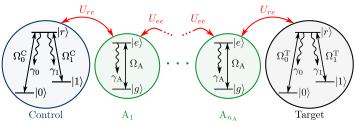


Long-range Rydberg-blockade entangling gate mediated by auxiliary atoms

Alexandre Cesa and John Martin

Institut de Physique Nucléaire, Atomique et de Spectroscopie, CESAM, Université de Liège, Bât. B15, B - 4000 Liège, Belgium

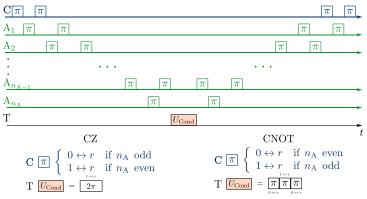
Introduction


Two-qubit entangling gates between nearest neighbour qubits encoded in the ground state manifold of neutral atoms in a lattice can be implemented using Rydberg Blockade [1]. However, as Rydberg blockade becomes less effective with interatomic distance, such protocols fail for atoms separated by a few or more lattice sites. In this work, we propose a protocol implementing CZ and CNOT gates between qubits arbitrarily far apart in the lattice [2].

$$\begin{split} U_{\rm CZ} &= |00\rangle\langle00| - |01\rangle\langle01| - |10\rangle\langle10| - |11\rangle\langle11|, \\ U_{\rm CNOT} &= |00\rangle\langle00| + |01\rangle\langle01| + |10\rangle\langle11| + |11\rangle\langle10| \end{split}$$

System Non-Coding quantum bus

• Qubits encoded in 1D chain of atoms Quantum bus made of n_A ancillary non-coding atoms


Both types of atom are individually adressable

- Dipole-dipole interaction between atoms in Rydberg state $(|r\rangle, |e\rangle)$ \Rightarrow doubly excited state energy shift $U \Rightarrow$ dipole blockade
- Dissipation of atoms excited to Rydberg states ⇒ master equation

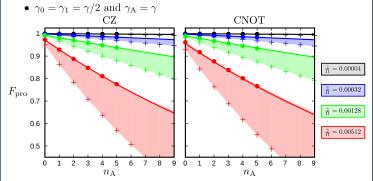
Protocol

- Strong Rydberg blockade regime $(U \gg \Omega) \Rightarrow$ conditional dynamics [1]
- All ancillary atoms initially in $|g\rangle$

- Rydberg excitation hopping from one atom to its next nearest neighbour
- At most one Rydberg excitation at a time in the whole system
- $n_{\text{pulse}} = 4n_{\text{A}} + 2 + n_{\text{T}}$ with $n_{\text{T}} = 2$ (CZ) or $n_{\text{T}} = 3$ (CNOT)

Results and discussion

Gate fidelity: imperfect blockade


- Gate error proportional to probability of double excitation $P_2 \propto \Omega^2/U^2$
- Process fidelity ($\gamma_i = 0, i = 0, 1, A$)

$$F_{\text{pro}}^{\gamma_i=0}\left(\frac{U}{\Omega}\right) = 1 - \alpha \left(\frac{U}{\Omega}\right)^{-2}$$

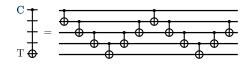
with $0.1 \lesssim \alpha \lesssim 2$ a constant whose value depends only on $n_{\rm A}$ and $U_{\rm Cond}$

Gate Fidelity: effects of dissipation

• $U_{rr}/\Omega = U_{re}/\Omega = U_{ee}/\Omega = 200 \Rightarrow 1 - F_{proc} < 10^{-4}$

dots: process fidelity F_{pro} [3]

crosses: lower bound on process fidelity as given by Hofmann [4] shaded area is delimited by upper and lower bounds on $F_{\rm pro}$


 \bullet Process fidelity \Leftrightarrow cumulated time spent by the atoms in Rydberg states

$$\begin{split} F_{\mathrm{pro}}\left(\frac{U}{\Omega},\{\gamma_i\}\right) &\approx F_{\mathrm{pro}}^{\gamma_i=0}\left(\frac{U}{\Omega}\right)e^{-(\gamma_0+\gamma_1)t_{\mathrm{q}}}e^{-\gamma_{\mathrm{A}}t_{\mathrm{A}}(n_{\mathrm{A}})} \quad \text{(solid line)} \\ \mathrm{CZ} \ : \ t_{\mathrm{q}} &= \frac{2\pi+6\,t_{\mathrm{eff}}^\pi}{2}, \quad t_{\mathrm{A}}(n_{\mathrm{A}}) = \frac{4\pi n_{\mathrm{A}} + 4n_{\mathrm{A}}t_{\mathrm{eff}}^\pi - 2t_{\mathrm{eff}}^\pi}{2} \\ \mathrm{CNOT} \ : \ t_{\mathrm{q}} &= \frac{2\pi+7\,t_{\mathrm{eff}}^\pi}{2}, \quad t_{\mathrm{A}}(n_{\mathrm{A}}) = \frac{4\pi n_{\mathrm{A}} + 4n_{\mathrm{A}}t_{\mathrm{eff}}^\pi + \pi - 2t_{\mathrm{eff}}^\pi}{2} \end{split}$$

with t_{eff}^{π} the effective time spent in Rydberg state during a π -pulse (estimated to 0.39 by numerical simulation)

Comparison with sequence of nearest neighbour CNOTs

• CNOT between qubits separated by $n_{\rm A}-1$ other qubits using sequence of nearest neighbours CNOTs [5] \Rightarrow process fidelity $F_{\text{pro}}^{\text{nn}}$

- Advantages of our protocol
 - Lower number of pulses $4n_A + 5$ instead of $20(n_A - 1)$ - Improved fidelity $\gamma_0 = \gamma_1 = \gamma/2, \, \gamma_A = \gamma$ $n_{\rm A}=2,\ 3,\ 4,\ 5$ dots: numerical simulation

solid line: theoretical estimation

0.002 0.003 0.004

- D. Jaksch et~al., Phys. Rev. Lett. $\bf 85$, 2208 (2000). A. Cesa and J. Martin, arXiv:1703.01767.
- A. Gilchrist et al., Phys. Rev. A 71, 062310 (2005)
- H. F. Hofmann, Phys. Rev. Lett. **94**, 160504 (2005). Md. M. Rahman and G. W. Dueck, arXiv:1508.05430. L. Isenhower *et al.*, Phys. Rev. Lett. **144**, 010503 (2010).
- M. M. Müller et al., Phys. Rev. A 89, 032334 (2014).
- 8 K. M. Maller *et al.*, Phys. Rev. A **92**, 022336 (2015). 9 I. I. Beterov and M. Saffman, Phys. Rev. A **92**, 042710 (2015).

Perspectives and experimental considerations

- Optimized pulses to improve process fidelity
- Experimental implementations
 - Same species for both qubit and ancillary atoms [6,7,8]
 - Two different atomic species for qubit and ancillary atoms [9]