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Abstract – The sesquiterpene (E)-β-farnesene (Eβf) is the primary component of the alarm 9 

pheromone of most aphid species. It is released in response to physical stress including attack 10 

by natural enemies and causes aphids to cease feeding and disperse. Eβf also acts as a 11 

kairomonal cue for aphid natural enemies. In the present study, we collected the headspace 12 

volatiles released by aphid colonies of different sizes. GC-MS analysis demonstrated the 13 

presence of Eβf in absence of predator attack. A quadratic relationship was found between the 14 

released (E)-β-farnesene amounts and aphid colony size. Behavioural impact of aphid alarm 15 

pheromone toward E. balteatus female oviposition behaviour was also demonstrated in this 16 

work. These results highlight the primary role of the small but continuous release of aphid 17 

alarm pheromone in mechanisms of decision-making by aphid predators during their foraging 18 

and egg-laying behaviour.  19 
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Introduction  24 

(E)-β-Farnesene (EβF), the main component of the aphid alarm pheromone was identified in 25 

16 aphid species, alone or associated with other molecules (Francis et al. 2005). Previous 26 

behavioural studies have demonstrated the kairomonal role of EβF in various aphid natural 27 

enemies, including ladybeetles, hoverflies and parasitic hymenoptera (Du et al. 1998; Al 28 

Abassi et al. 2000; Harmel et al. 2007; Verheggen et al. 2007, 2008).  29 

In the hoverfly E. balteatus, there is a good evidence from laboratory and field studies for the 30 

existence of a positive density-dependent response to aphid colony size in term of oviposition 31 

(Dixon 1959; Chandler 1968; Itô and Iwao 1977; Bargen et al. 1998; Scholz and Poehling 32 

2000; Sutherland et al. 2001; Almohamad et al. 2006). However, there is only little work on 33 

the role of odour cues in predatory hoverflies attraction (Laubertie et al. 2006; Verheggen et 34 

al. 2008 ; Almohamad et al. 2007 ; 2008).  35 

The present study aims to understand the role of chemical cues released from non-preyed 36 

aphid colonies on decision–making processes that lead to oviposition in female E. balteatus. 37 

In order to evaluate the olfactory signal released by the tested colonies, we quantified the 38 

volatile organic compounds released in their headspaces. The oviposition behaviour of E. 39 

balteatus was subsequently investigated with respect to M. persicae colonies of different 40 

sizes.  41 

 42 

Materials and Methods  43 

Plants and insects - Broad bean plants (Vicia faba L.) were grown in 30 x 20 x 5 cm plastic 44 

trays filled with a mix of perlite and vermiculite (1/1) and maintained in controlled 45 

environment growth rooms (16:8 Light: Dark ; 20 ± 1°C). Two aphid species, namely M. 46 

persicae and Megoura viciae Buckton were taken from stock rearing on V. faba, in separate 47 

air-conditioned rooms under the same conditions as above. Adult E. balteatus were reared in 48 
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75 x 60 x 90 cm cages and were provided with bee-collected pollen, sugar and water. Broad 49 

beans infested with M. viciae were introduced into the cages for 3 h every two days to allow 50 

oviposition. Hoverfly larvae were mass-reared in aerated plastic boxes (110 x 140 x 40 mm) 51 

and were fed daily ad libitum with M. viciae as standard diet.  52 

Leaf disc system – The leaf disc-system consisted of (1) a circular piece of V. faba leaf, (2) 53 

aphids and (3) 7 ml of an agar diet (agar 1% solution w:w), placed in a 25 mm diameter Petri 54 

dish, to reduce desiccation. Leaves were infested with different quantities of M. persicae and 55 

were kept for 24h in a controlled conditions incubator (16:8 Light: Dark; 20 ± 1°C) before 56 

testing.  57 

Influence of aphid colony size on syrphid oviposition rate – In no-choice experiments, a 58 

single E. balteatus female was introduced in a net cage and allowed to lay eggs for 3h on the 59 

leaf disc supporting a M. persicae colony made of 25, 75 or 125 individuals. The leaf disc 60 

system was placed on a Plexiglass holder at a height of 20 cm. This setup was previously 61 

shown as an efficient method to evaluate the oviposition behaviour of the hoverfly E. 62 

balteatus in response to aphid-infested plants (Almohamad et al. 2006). The number of eggs 63 

laid (oviposition rate) on the leaf disc was counted. This experiment was replicated 10 times 64 

for each aphid colony size.  65 

Collection and analysis of volatile chemical emissions  66 

Volatile collection system – Volatile chemicals were collected using a push/pull volatile 67 

collection system consisting of a glass air-collection chamber (Schott®, 12 cm base-diameter, 68 

35 cm high) placed inside an incubator set at 21 ± 1°C, and previously washed with hot water 69 

and n-hexane. The leaf disc system was placed on a Plexiglass holder similar to those used in 70 

the above-mentioned bio-assays. Incoming air was pushed through an in-line activated 71 

charcoal filter before entering the glass chamber at a flow of 200 ml/min. The volatile-72 

enriched air was then pulled through an adsorption trap containing 40 mg SuperQ® (Alltech, 73 
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Deerfield, IL, USA). Six replicates were conducted for each aphid colony size and four 74 

replicates for the control (i.e. an aphid-free leaf disc system). Volatiles were collected during 75 

3h. Filters were eluted with 150 µl of n-hexane and nonyl acetate (400 ng) was added to each 76 

sample as internal standard. The extracted samples were directly stored in a freezer at − 80 °C 77 

until GC analysis. Identification and quantification were performed respectively by GC-MS 78 

and GC-FID.  79 

 80 

Statistical analyses – Regression analysis was used to correlate aphid density with number of 81 

eggs laid by female E. balteatus and amounts of released EβF. All analyses were performed 82 

using Minitab® software (14.2 version, Minitab Inc, State College, PA, USA). 83 

 84 

Results and Discussion 85 

EβF emission from non-preyed M. persicae was demonstrated in the present study by volatile 86 

collection and subsequent GC-MS analyses. Regression analysis revealed that there was a 87 

significant quadratic relationship between the amount of released EβF (Y) and M. persicae 88 

colony sizes (X) (F2,23 = 14.89; P<0.001; r² = 0.9997). This relationship can be represented as 89 

Y= 0.0143X² – 0.2265X (Fig. 1). Other chemical compounds were also identified, such as 90 

hexanal, 3-methyl-2-pentanone, β-terpinene, 6-methyl-5-hepten-2-one and limonene. These 91 

latter compounds were found to be released from leaf-disc system and they were not 92 

specifically induced by the presence of M. persicae colony on leaf disc. Geranyl acetone was 93 

also identified and its released amount was slightly decreasing with aphid colony size.  94 

EβF constant emission in absence of predators can have both positive and negative impacts. 95 

Aphids would have advantage to release small amounts of alarm pheromone in the case of 96 

crowded colonies to cause dispersion of the individuals and to help preserving the host plant. 97 

This effect would complete the already well-known effect of winged-morph induction 98 
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described by Kunert et al (2005). However, a constant emission of alarm pheromone increases 99 

the risk of the releasing colony to be located by a natural enemy.  100 

According to previous observations, nearly no egg was laid in absence of aphids on the leaf 101 

disc (Fig. 1). The number of eggs laid (Y) increased significantly and linearly with the size of 102 

the aphid colony (X) (F1,39 = 94.12; P < 0.001; r² = 0.9996), according to Y = 0.3475X + 0.1. 103 

Several studies already suggested that the oviposition rate of syrphid females was a function 104 

of aphid densities (Chandler 1968; Itô and Iwao 1977; Bargen et al. 1998; Scholz and 105 

Poehling 2000; Sutherland et al. 2001; Almohamad et al. 2006). Our regression analysis 106 

suggests an adaptive oviposition behaviour leading the emerging larvae to locate immediately 107 

sufficient food resources. According to Bargen et al. (1998), the number of eggs laid by 108 

female hoverflies does not only depend on aphid quantity on the plant, but also on the 109 

presence and quantity of oviposition-eliciting substances emitted from the prey and the 110 

infested plant. Previous observations have indeed shown that predatory hoverflies oviposit in 111 

response to volatile compounds emitted from aphids and their liquid secretions such as 112 

honeydew (Dixon 1959; Bombosch and Volk 1966; Budenberg and Powel 1992; Shonouda 113 

1998; Verheggen et al. 2008). 114 

Along with the previous results of Verheggen et al. (2008) on the role of oviposition stimulant 115 

of synthetic EβF, these results demonstrate the strong implication of aphid alarm pheromone 116 

in aphidophagous syrphid oviposition behaviour. 117 

118 
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Figure legend  178 

Figure 1. Amount of (E)-β- farnesene and mean number of E. balteatus eggs laid in response 179 

to increasing M. persicae colony size on broad bean leaf disc. Bars indicate standard errors of 180 

the means. 181 
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