Improved Blood Glucose Forecasting Models using Changes in Insulin Sensitivity in Intensive Care Patients Uyttendaele V^{1,2}, Dickson JL², Shaw G³, Desaive T¹, Chase JG² ¹GIGA – In Silico Medicine, University of Liège, Belgium ²Department of Mechanical Engineering, University of Canterbury, New Zealand ³Department of Intensive Care, Christchurch Hospital, New Zealand # **Background & Objectives** Glycaemic control (GC) to improve outcomes in intensive care patients has been proven difficult to achieve safely, yielding significant glycaemic variability and hypoglycaemia. **STAR** is a model-based GC protocol using a **stochastic model** to forecast distributions of likely future changes in **insulin sensitivity (SI)**, based on its current value. This is used to determine **likely future blood glucose** (BG) levels for a given intervention, enabling optimal dosing (**Figure 1**). This study investigates a novel 3D model capable to predict likely future distribution of SI using both current SI and its prior variability ($\%\Delta$ SI). ### Methods Metabolic data from 3 clinical ICU cohorts totalling 819 episodes and 68629 hours of treatment under STAR and SPRINT protocols are used in this study (**Table 1**). **Table 1** – Summary of patient demographics for three cohorts. Results are given as median [IQR] where relevant | | SPRINT Christchurch | STAR Christchurch | STAR Gyula | |------------------|---------------------|---------------------|------------------| | # episodes | 442 | 330 | 47 | | # hours | 39838 | 22523 | 6268 | | % male | 62.7 | 65.5 | 61.7 | | Age (years) | 63 [48 <i>,</i> 73] | 65 [55 <i>,</i> 72] | 66 [58, 71] | | APACHE II | 19.0 [15.0,24.5] | 21.0 [16.0,25.0] | 32.0 [28.0,36.0] | | LOS - ICU (days) | 6.2 [2.7,13.0] | 5.7 [2.5,13.4] | 14.0 [8.0,20.5] | Insulin sensitivity (SI) is hourly identified from clinical BG and insulin data. SI variability (% Δ SI) is defined as the hour-to-hour percentage change in SI: $\%\Delta$ SI $_i=100\times\frac{SI_{i+1}-SI_i}{SI_i}$ Data triplets (% ΔSI_n , SI_n , SI_{n+1}) are created and grouped together in bins of size % $\Delta SI = 10\%$ and $SI_n = 0.5e-4$. The 5th, 50th, and 95th percentile of SI_{n+1} are determined for each bin where data density is high enough (>100 triplets). The new model is compared to the previous stochastic model by - Comparing their 90% CI prediction range and the percentage change in their prediction widths - Assessing their predictive power, computing median [IQR] per-patient percentage prediction of SI within the 5th-95th and 25th-75th percentile ranges of model predictions. ### Results Results show the previous model is over-conservative for ≈77% of the data, mainly where %ΔSI is within an absolute 25% change (**Figure 2**). The percentage change in the 90% CI width in this region is reduced by $\approx 25-40\%$. Conversely, non-conservative regions are also identified, with 90% CI width increased up to $\approx 80\%$ (Figure 3). As shown in **Table 2** and **Figure 4**, the predictive power is similar for both model (60.3% [47.8%, 71.5%] vs. 51.2 [42.9%, 59.2%] within 25th-75th and 93.6% [85.7%, 97.3%] vs. 90.7% [84.4%, 94.6%] within 5th-95th range). 30 40 50 60 70 80 90 100 1 time (h) Figure 4 – Excerpt from a patient showing fitted SI (blue) as well as 5th and 95th percentile prediction for the new 3D model (green) and the previous 2D model (red). The new model predictive range is generally narrower than the old model. ## Conclusions The new 3D model achieved similar predictive power as the previous model, while reducing the 5-95th percentile prediction range for more than 77% of the data. If the over-conservative regions allows more aggressive dosing for stable patient, under-conservative regions identify potential risks from overaggressive treatment for more variable patients. These outcomes improve both performance and safety, and thus patient outcomes.