

1 **Comparison of soil water potential sensors: a drying experiment**

2 Aurore Degré^{1*}, Martine J. van der Ploeg², Todd Caldwell³, Harm P.A. Gooren²

3 1. Univ. Liege, Gembloux Agro-Bio Tech, BIOSE, Belgium Aurore.degre@ulg.ac.be

4 2. Wageningen University and Research Centre, SLM, The Netherlands

5 martine.vanderploeg@wur.nl Harm.gooren@wur.nl

6 3. University of Texas, BEG, US todd.caldwel@beg.utexas.edu

7

8

9 Impact statement

10 *In situ* water retention curve observation is key to capturing the dynamics of root zone functions.

11 In a drying experiment in a fully controlled environment, we compared the ability of water

12 potential probes to cover a wide range of water potential levels.

13 We assessed the consistency of the probes and their ability to capture an *in situ* retention curve.

14

15 Abstract

16 The soil water retention curve (WRC) plays a major role in soil's hydrodynamic behaviour.
17 Many measurement techniques are currently available for determining WRC in the laboratory.
18 Direct *in situ* WRC can be obtained from simultaneous soil moisture and water potential
19 readings covering a wide tension range, from saturation to wilting point. There are many widely
20 used soil moisture probes. Whereas near-saturation tension can be measured using water-filled
21 tensiometers, wider ranges of water potential require new, more expensive and less widely used
22 probes. This paper reports on a comparison of three types of soil water potential sensors that
23 could allow us to measure water potential in the field, with a range relevant to water uptake by
24 plants. Polymer tensiometers (POTs), MPS-2 probes and pF-meters were compared, in a
25 controlled drying experiment. The study showed that the POTs and MPS-2 probes had good
26 reliability in their respective range. Combined with a soil moisture probe, these two sensors can
27 provide observed WRCs. The pF-meters below -30 kPa were inaccurate and their response was
28 sensitive to measurement interval, with greater estimated suction at shorter measurement
29 intervals. Recommendations are provided for future tests. *In situ*-WRC can provide
30 supplementary information, particularly with regard to its spatial and temporal variability. It
31 could also improve the results of other measurement techniques, such as geophysical
32 observations.

33 Keywords

34 Water retention curve, water potential, soil moisture, probe

35

36 Introduction

37 Knowledge of the soil water retention curve (WRC) is important in order to quantify water flow
38 in such areas as hydrology, soil science and crop production. The soil WRC determines the
39 amount of plant-available water and the energy cost to the plant in taking up water from the soil
40 (Minasny and McBratney, 2003). Combined with the conductivity curve, the soil WRC is used
41 for a direct solution of Richards' equation.

42 There are currently many measurement techniques for quantifying the soil WRC by recording
43 soil water content and soil water potential (Campbell et al., 1991). In the laboratory, hanging
44 water columns and pressure plate apparatus are commonly used. Multi-step outflow methods
45 are also frequently used, but they have a practical limitation of -100 kPa (Stolte, 1994). Other
46 set-ups include evaporation experiments (Schelle et al., 2013; Schindler et al., 2012; Zhang et
47 al., 2009), freezing apparatus (Bittelli and Flury, 2009) and vapour sorption analysis (Arthur et
48 al., 2013). Laboratory techniques are useful for determining the soil WRC and have been used
49 to demonstrate the impact of hysteresis (Abbasi et al., 2012). Spatiotemporal variability
50 resulting from interactions between physical and biological factors, such as increased porosity
51 induced by root turnover, soil aggregation, biota-induced macropores or specific management
52 effects (Strudley et al., 2008), however, cannot be quantified satisfactorily in static set-ups in
53 the laboratory. In order to be able to quantify the influence of soil heterogeneity and
54 spatiotemporal dynamics on the soil WRC, an *in situ* approach combining soil moisture and
55 soil water potential measurements can provide useful data. Such an approach requires sensors
56 that can measure a representative part of the soil WRC.

57 There are several techniques for measuring the soil water content part of the in-situ WRC. The
58 volumetric soil water content is often derived by using time domain reflectometry (TDR). This
59 technique has gained widespread acceptance as a standard technique for volumetric water

60 content estimation (Černý, 2009; Chandler et al., 2004; Ferré et al., 2002). Many papers have
61 been written since the introduction of TDR in soil science in the 1970s (Robinson et al., 2003;
62 Topp et al., 2003). Cheaper sensors, such as capacitance probes, have now become an attractive
63 alternative to TDR and are easy to operate (Vereecken et al., 2014).

64 For the soil water potential part of the *in situ* WRC, it is more challenging to find sensors with
65 a representative range. To measure soil water potential, water-filled tensiometers are the most
66 commonly used instruments (Whalley et al., 2013), but their measurement range is limited to
67 matric potentials greater than saturation vapor pressure minus atmospheric pressure (Tarantino
68 and Mongiovì, 2001). Conversely, thermocouple psychrometers have poor resolution for wet
69 soils (Scanlon et al., 2003) and heat dissipation sensors have limited functionality near field
70 capacity (Caldwell et al., 2013). In addition, this last method is not derived from thermodynamic
71 principles, but relies on calibrating sensor properties against known soil water potential values
72 (Reece, 1996). Recently, several new sensors for use under *in situ* conditions have been
73 proposed for covering a wider range of matric potentials. Polymer tensiometers (POTs) (De
74 Rooij et al., 2009) extend the range of measurement to wilting point (~1500 kPa), but they are
75 still costly. Other probes, such as MPS (Decagon Devices, Pullman, WA) and pF-meter
76 (Ecotech/Stevenswater) probes, rely on different measurement principles (see ‘Materials and
77 methods’) and deserve further analysis in order to ensure the correct application of their
78 readings.

79 There is currently limited information on the performance of new probes. The first release of
80 the MPS probe was tested by Malazian et al. (2011), who concluded that there was good
81 consistency among the probes after local calibration and low temperature effect. POTs were
82 compared with matric potentials converted from water content estimates from TDR data using
83 retention characteristics (Van Der Ploeg et al., 2010). They showed good agreement until the
84 TDR data became too noisy at low water content levels. No specific testing of the pF-meter has

85 yet been reported. So far as we know, the POT, MPS-2 and pF-meter sensors have not been
86 compared in a single experiment. In this paper, we discuss the principles behind each
87 measurement technique, describe a controlled experiment comparing two MPS, two pF-meter
88 and two POT sensors in the same repacked soil and discuss the advantages and disadvantages
89 of each method. A Campbell Scientific CS616 volumetric water content probe was installed in
90 order to build WRCs *in situ* based on potential and water content simultaneous readings. We
91 compared the WRCs with a laboratory-measured WRC.

92 Materials and methods

93 *Matric potential sensors*

94 MPS sensors (Decagon Devices, Inc. Pullman, USA) use a porous ceramic disc and pF-
95 meters (ecoTech Umwelt-Meßsysteme GmbH Bonn, Germany) use a porous ceramic cone.
96 When in contact with soil, the water potential in the disc or cone equilibrates with the water
97 potential of the surrounding soil. Neither sensor measures the water potential in the ceramic
98 disc or cone directly, but infers it from measuring another property and a factory calibration
99 curve.

100 The MPS-2 sensor (Decagon Devices, Inc.) consists of two porous ceramic plates
101 surrounded by two perforated steel plates. According to the manufacturer, the porous ceramics
102 have a wide pore size distribution. The measurement itself involves a capacitive reading of the
103 dielectric permittivity of the ceramic disc. A factory calibration using the relationship between
104 capacitance and dielectric permittivity of the disc gives the dielectric permittivity. The latter is
105 converted into water content, which is then converted into a potential using the ceramic WRC
106 (Kizito et al., 2008; Malazian et al., 2011). The measurement ranges from -10 kPa to -500 kPa.
107 Currently, the MPS-2 sensor is calibrated at two points. The new release of this probe, the MPS-

108 6, is calibrated at six points, increasing its accuracy from 25% to 10%, respectively, in the range
109 of -10 to -100 kPa.

110 In the first and second release of the pF-meter (ecotech Umwelt-Meßsysteme GmbH
111 Bonn), the porous ceramic cone is 1 cm and 2.5 cm, respectively. The measurement involves
112 measuring the heat capacity of the cone after a heat pulse. The heat capacity varies in relation
113 to the water content in the cone, and so captures the soil water potential when the ceramic is in
114 equilibrium with the surrounding soil. A factory calibration allows the user to get direct
115 readings of the pF value (Ecotech, 2010). The measurement ranges from pF 0 to pF 7. In this
116 study, we used two pF-meters released at different times, the one tested by Zhang et al. (2009)
117 and the 2010 version described by Ecotech (2010). Zhang et al. (2009) reported satisfactory
118 results with the first release, but they used it as stand-alone sensor in their experiment, without
119 assessing its reliability. The differences between the two releases were not detailed by the
120 manufacturer, but at least the ceramic cones were different in shape and size.

121 POTs consist of a solid ceramic cone with an air entry value that exceeds the
122 measurement range of interest (-1.83 [α -Al₂O₃ cone] and -117 MPa [γ -Al₂O₃ ceramic
123 membrane] at a water surface tension of 0.073 Nm⁻¹, a water density of 998 kgm⁻³ and 20°C)
124 and a small chamber (<1 mm depth) filled with Praestol 2500 polymer. During construction
125 (see Bakker et al., 2007 and Van Der Ploeg et al., 2010 for details), the tensiometer is filled
126 with dry hydrophilic polymer. Once immersed in water, the polymer absorbs the water and
127 develops an internal hydrostatic pressure recorded by a pressure transducer. When placed in
128 soil, equilibrium between soil potential and ceramic cone potential is achieved as water leaves
129 the chamber, reducing the internal pressure. The polymer solution and, to a lesser extent, the
130 sensor's body are temperature sensitive, and therefore a temperature sensor (0-40°C, accuracy
131 0.01°C) is included (Bakker et al., 2007). Processing the readings includes a temperature

132 compensation that uses a linear relationship between pressure and temperature. This
133 relationship is established for each probe. The pressure transducer has a range of between 2.201
134 and -0.175 MPa, with an accuracy of 2.38×10^{-3} MPa (0.1% of the full scale). The POT
135 measurements range from 0 to -1.6 MPa at 25°C .

136 *Soil water content sensors*

137 The CS-616 probe reads the relative dielectric permittivity of soil based on the
138 frequency with which successive pulses can be sent along the rods and come back. Due to the
139 high permittivity of water, this frequency is considerably lower in humid soils. The output
140 frequency of the probe or the related period can provide the water content using factory
141 calibration. The CS-616 has demonstrated some temperature sensitivity, however, which can
142 partially be compensated (Varble and Chávez, 2011). According to Mittelbach et al. (2012),
143 temperature effect on CS-616 can be partially corrected using equation (1) applied on raw data:

144 $\text{Period_C} = \text{period} + (20 - T) \cdot (0.526 - 0.052 \text{ period} + 0.00136 \text{ period}^2)$ [1]

145 where Period_C is the corrected raw data, period is the raw data, T is the temperature in $^\circ\text{C}$. It
146 is important to note that this correction remains relevant even under controlled conditions
147 because the reference temperature for sensor calibration is 20°C (Mittelbach et al., 2012). In
148 this study, the temperature recorded by the POTs was used for correction. It varied between
149 15°C and 16.5°C in our experiment. Equation (2) gives the calibration equation used to derive
150 volumetric water content:

151 $\theta = 0.0007 \text{ period_C}^2 - 0.0063 \text{ period_C} - 0.0663$ [2]

152 where θ is the volumetric water content [cm^3/cm^3]. It is well established that a soil-specific
153 calibration can improve reading accuracy (Kinzli et al., 2012). It has also been shown, however,

154 that standard equations perform well for soils with low organic carbon content (Vaz et al.,
155 2013).

156 Table 1 presents the measurement range, accuracy and resolution of the probes as provided by
157 the manufacturers.

158 *Experimental setup*

159 Two millimetre sieved air-dried loamy soil (10.9% clay, 57.2% silt, 31.9% sand) was
160 repacked uniformly in a cylindrical ring (diameter 47.5 cm, height 10 cm) with a perforated
161 base. The soil organic carbon content was 3.18%. We added the soil in increments of 2 cm.
162 After each layer, we compacted it and then roughened the surface before adding a new layer.
163 The density of the repacked soil was $1.37 \text{ kg} \cdot \text{dm}^{-3}$. At mid-height (5 cm), we installed the
164 sensors, following the manufacturers' recommendations. The MPS-2 probes were packed in a
165 wet loamy soil to ensure good contact between the ceramic and the soil. The pF-meters were
166 put into water for 30 s and then handled vertically and placed diagonally in the soil in order to
167 prevent water blocking the ventilation tube. The POTs and CS-616 probes were placed
168 horizontally. All the sensing parts of the sensors were therefore at the same height in the soil,
169 between 4 and 6 cm above the ring's base. Mohrath et al. (1997) demonstrated that such a slight
170 variation in position would not affect WRC measurements in an evaporation experiment. This
171 was also confirmed by Hydrus modelling of the experiment (data not shown). The packing
172 continued in order to fill the ring completely and ensure that more than 2.5 cm of soil covered
173 the CS-616 rods, so that its measurement volume associated with the electromagnetic field
174 intensity was completely below the soil surface.

175 The soil was then saturated from the bottom by placing the ring in a larger watertight
176 container and adding non-chlorinated tap water progressively over 2 days. The ring was then
177 left to saturate for 2 more days to guarantee stable readings from all the probes. At the end of

178 these 4 days of saturation, the secondary container was drained and the soil began to dry. The
179 whole experiment took place in a temperature-controlled room with a temperature of 16°C [+/-
180 1 °C]. An air dryer was switched on in order to reduce the relative humidity to about 40% in the
181 room and maintain a smooth evaporation rate. The measurement interval for all the probes was
182 set at 15 min. It took 70 days to evaporate about 7 litres of water and reach the end of the
183 experiment.

184 After drying, five intact soil cores (5 cm in diameter, 5 cm high) were sampled between
185 the probes in the ring. They were saturated from the bottom and a reference WRC was
186 established using a sand box (between 0 and -9.8 kPa), suction plates (between -9.8 and -59
187 kPa) and measurements of disturbed samples with pressure plates (-100 and -1,500 kPa).

188 Two complementary tests using the second release of the pF-meter appeared to be
189 necessary. The first one consisted in installing the sensor in 2 mm sieved loamy soil with a
190 potential close to -1000 kPa. We packed the set-up in a plastic film in order to avoid change in
191 water content and we tested 3 measurement intervals (15, 30, 60 minutes). The second one
192 consisted in putting the sensor in a closed chamber above 0.2M KCl solution at 20°C (Scanlon
193 et al., 2002) in order to check the its reliability in dry range.

194 *Data treatment*

195 The consistency of the sensor readings was analysed for each sensor type. Coefficients
196 of linear regression between both sensors of the same type and correlation coefficients were
197 determined. The sensor types were then compared. The observed WRCs obtained by plotting
198 the matric head readings of the POT, MPS and pF-meter probes against CS-616 were compared
199 with the reference WRC, as was done by Van Der Ploeg et al. (2010).

200 Results and discussion

201 *Temporal analysis*

202 Figure 1 presents the readings of the matric head sensors over time, as well as the volumetric
203 water content read by the CS-616 probe. It shows that the evaporation rate was even during the
204 experiment, with a slight decrease at the end, as would be expected from a loamy soil (Idso et
205 al., 1974). Due to technical issues, there was a short interruption in the records on about the 55th
206 day for the first release of the pF-meter (which was connected to a specific data logger) and the
207 58th day for the second release of the pF-meter and both MPS-2 probes (which were connected
208 to another data logger). POTs are stand-alone devices with their own power and data storage
209 systems.

210 The MPS-2 probes started to respond to the soil water potential at -20 to -30kPa, whereas the
211 other probes gave readings throughout the evaporation experiment. This is consistent with the
212 measurement range provided, albeit a little narrower. It also resembles the observations reported
213 by Malazian et al. (2011) in their analysis of the first release of the MPS probe. The later
214 reaction to matric potential change in the wet range could be related to the lower air entry point
215 of the probe's ceramic. Since the range of MPS probes is limited to -500 kPa by the provider,
216 readings below this value were not considered in our study.

217 *Probes comparison*

218 The two POTs showed a high consistency level, with a linear regression close to the 1:1 line
219 and a determination coefficient exceeding 0.99 (Fig. 2). The residuals were not randomly
220 distributed around zero, however, which indicated that there was some systematic bias between
221 the sensors (Fig. 2).

222 Using the segmented package (Muggeo and Adelfio, 2011), we identified a breakpoint around
223 -400 kPa. When considering this breakpoint in a broken line adjustment, the consistency of the
224 POTs appeared remarkable. Between 0 and -400 kPa, the slope coefficient was 0.76, and

225 between -400 and -1500 kPa it was 1.20. This breakpoint could be due to differences between
226 the POTs or it might suggest an influence of the non-continuity of the aqueous phase in the
227 drying soil, or between the POT and the soil, on the POT readings. This needs to be confirmed
228 with other POTs as it was beyond the scope of this study.

229 Figure 3 shows the comparison between the MPS-2 probes. The probes are quite consistent
230 with each other in the -20 to -500 kPa range. They show a correlation coefficient close to 1 with
231 a regression line close to the 1:1 line, even though the slope coefficient is a bit lower than 1
232 (0.86). This value indicates that the differences between the probes are about 15%, which may
233 lead to non-negligible differences in drier situations. Some oscillations were observed for one
234 of the probes in a limited number of readings.

235 Figure 4 shows the comparison between the averaged values of the POT readings and the MPS-
236 2 readings. The comparison is presented in the measurement range of the MPS-2, which is
237 narrower than the POT range. The determination coefficient remained greater than 0.96, but the
238 slope coefficient was close to 1.3, suggesting that, below -200 kPa, MPS-2 probes have a
239 maximum potential difference of 30% compared with POTs in their range. The graph actually
240 shows a curvature and the discrepancy increases with decreasing potential.

241 For both pF-meter sensors, a comparison such as that conducted for the POT and MPS-2 probes
242 was not meaningful because they showed strongly diverging data (see Fig 1). In the following
243 discussions, only the second release of the pF-meter sensor is compared with the other probes.

244 The observed tensions from the POT, MPS-2 and pF-meter probes were plotted against the
245 volumetric water content taken by the CS-616 probe in order to draw the WRCs in Figure 5.

246 The figure also shows the reference WRC obtained from five undisturbed soil samples taken
247 from the cylindrical ring after the experiment. The whiskers show the standard deviation.
248 Comparing the reference WRC and CS-616, it is likely that the CS-616 slightly underestimated

249 the soil moisture at the start of our experiment. The temperature correction proposed by
250 Mittelbach et al. (2012) is known to compensate for the temperature deviation of the CS-616
251 probe only partially, particularly in wet soils. This seemed to be confirmed in our study. Another
252 option could be that there were slight differences in the saturation procedure between the
253 cylindrical ring in the experiment and those used to measure the reference WRC, despite having
254 followed a similar procedure. These differences could also derive from the comparison between
255 the probe readings and the reference WRC obtained from the small intact cores. The manual
256 repacking of soil can lead to small heterogeneities in bulk density. In our case, this seems to be
257 limited because we measured a mean bulk density of 1.37 g.cm^{-3} in our intact cores, with a
258 standard deviation of 0.03 g.cm^{-3} . Te Brake et al. (2013) reported that 300 mm CS-616 probes
259 installed in the field showed an earlier drop in water content than 56 mm EC5 probes, which
260 was attributed to the inclusion of more heterogeneities in the larger CS-616 measurement
261 volume. In addition, the factory calibration for the CS-616 probe may underestimate moisture
262 content. Despite our attempt to wet the soil ring with the instruments in the same manner used
263 for the soil cores taken from the ring, the larger volume and height of the soil ring might have
264 retained more soil air. Both effects affected the wet end of the curve mainly. Between -5 and -
265 100 kPa, the reference WRC corresponds very well to the observed ones, except for the WRC
266 based on pF-meter readings.

267 Although the CS-616 data were not completely corrected in terms of temperature effects, they
268 affected all the WRCs in the same way and we can therefore compare them. The POT and pF-
269 meter sensors have wider measurement ranges. The MPS-2 sensors are more limited, as noted
270 earlier. The pF-meter diverged from the other probes after -50 kPa during the drying process
271 and strongly underestimated the water tension in the remainder of the experiment.

272 Among the possible causes of the poor performance of the pF-meter, we question the
273 measurement interval used, which may have been too short to allow a complete cooling of the

274 ceramic and surrounding soil, particularly in dryer context. The 15 minutes interval was set as
275 it was the minimum interval between two readings recommended by the providers. But after
276 the technical failure of the first release, the time-step was erroneously set to one hour instead
277 of 15 minutes. The 1 h measurement interval lasted for 9 h and was then restored to 15 min.
278 Even if the first release of the pF-meter yielded erroneous results, the data recorded using
279 different measurement intervals (figure 1) lead us to test the impact of this interval using the
280 second release of the pF-meter. The figure 6 shows that it responded in the same manner as the
281 first release, with respect to the measurement interval, yielding lower suctions with longer
282 measurement interval. The explanation of this misbehaviour is not easy to formulate since
283 technical details about how the probe is functioning are lacking. The measurement of the
284 potential with the pF-meter (second release) in equilibrium with 0.2M KCl solution, using a 15
285 minutes measurement interval, overestimated the suction by 20 % (reading -1071kPa instead
286 of -891kPa). This needs to be confirmed and could favour the use of pF-meters in particular
287 situations where the soil remains quite wet and where long time-steps are acceptable. The strong
288 differences between the two releases, however, raise other questions. Shape and surface/volume
289 ratio of the ceramic changed between both releases, but because we had only one piece of each
290 sensor, and because technical changes between both releases were not available, we were
291 unable to draw further conclusions.

292 With regard to the MPS-2 sensors, they performed very well in their range. The overestimation
293 of the tension had a minor effect on the WRCs, as a result of the log scale (Figure 5). Finally,
294 it was clear that the POTs were noisy close to saturation, and this behaviour was enhanced by
295 the log scale. Below -10 kPa, the noise almost disappeared and the probes measured
296 continuously until the end of the experiment. The last point of the reference WRC remained a
297 little higher than the probes' readings. This might be due to probe calibration issues or to the

298 difficulties in reaching equilibrium in very dry conditions with the pressure plates (Cresswell
299 et al., 2008).

300 Conclusions

301 The objective of this paper was to compare three water potential probes and their ability to
302 capture the WRC of a given soil sample from saturation to wilting point. Further tests need to
303 be done in order to assess the reliability of these probes for a wetting period. We worked
304 under controlled laboratory conditions, with controlled temperature and air humidity and with
305 a mineral loamy soil. The MPS-2 probes performed very well in these conditions, even
306 though they had a narrower measuring range than the two other devices. The fact that these
307 probes do not capture the wet end of the WRC might be a major drawback as the wet end of
308 the retention curve cannot be met properly when data is missing in that range. We recommend
309 that further tests under field conditions be conducted in order to assess the temperature
310 dependence, but our study indicated that the MPS-2 probe is a relatively cheap and promising
311 sensor. The MPS2 sensor also delivers temperature with an accuracy of 0.1 °C, which is
312 sufficient for the temperature correction of the CS-616
313 The POTs performed very well and covered the targeted range. They are known to be
314 temperature sensitive, and the data treatment therefore included temperature compensation. The
315 temperature compensation also permits them to be used under field conditions.

316 The MPS-2 and POT probes, combined with a CS-616 soil moisture sensor, were able to capture
317 the *in situ* WRC. Our experiment was designed to observe the slow and continuous drying of
318 soil in order to be able to make a comparison with a reference WRC. The combination of tension
319 and soil moisture probes in the field opens the way for observing the changing conditions of
320 WRCs as a result of dynamic vadose zone processes. In this context, we recommend completing
321 the instrumentation with a temperature probe in order to apply adequate correction to soil

322 moisture readings. The pF-meter (second release) provided good results with fairly wet soils,
323 but was inaccurate above a tension of 30 kPa. Furthermore, it was sensitive to the measurement
324 interval. The physics behind these observations remain unclear.

325 References

326 Abbasi, F., Javaux, M., Vanclooster, M., Feyen, J., 2012. Estimating hysteresis in the soil water
327 retention curve from monolith experiments. *Geoderma* 189–190, 480–490.
328 doi:10.1016/j.geoderma.2012.06.013

329 Arthur, E., Tuller, M., Moldrup, P., Resurreccion, A.C., Meding, M.S., Kawamoto, K.,
330 Komatsu, T., De Jonge, L.W., 2013. Soil specific surface area and non-singularity of
331 soil-water retention at low saturations. *Soil Sci. Soc. Am. J.* 77, 43–53.
332 doi:10.2136/sssaj2012.0262

333 Bakker, G., Van Der Ploeg, M.J., De Rooij, G.H., Hoogendam, C.W., Gooren, H.P.A., Huiskes,
334 C., Koopal, L.K., Kruidhof, H., 2007. New polymer tensiometers: Measuring matric
335 pressures down to the wilting point. *Vadose Zone J.* 6, 196–202.
336 doi:10.2136/vzj2006.0110

337 Bittelli, M., Flury, M., 2009. Errors in water retention curves determined with pressure plates.
338 *Soil Sci. Soc. Am. J.* 73, 1453–1460. doi:10.2136/sssaj2008.0082

339 Caldwell, T.G., Wöhling, T., Young, M.H., Boyle, D.P., McDonald, E.V., 2013. Characterizing
340 disturbed desert soils using multiobjective parameter optimization. *Vadose Zone J.* 12.
341 doi:10.2136/vzj2012.0083

342 Campbell, M.D., Gee, G.W., Kirkham, R.R., Phillips, S.J., Wing, N.R., 1991. Water balance
343 lysimetry at a nuclear waste site. Presented at the Lysimeters for Evapotranspiration and
344 Environmental Measurements, pp. 125–132.

345 Černý, R., 2009. Time-domain reflectometry method and its application for measuring moisture
346 content in porous materials: A review. *Meas. J. Int. Meas. Confed.* 42, 329–336.
347 doi:10.1016/j.measurement.2008.08.011

348 Chandler, D.G., Seyfried, M., Murdock, M., McNamara, J.P., 2004. Field calibration of water
349 content reflectometers. *Soil Sci. Soc. Am. J.* 68, 1501–1507.

350 Cresswell, H.P., Green, T.W., McKenzie, N.J., 2008. The adequacy of pressure plate apparatus
351 for determining soil water retention. *Soil Sci. Soc. Am. J.* 72, 41–49.
352 doi:10.2136/sssaj2006.0182

353 De Rooij, G.H., Van Der Ploeg, M.J., Gooren, H.P.A., Bakker, G., Hoogendam, C.W., Huiskes,
354 C., Kruidhof, H., Koopal, L.K., 2009. Measuring very negative water potentials with
355 polymer tensiometers: Principles, performance and applications. *Biologia (Bratisl.)* 64,
356 438–442. doi:10.2478/s11756-009-0077-8

357 Ecotech, 2010. Manual pF-Meter New Type.

358 Ferré, T.P.A., Nissen, H.H., Šimůnek, J., 2002. The effect of the spatial sensitivity of TDR on
359 inferring soil hydraulic properties from water content measurements made during the
360 advance of a wetting front. *Vadose Zone J.* 1, 281–288.

361 Idso, S.B., Reginato, R.J., Jackson, R.D., Kimball, B.A., Nakayama, F.S., 1974. The three
362 stages of drying of a field soil. *Soil Sci. Soc. Am. Proc.* 38, 831–837.

363 Kinzli, K., Manana, N., Oad, R., 2012. Comparison of Laboratory and Field Calibration of a
364 Soil-Moisture Capacitance Probe for Various Soils. *J. Irrig. Drain. Eng.* 138, 310–321.
365 doi:10.1061/(ASCE)IR.1943-4774.0000418

366 Kizito, F., Campbell, C.S., Campbell, G.S., Cobos, D.R., Teare, B.L., Carter, B., Hopmans,
367 J.W., 2008. Frequency, electrical conductivity and temperature analysis of a low-cost
368 capacitance soil moisture sensor. *J. Hydrol.* 352, 367–378.
369 doi:10.1016/j.jhydrol.2008.01.021

370 Malazian, A., Hartsough, P., Kamai, T., Campbell, G.S., Cobos, D.R., Hopmans, J.W., 2011.
371 Evaluation of MPS-1 soil water potential sensor. *J. Hydrol.* 402, 126–134.
372 doi:10.1016/j.jhydrol.2011.03.006

373 Minasny, B., McBratney, A.B., 2003. Integral energy as a measure of soil-water availability.
374 *Plant Soil* 249, 253–262.

375 Mittelbach, H., Lehner, I., Seneviratne, S.I., 2012. Comparison of four soil moisture sensor
376 types under field conditions in Switzerland. *J. Hydrol.* 430–431, 39–49.
377 doi:10.1016/j.jhydrol.2012.01.041

378 Mohrath, D., Bruckler, L., Bertuzzi, P., Gaudu, J.C., Bourlet, M., 1997. Error analysis of an
379 evaporation method for determining hydrodynamic properties in unsaturated soil. *Soil*
380 *Sci. Soc. Am. J.* 61, 725–735.

381 Muggeo, V.M.R., Adelfio, G. (2011) Efficient change point detection in genomic sequences of
382 continuous measurements. *Bioinformatics*, 27, 161–166.

383 Reece, C.F., 1996. Evaluation of a line heat dissipation sensor for measuring soil matric
384 potential. *Soil Sci. Soc. Am. J.* 60, 1022–1028.

385 Robinson, D.A., Jones, S.B., Wraith, J.M., Or, D., Friedman, S.P., 2003. A review of advances
386 in dielectric and electrical conductivity measurement in soils using time domain
387 reflectometry. *Vadose Zone J.* 2, 444–475.

388 Scanlon, B. R., B. J. Andraski, J. Bilskie 2002. 3.2.4 Miscellaneous Methods for Measuring
389 Matric or Water Potential. In: J. H. Dane, C. G. Topp, editors, *Methods of Soil Analysis:*
390 *Part 4 Physical Methods*, SSSA Book Ser. 5.4. SSSA, Madison, WI. p. 643-670

391 Scanlon, B.R., Keesee, K., Reedy, R.C., Simunek, J., Andraski, B.J., 2003. Variations in flow
392 and transport in thick desert vadose zones in response to paleoclimatic forcing (0-90
393 kyr): Field measurements, modeling, and uncertainties. *Water Resour. Res.* 39, SBH31-
394 SBH317.

395 Schelle, H., Heise, L., Jänicke, K., Durner, W., 2013. Water retention characteristics of soils
396 over the whole moisture range: A comparison of laboratory methods. *Eur. J. Soil Sci.*
397 64, 814–821. doi:10.1111/ejss.12108

398 Schindler, U., Mueller, L., da Veiga, M., Zhang, Y., Schlindwein, S., Hu, C., 2012. Comparison
399 of water-retention functions obtained from the extended evaporation method and the
400 standard methods sand/kaolin boxes and pressure plate extractor. *J. Plant Nutr. Soil Sci.*
401 175, 527–534. doi:10.1002/jpln.201100325

402 Stolte, J., 1994. Comparison of six methods to determine unsaturated soil hydraulic
403 conductivity. *Soil Sci. Soc. Am. J.* 58, 1596–1603.

404 Strudley, M., Green, T., Ascoughii, J., 2008. Tillage effects on soil hydraulic properties in space
405 and time: State of the science. *Soil Tillage Res.* 99, 4–48.
406 doi:10.1016/j.still.2008.01.007

407 Tarantino, A., Mongiovì, L., 2001. Experimental procedures and cavitation mechanisms in
408 tensiometer measurements. *Geotech. Geol. Eng.* 19, 189–210.
409 doi:10.1023/A:1013174129126

410 Te Brake, B., Van Der Ploeg, M.J., De Rooij, G.H., 2013. Water storage change estimation
411 from in situ shrinkage measurements of clay soils. *Hydrol. Earth Syst. Sci.* 17, 1933–
412 1949. doi:10.5194/hess-17-1933-2013

413 Topp, C.G., Davis, L.J., Peter Annan, A., 2003. The early development of TDR for soil
414 measurements. *Vadose Zone J.* 2, 492–499.

415 Van Der Ploeg, M.J., Gooren, H.P.A., Bakker, G., Hoogendam, C.W., Huiskes, C., Koopal,
416 L.K., Kruidhof, H., De Rooij, G.H., 2010. Polymer tensiometers with ceramic cones:
417 Direct observations of matric pressures in drying soils. *Hydrol. Earth Syst. Sci.* 14,
418 1787–1799. doi:10.5194/hess-14-1787-2010

419 Varble, J.L., Chávez, J.L., 2011. Performance evaluation and calibration of soil water content
420 and potential sensors for agricultural soils in eastern Colorado. *Agric. Water Manag.*
421 101, 93–106. doi:10.1016/j.agwat.2011.09.007

422 Vaz, C.M.P., Jones, S., Meding, M., Tuller, M., 2013. Evaluation of standard calibration
423 functions for eight electromagnetic soil moisture sensors. *Vadose Zone J.* 12.
424 doi:10.2136/vzj2012.0160

425 Vereecken, H., Young, M., Troch, P., Bertsch, P., 2014. Strategies to observe and understand
426 processes and drivers in the biogeosphere: AGU Chapman conference on soil-mediated
427 drivers of coupled biogeochemical and hydrological processes across scales; Tucson,
428 Arizona, 21-24 October 2013. *Eos* 95, 16. doi:10.1002/2014EO020004

429 Whalley, W.R., Ober, E.S., Jenkins, M., 2013. Measurement of the matric potential of soil water
430 in the rhizosphere. *J. Exp. Bot.* 64, 3951–3963. doi:10.1093/jxb/ert044

431 Zhang, P., Wu, Q., Wang, Y., 2009. Comparison of the water change characteristics between
432 the formation and dissociation of methane hydrate and the freezing and thawing of ice
433 in sand. *J. Nat. Gas Chem.* 18, 205–210. doi:10.1016/S1003-9953(08)60094-8

434

435

436

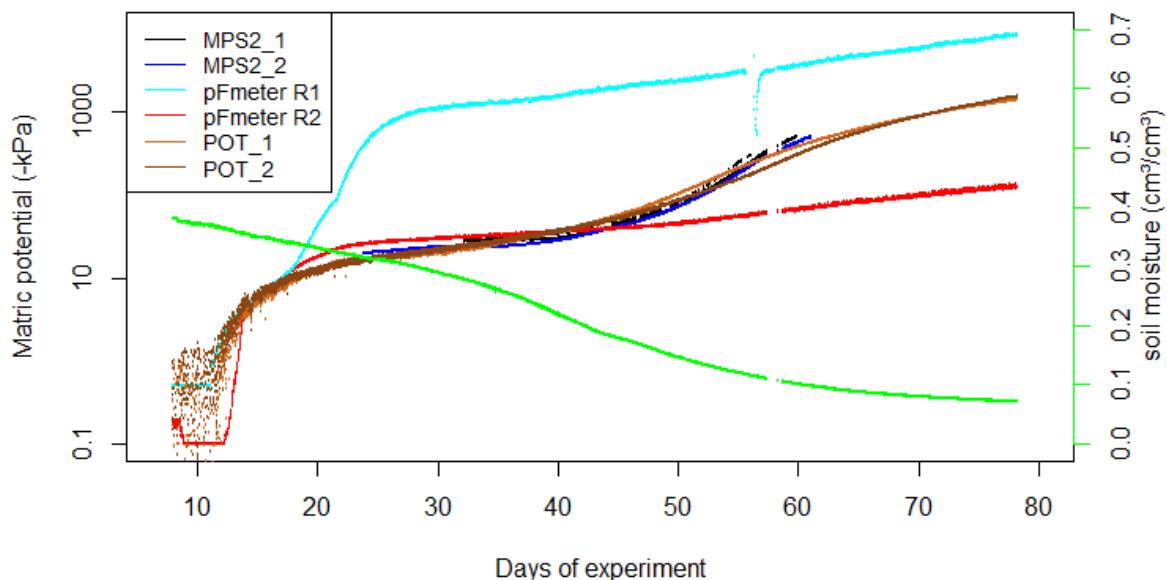
437 **Table 1. Range, resolution and accuracy of the probes, according to the providers.**

Sensor	Range	Accuracy	Resolution
MPS-2	-10 to -500 kPa	$\pm 25\%$ between -5 and -100 kPa	0.1 kPa
pF-meter new release	0 to -1000000 kPa	Not available	0.01 pF unit
pF-meter old release	0 to -1000000 kPa	Not available	0.01 pF unit
POT	0 to -1600 kPa	0.1% Full Scale	0.05 kPa
CS616	0 to 50% VWC	$\pm 2.5\%$ VWC	0.1% VWC

438

439 **Figure 1:** Temporal evolution of the probe readings during the evaporation experiment. Soil water potential
440 probes MPS-2, pF-meter (15 minutes measurement interval) and POT refer to the left scale; the green dots
441 present the readings of the CS-616 soil moisture probe and refer to the right scale.

442 **Figure 2:** Readings of the polymer tensiometers (POTs). On the upper graph, the black dots represent the
443 readings, the dotted grey line shows the 1:1 line and the red line shows the linear regression between the
444 readings of the two probes. The lower graph shows the residual analysis of the POTs linear regression

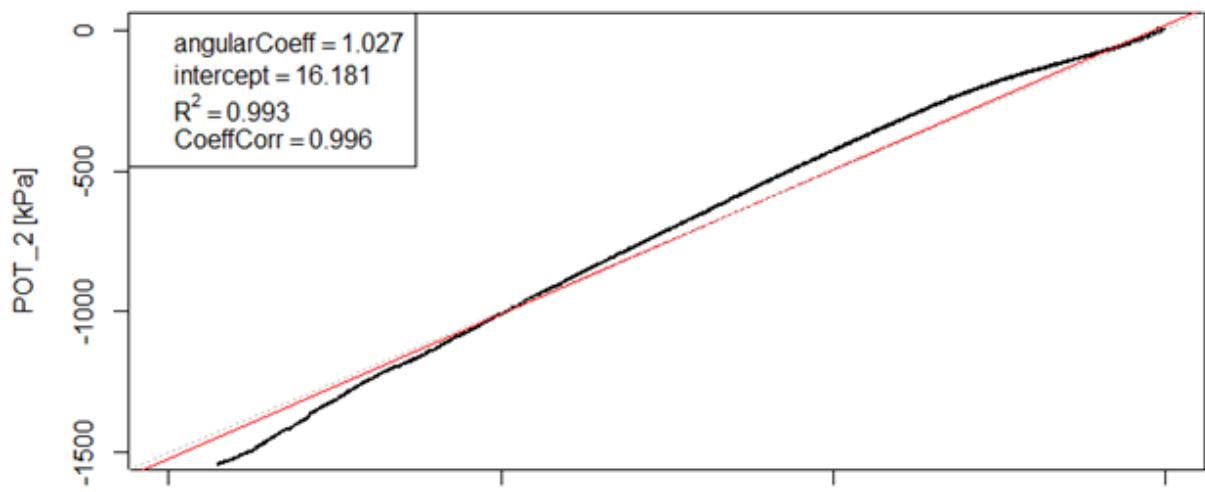

445 **Figure 3:** Comparison of the MPS-2 probes in the -500 to -20 kPa range

446 **Figure 4:** Comparison between POT and MPS-2 probes

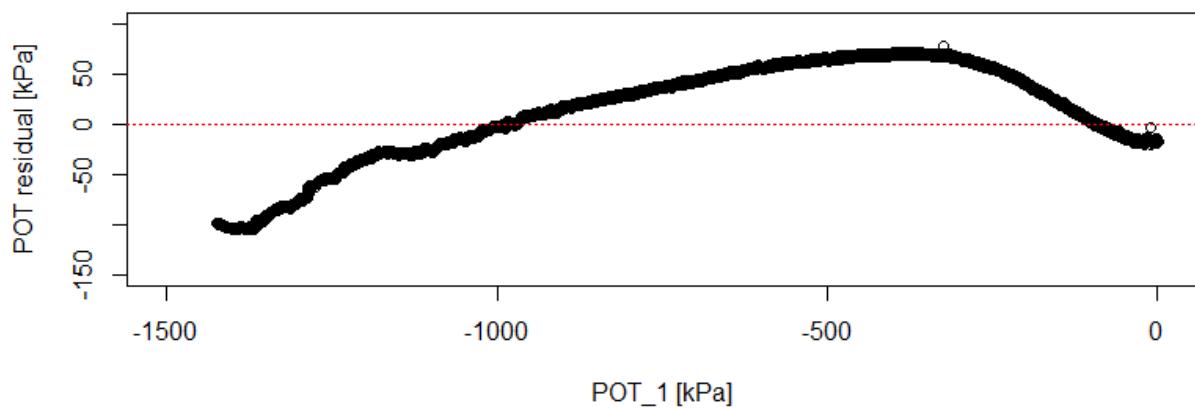
447 **Figure 5:** Comparison between *in situ* and reference water retention curves (WRCs). The whiskers show
448 the standard deviation of the water content measured in the five intact cores. The pF-meter measurement
449 interval was 15 minutes.

450 **Figure 6:** Effect of the measurement interval on pFmeter R2 readings. The soil water content remained
451 unchanged during the experiment. The arrows show the duration of the periods and the measurement
452 interval used during each of them.

453

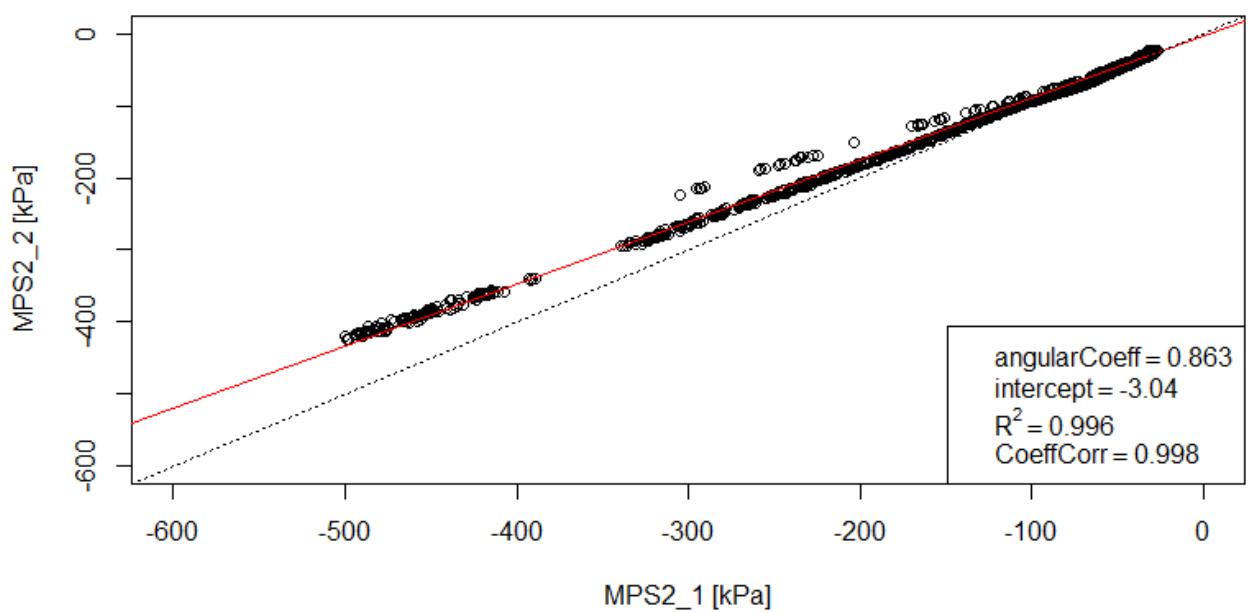

454

455 **Figure 3 : Temporal evolution of the probe readings during the evaporation experiment. Soil water**
 456 **probes MPS-2, pF-meter(15 minutes measurement interval) and POT refer to the left scale; the**
 457 **green dots present the readings of the CS-616 soil moisture probe and refer to the right scale.**


458

459

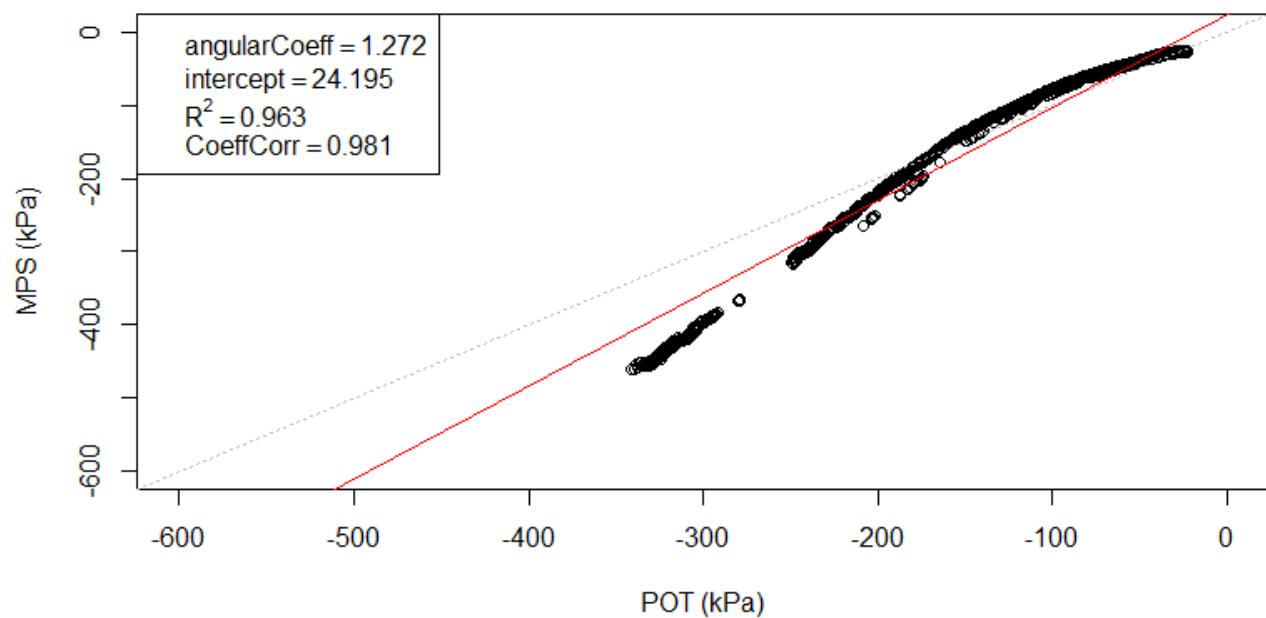
460


461

462

463 **Figure 4: Readings of the polymer tensiometers (POTs). On the upper graph, the black dots represent the**
464 **readings, the dotted grey line shows the 1:1 line and the red line shows the linear regression between the**
465 **readings of the two probes. The lower graph shows the residual analysis of the POTs linear regression**

466

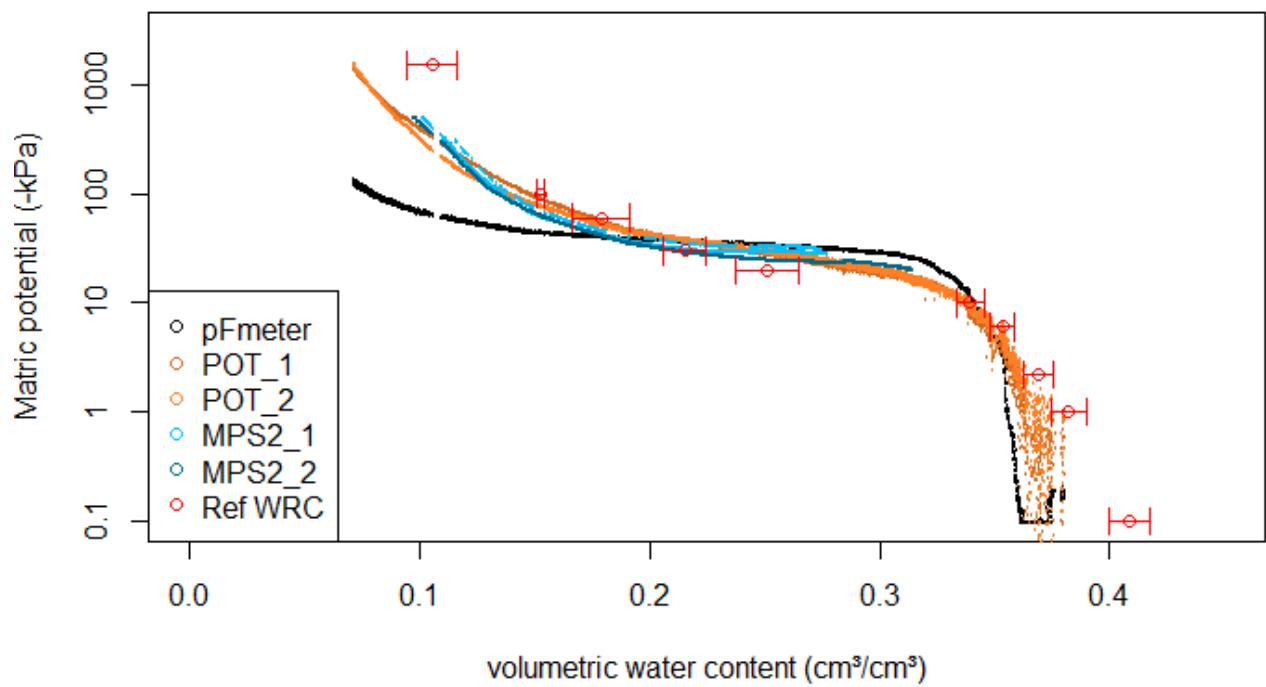

467

468 **Figure 3 : Comparison of the MPS-2 probes in the -500 to -20 kPa range**

469

470

471


472

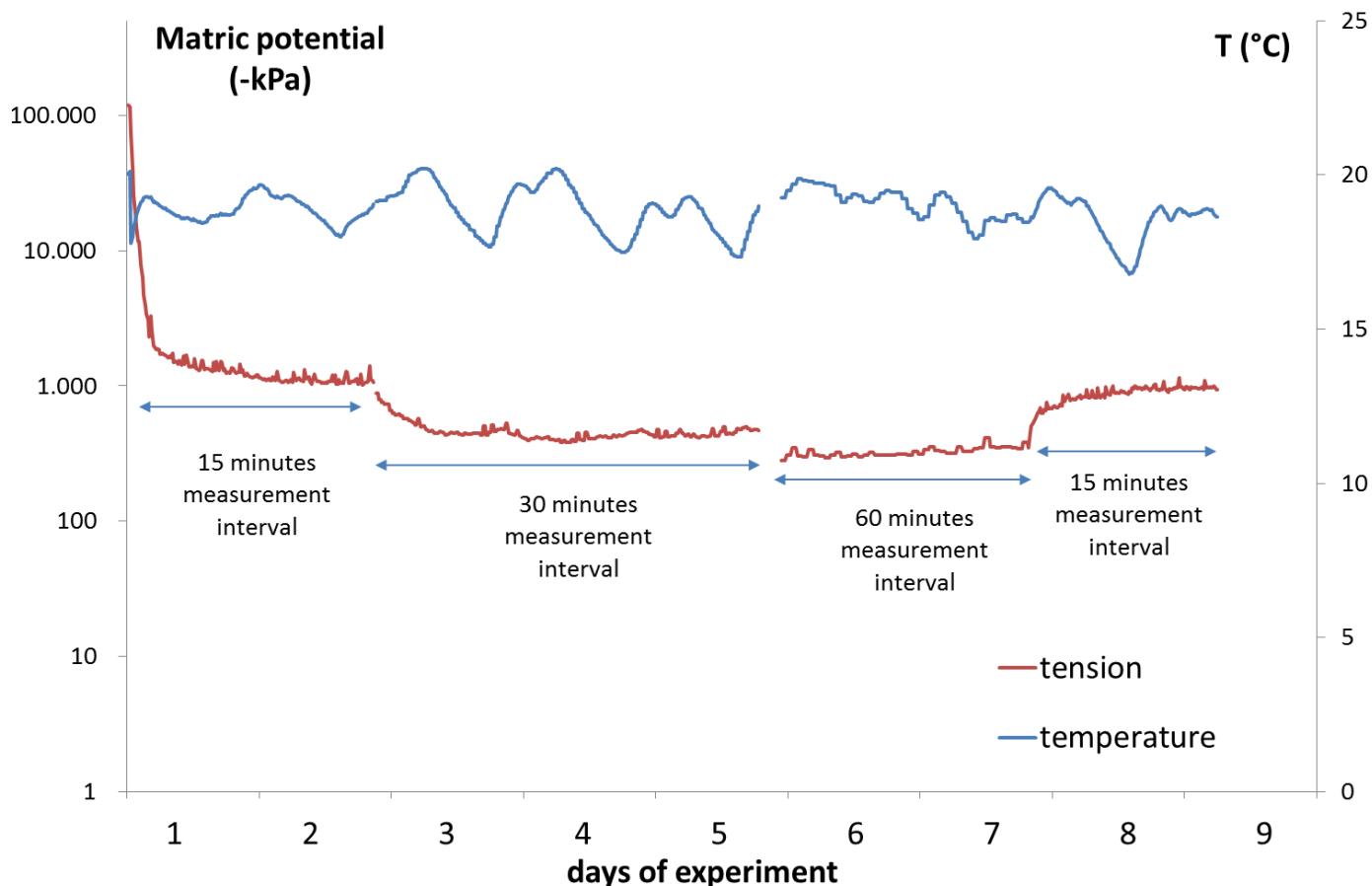
473 **Figure 4 : Comparison between POT and MPS-2 probes**

474

475

476

477


478

479 **Figure 5 : Comparison between *in situ* and reference water retention curves (WRCs). The whiskers show**
480 **the standard deviation of the water content measured in the five intact cores. . The pF-meter measurement**
481 **interval was 15 minutes.**

482

483

484

485

486

487 **Figure 6 : Effect of the measurement interval on pFmeter R2 readings. The soil water content remained**
488 **unchanged during the experiment. The arrows show the duration of the periods and the measurement**
489 **interval used during each of them.**

490