
new compounds or combinations are ongoing with the 
goal to make these next generation therapies available 
for MM, and possibly MGUS and SMM, patients. 
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