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Abstract — The sesquiterpene (B)farnesene ([) is the primary component of the alarm
pheromone of most aphid species. It is releasedsponse to physical stress including attack
by natural enemies and causes aphids to ceasendeadd disperse. i also acts as a
kairomonal cue for aphid natural enemies. In thesent study, we collected the headspace
volatiles released by aphid colonies of differeizes. GC-MS analysis demonstrated the
presence of [ in absence of predator attack. A quadratic retethip was found between the
released K)-pB-farnesene amounts and aphid colony size. Behaliampact of aphid alarm
pheromone towardt. balteatus female oviposition behaviour was also demonstratetthis
work. These results highlight the primary role bé tsmall but continuous release of aphid
alarm pheromone in mechanisms of decision-makinggdyd predators during their foraging

and egg-laying behaviour.

Key words: Semiochemicalgpisyrphus balteatus, Myzus persicae, aphid alarm pheromone,

(E)-p-farnesene
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Introduction

(E)-pB-Farnesene (), the main component of the aphid alarm pheronvea® identified in
16 aphid species, alone or associated with othdecules (Franciet al. 2005). Previous
behavioural studies have demonstrated the kairohrotea of EBF in various aphid natural
enemies, including ladybeetles, hoverflies and gacahymenoptera (Dwet al. 1998; Al
Abassiet al. 2000; Harmeét al. 2007; Verheggest al. 2007, 2008).

In the hoverflyE. balteatus, there is a good evidence from laboratory andl fetlidies for the
existence of a positive density-dependent resptmaghid colony size in term of oviposition
(Dixon 1959; Chandler 1968; 1td and Ilwao 1977; Bargt al. 1998; Scholz and Poehling
2000; Sutherlandt al. 2001; Almohamadt al. 2006). However, there is only little work on
the role of odour cues in predatory hoverfliesaation (Laubertieet al. 2006; Verheggest

al. 2008 ; Almohamad et al. 2007 ; 2008).

The present study aims to understand the role enatal cues released from non-preyed
aphid colonies on decision—making processes tlaat te oviposition in femal&. balteatus.

In order to evaluate the olfactory signal releabgdhe tested colonies, we quantified the
volatile organic compounds released in their heacksp The oviposition behaviour Bf
balteatus was subsequently investigated with respecMtopersicae colonies of different

sizes.

Materials and Methods

Plants and insects - Broad bean plantd/{cia faba L.) were grown in 30 x 20 x 5 cm plastic
trays filled with a mix of perlite and vermiculitél/l) and maintained in controlled
environment growth rooms (16:8 Light: Dark ; 20 ¥C). Two aphid species, namely.
persicae and Megoura viciae Buckton were taken from stock rearing dnfaba, in separate

air-conditioned rooms under the same conditionabawve. AdultE. balteatus were reared in
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75 x 60 x 90 cm cages and were provided with bdleated pollen, sugar and water. Broad
beans infested witM. viciae were introduced into the cages for 3 h every tagsdo allow
oviposition. Hoverfly larvae were mass-reared irate plastic boxes (110 x 140 x 40 mm)
and were fed dailgd libitum with M. viciae as standard diet.

Leaf disc system — The leaf disc-system consisted of (1) a circulaceiofV. faba leaf, (2)
aphids and (3) 7 ml of an agar diet (agar 1% smhuiv:w), placed in a 25 mm diameter Petri
dish, to reduce desiccation. Leaves were infesi#lu different quantities oM. persicae and
were kept for 24h in a controlled conditions incaing16:8 Light: Dark; 20 + 1°C) before
testing.

Influence of aphid colony size on syrphid oviposition rate — In no-choice experiments, a
singleE. balteatus female was introduced in a net cage and allowddyt@ggs for 3h on the
leaf disc supporting 8. persicae colony made of 25, 75 or 125 individuals. The ldefc
system was placed on a Plexiglass holder at a hefgBO cm. This setup was previously
shown as an efficient method to evaluate the owiposbehaviour of the hoverfl\E.
balteatus in response to aphid-infested plants (Almoharetaal. 2006). The number of eggs
laid (oviposition rate) on the leaf disc was codnt€his experiment was replicated 10 times
for each aphid colony size.

Collection and analysis of volatile chemical emissions

Volatile collection system — Volatile chemicals were collected using a push/mdlatile
collection system consisting of a glass air-coltecthamber (Schott®, 12 cm base-diameter,
35 cm high) placed inside an incubator set at 22G; and previously washed with hot water
andn-hexane. The leaf disc system was placed on adbhssi holder similar to those used in
the above-mentioned bio-assays. Incoming air washegul through an in-line activated
charcoal filter before entering the glass chamlea dlow of 200 ml/min. The volatile-

enriched air was then pulled through an adsorgt@m containing 40 mg SuperQ® (Alltech,
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Deerfield, IL, USA). Six replicates were conductiead each aphid colony size and four
replicates for the control (i.e. an aphid-free lésic system). Volatiles were collected during
3h. Filters were eluted with 150 pl ofhexane and nonyl acetate (400 ng) was added to eac
sample as internal standard. The extracted sam@esdirectly stored in a freezer at — 80 °C
until GC analysis. Identification and quantificatiovere performed respectively by GC-MS

and GC-FID.

Statistical analyses — Regression analysis was used to correlate agmgity with number of
eggs laid by femal&. balteatus and amounts of release@®fE All analyses were performed

using Minitab® software (14.2 version, Minitab Ir8tate College, PA, USA).

Results and Discussion

EBF emission from non-preyédd. persicae was demonstrated in the present study by volatile
collection and subsequent GC-MS analyses. Regressialysis revealed that there was a
significant quadratic relationship between the amaf released i (Y) andM. persicae
colony sizes (X) (k23 = 14.89; P<0.0012 = 0.9997). This relationship can be represensed a
Y= 0.0143X2 — 0.2265X (Fig. 1). Other chemical camuapds were also identified, such as
hexanal,3-methyl-2-pentanongj-terpinene, 6-methyl-5-hepten-2-one and limonertgeesé
latter compounds were found to be released fronfidisa system and they were not
specifically induced by the presenceMfpersicae colony on leaf disc. Geranyl acetone was
also identified and its released amount was slgielcreasing with aphid colony size.

EBF constant emission in absence of predators caa bath positive and negative impacts.
Aphids would have advantage to release small arsooinglarm pheromone in the case of
crowded colonies to cause dispersion of the indizisl and to help preserving the host plant.

This effect would complete the already well-knowfieet of winged-morph induction
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described by Kunert et al (2005). However, a cariganission of alarm pheromone increases
the risk of the releasing colony to be located Ioatural enemy.

According to previous observations, nearly no e@g Vaid in absence of aphids on the leaf
disc (Fig. 1). The number of eggs laid (Y) increhsggnificantly and linearly with the size of
the aphid colony (X) (Fzg=94.12; P < 0.0012 = 0.9996), according to Y = 0.3475X + 0.1.
Several studies already suggested that the ovipogsite of syrphid females was a function
of aphid densities (Chandler 1968; 1t6 and Iwao 7}9Bargenet al. 1998; Scholz and
Poehling 2000; Sutherlanet al. 2001; Almohamadkt al. 2006). Our regression analysis
suggests an adaptive oviposition behaviour leatliegemerging larvae to locate immediately
sufficient food resources. According to Bargeinal. (1998), the number of eggs laid by
female hoverflies does not only depend on aphidntityaon the plant, but also on the
presence and quantity of oviposition-eliciting dabses emitted from the prey and the
infested plant. Previous observations have indeeds that predatory hoverflies oviposit in
response to volatile compounds emitted from aplaidd their liquid secretions such as
honeydew (Dixon 1959; Bombosch and Volk 1966; Bimeg and Powel 1992; Shonouda
1998; Verheggest al. 2008).

Along with the previous results of Verheggen e{2008) on the role of oviposition stimulant
of synthetic BF, these results demonstrate the strong implicaifcaphid alarm pheromone

in aphidophagous syrphid oviposition behaviour.
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178 Figure legend
179 Figure 1. Amount of E)-B- farnesene and mean numbeiEobalteatus eggs laid in response
180 to increasingM. persicae colony size on broad bean leaf disc. Bars indistdadard errors of

181 the means.
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