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ABSTRACT

This paper presents a tool to study the tapered structures
by the direct stiffness method. It appears that a natural coordinate
system is convenient to simplify the boundary conditions and in
consequence the analytic calculations. The development of a particular
element is taken as example and illustrated in details: the tapered
spar. By means of the special coordinate system the conformity with
the already developed cover sheets (quadratic elements, linear elements)
is easily realized.
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SYMBOLS.

X, Y
P,m
X,Y
U,V
u, v
Uy e Yy
uP , u®
€ €
x y Yxy
FP “n YmP
E E
p m mp
g g T
x ¥y xy
(o] g T
p m mp
Sp Sm mp
q
a
T'
K

cartesian coordinate system
special coordinate system

non dimensional coordinate system

cartesian displacement components
normal projections of the displacement vector
covariant displacement components

contravariant displacement components

cartesian strain components
special strain components

physical strain components

cartesian stress components
special stress components
physical stress components

generalized displacements sequence
parameters sequence

transpose matrix of the matrix T

_stiffness matrix

Young modulus
Poisson ratio
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I, Elasticity equations in natural coordinates for a trapezoidal panel,

To simplify the boundary conditions, the special coordinate system (p, m)
of figure I is adopted,

Figure 1
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>
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Its relation to the cartesian system (x, y) 1is given by
X=p f , p=Xx
| (1.1)
y=pm ' m = y/x (= tan 6)
The local base vectors are S o _ ¢

§ﬁ of cartesian components = . 1 and 2%-- m

P 9
3 O Bag g X
& . " om =o and Fo=7p
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and the covariant components

-+ ->
up =u, gp u . =u. g
For displacement models, where conformity with other elements is expressed by
identification of local interface displacements, it seems convenient to use
the simple normal projections (u, v) on the local directions provided by the
base vectors., They are directly related to the covariant components by dividing

those by the lengths of the base vectors

u u
ua-——-P—— V“'ln' (102)
T v m? P

The general formalism of tensor calculus can be used to derive the elasticity
equations in the metric provided by the base vectors ! + A much less cumbersome
and safer procedure consists in returning to basic principles. Consider the
virtual work done by stresses in.,a small increment of the field of displace-

ments, Denote by § » T T and S_ the stresses resolved in the direc-

m® “mp’
tions of the base vectors (fig, 2) and defined per unit length of the edges of

the surface element,




Along AB the virtual work is
- (T__6u+8S_ 6v) /T +m2Zdp \
mp m : -

Adding the virtual work along "CD , this becomes

%E (/T +mZT P su + VT + m2 Sm §v)dm dp

m

Similarly we have along AC
- (Sp Su + Tpm §v)p dm
and, after adding the contribution of BD ,
9
— S u+pT_ 4v)dm d
ap (p P p pm ) P

Dividing the total work by the surface pdpdm of the element we obtain the

increase in strain energy per unit area
13 13
o e —— 1 — e .
W > m (/T + 2 Tmp su + /T + m2 Sm sv) + > 3D (p Sp 6u‘+ pT_ dv) (1.3)

The equilibrium equations are now found by expressing that 6W = o for incre-

mental displacements corresponding to rigid body motions,

In a horizontal translation 6u = éh , v=o0
1 +m
this produces the equilibrium equation
9 ' 1 )
—_— —_— = I.4
om Tﬁp * TomZ ap (p Sp) ° _ ( )

The vertical translation 6§u = ——=— §f , &v = §f produces
/1+m2 ,
) ) mp
— + S — S +pT =
am(m'l'mp-*\/l m2 m)+3p(lm p Ppm) o
The rotation 4 fu=o0 ; §v=opduw ~ about the apex
-8—. _3__ 2 = | I
= (p /I +m2 Sm) + 3D (p? Tpm) o (..5)



Considering (I.4) and (I.5), the second equilibrium equation can be seen to

reduce to the reciprocity relation

Tpm = Tmp (1.6)

One of the possible ways to introduce an Airy function A(p, m) in order to

satisfy the equilibrium equations is as follows

/T2 32A 2 1 Ay,

We now simplify the general formula (I.3) by use of the equilibrium equations;

it reduces to

(6u) + p2 T = (ls—;’-) + T (/T2 su) + /T + 02 5. 2 (sv)

1 9
w L S —— ——
s p te p 9p mp 9p mp om am

The coordinates (p, m) being considered as lagrangian, the partial derivative
operators commute with the operator 6§ and the result can be written in the

form
W = sp 6 Ep +.Thp 6 cmp + sm 6 Em | | (I.8)

introducing the following definitions of strains

Ep--a?u

mp e Y+l W '
Gmp T (p)+pam (u /1 + m2) (1.9)
m p om

Equation (I.8) contains the statement that the energy W per unit area is a
function of those strains and implies the general form of the stress=-strain

realtions
W’ oW oW :
s B ecenaws » T B - ) » s i B e (I.IO)
P aEp | mp aGmp m aEm

The elasticity equations which have just been derived are not those of the gene-

ral theory in curvilinear coordinates, which expresses the strains as covariant
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derivatives

= = 1.1
P PP ’ Ymp up, o’ "o p ’ €n ~ Ynlm (1.11)

of the covariant displacement components, To obtain those, the definition of

stresses should be altered as follows :

S T
P /i PP p?

This definitionis justified by considering the new virtual work expressions

- (rmp 1) u, +o, 6 um)p dp along AB

-'(op ) u, + Tpma um)p dm along AC

where the factor p , outside of the brackets, represents the square root of the

determinant of the fundamental metric tensor

- > . 2 -+ > o .
8+ 8,=1+m B, + By =MD
(I.13)
-»> > > > 2
fm c Bp TP 8p * By T P°
When the new form of the strain-energy increase
el (v 6u +0 6u)+i2(po 6u +pr_ su)
om " mp P m o p 9p p P pm m
is processed as before, there come as equilibrium equations
d 4 .1 ‘
e * e 0 = = I.1I4
om Tmp " p TP ° (1.18)
=1 ' (1.15)
mp pm
)
3 Tmp +p (-a-'-n- o, * 3-‘;- Tmp) = 0 (I.16)
and as definition of strains
2 2 -y (1.17)

) ] m
& "T5% ¢ Ymp"P 3‘5(;2-)4'-5;;“1, T
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which are the explicit forms the covariant derivatives in (I.II)., The stress—

strain relations are, as usual

oW W oW
(o} B oo » T 8 et ’ g Al (1.18)
P 3ep mp Bymp m Bem

Between the strain definitions (I.1I7) and (1.9) we have the correspondance,

easily derived from (I.2),

cp = /1 + mZ Ep ’ Ypp = P G

p p ’ € = "L_ E (1019)

In practice the definitions (I,I7) are somewhat easier to use because they do
not involve the factor vi+m2 , It will also be realized later that the struc-

ture of displacement assumptions is easier to express in covariant components.

2, Explicit stress—strain relations,
For an isotropic sheet of material in a state of plane stress the energy per

unit area can be expressed in terms of invariants 8, and 6, of the strain

tensor as follows

- Lt 1 2 1
=Z (oot a) 2.1)

E 1is Young's modulus, v Poisson's ratio and t , not necessarily constant, °

the sheet thickness, In cartesian coordinates

0l = €x + ey

is the first fundamental invariant of the strain tensor;

0, = (e, =) + 2y
the second invariant of the deviator. One possibility to obtain their exﬁressions
in terms of the strains (I,I7) is to derive the relationship between (I,I7) and
cartesian strains (Appendix A); another and more satisfactory procedure from the
point of view of principles is to apply intrinsic definitions of the invariants
in terms of contour integrals (Appendix B). The result is



2
o m e + 2B DB (2.2)

1 m m;
p p2 p mp
m2-1 m 2 1 -~ 2m 2
= — - - — - o— 2.3
0, (cp " € "7 ymp) " (ymp > em) (2.3)
= 92 + —-1 2 -4
th 2 (Ymp €n ep)
and the isotropic sheet has a strain energy per unit area equal to
Et (p,m) 14m2 m 2 Yt%p - 4 tm p )
W= { 2(e e == v )"+ (1-v) } (2.4)

o+ m Y
4(1-v2) P p2 p 'mp p2

Application of the formulas (I.I8) furnishes the following explicit isotropic

stress-strain relations

°p “p
om | = M €n (2.5)
Tmp Ymp
. m2+y .
p2 P
2 2.2 2y
M= Et ml+y (1-01:1 ] _mQ+m ) (2.6)
_n m(14m2) 1-v+ 2 m2
P p3 2 p2
The inverse relation
€p o .
-] .
Em = M Om (207)
: \
Ymp Tmp v

1s governed by the reciprocal matrix

| |



(14m2)? p2 (m2-v) 2 pm(1+4m2)

Vgl - p2 (m2-y) p" 2 mp3 (2.8)

2 mp(1+m2) 2 mp3 2 p2(1+v+ 2 m2)

The choice of coordinates also lends itself naturally to the anisotropic case
represented by an isotropic sheet or matrix reinforced by stringers or fibers
in the directions m = constant and p = constant . :

Along m = constant the direct strain is
1_3u__“p
imZ °P 1?2

Any fiber of transverse section . Af carries a load

€
Lp A —=
1+m2

which is in the nature of a concentrated Sp load. If we take the fiber section
Ap » in the oblique plane p = constant , we should replace Af = Ap//1+m2 .

Thus 1if ap denotes the area of fiber (or stringer) reinforcement per ugit
length in a plane p = constant , its contribution to SP is Ef ap ?::;5;375 .

Its contribution to op is

(4

p’reinf fp (1+m2)2
Similarly the direct strain along p = constant 1is
. € .
lav, . m (2.II)
p am

p2
and a fibgr of normal section Af carries a load

€n

A, o=
P2

Ef)

in the nature of a concentrated Sm load, If the section is measured in the

8



oblique plane m = constant Af must be replaced by A.m/v'l-O-m2 o Thus if

a denotes the area of reinforcing members per unit length in a m = constant
m .

plane, the contribution to Sm is Ef a .
p2 /1+m2

The contribution to % is

€
m
(om)reinf =Ega ';; (2.12)
Confirmation of the results (2,I0) and (2,I2) is found by examination of the
behaviour of the isotropic sheet itself under special states of stress. When
Op ™ © and Top = © the sheet behaves as a group of m = constant fibers;

we find from (2.,7) and (2.3)

- (14m2)2
" T Et %

f
When ¢_= o and tmp = o the sheet behaves as a group of p = constant fibers

which agrees with (2,I0) for E_ = E and a, = t . ,

and we find

which agrees with (2,I2) for Ef = E and am‘- t .

3. Conforming interface connections.
We begin by investigating the nature of conforming interface connections ‘i

along a slanting edge m = constant of the trapezoidal element, Let

2= Ep/ ]Ebl denote the unit vector along the edge. Similarly, using the contra;
variant base vector gm defined in Appendix B, we introduce the unit vector

b = g%/ | 2" normal to the edge in the plane of the element. Finally let ¢
denote the unit vector normal to the plane, Conformity requires that the displa-
cement vector u be the same on the edge for all elements meeting there,

In the trapezoidal panel the projections of U on the cartesian vectors

(3, g, e) are



u
Y1+m2
) R S Em - LLIT u - LU on b
|2 P /TmZ P -
->
w on ¢

w 1s indeterminate, because we consider only a membrane state of stress,
If the connected element is a spar flange, supposedly devoid of bending rigidity,
its axial displacement must coincide with u . |

If another trapezoidal panel is connected in the same plane and has the same

focus 0 and the same reference orientation from which to measure 6 or

m , up and u must be continuous at the interface, If the focus is different
but the reference orientation the same, account must be taken of the disconti-
nuity in the coordinate p across the interface, In such a case the continuity
of u at the intesface is equivalent to that of up but the continuity of 'v'
requires that of -% . ‘

The most interesting case is that where the other membrane element lies in a
different plane; as in the example 6f tapered and swept box beams. Here the only
requirement is the continuity of u . The continuity conditions in the plane

d;, Z) can always be enforced by adjusting the, otherwise indeterminate, values
of the w components of the elements.,

A more complicated situation arises when there are several membrane elements
connected in different planes, |

The situation is depicted on figure 3 in the plane normal to the edge. The plane
of a membrane element of index i 1is traced by the angle og with respect to a
conventional reference plane.

Then, if v' and w denote respectively the transverse components of the displa-

cement vector with respect to the reference plane, we must have

vi = v' cos a; +w 8in a, N 1, 2 400

I0



2

N

7

Figure 3 T —

In the case of three membrane elements, the compatibility condition of those

equations for the unknowns v' and w {s

' cos a sin a

Vi 1 1
L
v2 cos a, sin a, = 0
]
v3 cos a, sin ay
‘ 1] - L - | ] - 4 .
or vi sin(a3 az) + v, sin(a1 a3) +.v3 sin(a2 ul) = 0 (3.1I)

It is a constraint to be satisfied between the "in plane" components of displa=-
cement v' of the different membrane elements, R
For n > 3 elements there are n - 2 independant conditions of this type. '
In the applications we will restrict ourselves to the box beam situation, with
or without spar flanges. To confomm with.bur already developed skin elements of
quadratic type the component u will be assumed to have parabolic variation

along the edges m = constant, The same is true then of up considered as a

function of p :
' - - . .‘ N 2 ':' . } .
u = o (m) + a, (_m)p + 03(m)p . | - (3.2).

us { alﬁh) + az(m)p + aa(m)pzi)». | _ (3.3)

1+m

II



We next investigate the nature of a conforming connection along an interface
p = constant ., The local cartesian unit vectors consist of v along the inter-
face edge, gp normal to it in the plane of the element and c again, normal

to the plane. The projections of u are

u
m -»>
VB —— ) along v

P
- *p +p *p -m - - _11_1 . +*p
i} up g +8 tu g .8 up > u along g
w indeterminate along ¢

If the connected element is a rib flange, devoid of bending ripidity, its axial
displacement must coincide with v ,

If another trapezoidal panel is connected in the same plane with the same focus
0, u and u must-be.continuous. If the focus is different, as in the case
of a "kinked" spar, account must be taken of the discontinuities of both m
and p at the iInterface; accenting the values of the variables of the second
element, the transition conditions based on the continuity of the.cartesian

projections are

at interface (3.4)

w s u + @ -m—=
P p ¢ ) P

4, Simple models for tapered and swept spar element,

Preliminary stress assumption.
A transverse distribution of stresses or displacements is assumed, which

reduces effectively the two-dimensional elasticity problem to the determination

of functions of a single variable : the position coordinate x of a transverse
section. This determination if effected by cutting the spar into consecutive
segments, the finite elements, and adopting polynomial approximations to the
unknown functions., The convergence obtained by reducing the length of the
segﬁents is not towards an exact solution of the two-dimensional elasticity
problem but towards an exact solution of some "Engineering Beam Theory" related
to the assumed transverse distribution. In more sophisticated models one allows

for distortion of the cross-section and elasticity of the transverse fibers and

I2



the complexity of the models seems justified by the good correlation obtained
between both the displacement and stress patterns within the equilibrium models
on the one hand and the displacement models on the other hand 2 . However, 1f one
is not too much interested in the details of the stress distribution in the web
but only in a correct representation of the spar as a connection member between
other elements of the structure, sufficient accuracy is obtained with the cruder
models. They converge in principle to the exact solution of the usual engineering
. beam theory. However, in the case of the displacement model that has inextensi-
ble transverse fibers, the moment of inertia of the web would be overestimated

by a factor (1-v2)~! if the initial de Saint-Venant type assumption
0. =0 ' (4,1)

were not introduced at the outset. Because of this mixture of stress énd displa-
cement assumptions this model is really hybrid and its lower bound properties
only hold with resPéct to exact solutions of such beam theories that incorporate
(441). The equilibrium model is also based on (4.I) but its upper bound proper-
ties hold with respect to any exact solution whether relying on (4.I) or not.
In the presence of taper and sweep, the natural generaiization of (4.i) is the

assumption
o =0 | ' (4.2)

that will be retained in the sequel, It reduces the expression of the energy
density, in its Clapeyron form, to

-~ ~ 1 , 3
‘J 2 o= + ! -“ . 3 .
¢ =3 (ep o5 * Ymp Tmp) , (4.3)

From the isotropic stress-strain matrix (2,8) we obtain in view of (4.2)
= 2)2 5_ + 2 4.4
Et € (1+4m2) 9, 2 pm(1+m )Tmp ( .)

Et

- 2) 2 2
Ymp 2 pm(1l+m )op + 2 p%(1+v+2m )Tmp ) (4.5)

This, substituted into (4.3), furnishes the complemeritary form of the energy
density that is of interest for the equilibrium model g '

I3



R S 2y2 .2 2 2 2y .2
§ 75c (| (1+m?) o *+ 4 pm(1+m )op Tup * 2 p2(1+v+2m )Tmp } (4.6)

Solving equations (4.4) and (4.5) for the stresses :

Et 2 2y.
g_= { p(Q+v#2m%)e_ - m(1+m?)y__ } (4.7)
P (1+v) pQ1+m2)2 P mp
T == ( (emdy, - 2mpe ) | (4.8)

T 2(1+v) p2(1+m2)

and substituting into (4.3) we obtain the energy density of interest for the

displacement model

a Et 1+ v+ 2m? 2 m 1
W= €2 -y g+ —— y2 )} (4.9)
| 2(1+v) (1+m2) 2 P p(l+m2) mp p 21)2 . np :

For a‘sﬁar flange we'can derive from the direct strain (2.9) the energy per

unit p length

S N ;S (4.10)
2 (14m2)2 P

where A is the flange area in a p = constant section and is related to the

area S normal to the flange axis by
A= /TmZSs ~ (4.1II)

We note that the load L obtained by differentiationlof this energy per unit
P length

L= o FA__ ' L (hI2)
%  (14m2) P

can be put in a form consistent with the first of the stress definitions (I,I2)

/1+mZ

by considering the usual normal load- N in the section normal to tﬁe flange

axis
Nowit gL : A1)
| i
14



The complementary form of the strain energy per unit p length of flange is

from (4.12)

bua L2(1+m2)2
2

EA

oL P

with ’ 20 . €

Displacement model assumptions.

(4.14)

(4.15)

The trapezoidal panel is defined by the four parameters a , b , Py » h,

illustrated on figure 4.

y
|
m "f:al‘le'l

m_= tan 62

I5



For the simplicity of the analytical computations we introduce 3 non-dimensional

parameters
b
A== defining the aspect=-ratio
1
B == — defining the taper (4.16)
Fo p t
o o .

=1
% "%

Bo varies between o and 1 ,
Another natural parameter appears in the subsequent calculations : m related

to the previous parameters by the relations

’ m = m
mo=t—lasl O (4aD)
o 2 P
(o]
m ot = 'é—o- =2 4 ('4.18).

P~ P, .
X = a (4.19)
m mpo - h 4
T=m "% "% (4.20)
o .
When p varies between P, = a and P, *a
X wvaries between -1 and + 1 " (4.21)
When m varies between m, and m, ,
Y wvaries also Between -1 and +1 (4.22)
The surface element is :
dA = pdpdm = ab(1 + B X)dXdY = a®Z dXdY  (4.23)
where ‘ Z = m, X + 2 ' _ (4.24)

- I6



Because of taper, sweep and unequal flange areas we lack the symmetry required
for distinguishing between bending and extension. They must be handled simul-
taneously. We also require conformity along the flange axes m = m, and

m = m, with cover sheet elements having parabolic distributions in the edge

displzcements. This will be implemented by a displacement field u or

up = u /T+mZ of the second degree in the coordinate p . At an interface

p = constant we must have continuity of the cartesian components U and V .
Extending the concept of inextensible vertical fibers we take V to depend
only on p or X and the same will then be true of u = pV . We will also
assume the cross-section to remain plane by taking U to be linear in 'y .
Then u, = U + mV will be linear in m or Y and (see fig. 4) the field ép

will be completely determined by six local values along the flange axes :

= 2 2
u, = a ta,X +a,X + Y(a, + ag X + ap X ) (4.25)

From the relations (I.I7) the strains are :

1
ep -3 ( a, + 2 oy X + Y(a5 + 2 as.x) )

Y

u v
- p2 O (I R 2
mp P =) + (a“ +_as X + a X¢)

op p2 m

in matrix notations we way write ¢

= ‘ 4. 6
=€ *e, | (4.26)
where e' = (ep', ymp)
TR Da (4.27)
| 2 9 | um
' = o= | e—— : 4.28
€, | o P’ 5 ¢ 2) | (4.28)
.
and
1 2X Y 2XY
8 a A . a -/ a .
D= . ' ' o (4.29)
o o o . X x '
m m, m,



The strain energy density (4.7) takes the following form :

1

W=me' Ne=W +W, | (4.30)

where

1+v+2mn? - m(l-'-m)p-l1
N = —EE | (4.31)
(1+v) (1+4m2)?2
- m(14m)p~" | -;- (14m2)2 p~2
and

Wl = -é- c; N €, (4.32)
Wz = -;- e; N 52 + eé N el. . (4.33)

The first part of the strain energy
U =[[w dA
I
can be written in terms of the parameters ay

g_}_ | nx ’
U =7 a'(B] + B a : | | (4.34)

t]
1
In those matrices we denote .

where B’; , B are displayed in analytical forms in figures 5 and 6.

1 1+2m2 (1-a2) -
A)) = | d: - = . #— ( arcts m (a +1) - arctg m (a_-1) )
-1 (22 2(r(m )sm)) "o
20 a (4.35)
. +1 5 1-m< (a2-1)
B(mo) - L nd¥ .l 2.0 + ( arctg mo(aé-o-l)
m =1 (+m2)2 w2 r(m )s(m) 2m3
o ) o o o .
- arctg mo(ao-l) )
BST. o
18 P Y



C(m)..l._]+l nd¥ 2o
o m .
o -1 (+m) r (mo) s (mo)

3 2 S(n2-1)2
6mo+2m° (3a °+5 ) +4m° (ao 1)

1 N ‘
D(mo) -l j mdy 1 { -% ( arctg mo(ao-!-l)

b o 2)2 S
m, =1 (14m?) m> r(mo)s(mo) - arctg m (a1 ) )
g 0 Go 1
1 m3dy 1 r(mo) m2 %
E(mo)--? 22- ‘,{R‘."‘s(m)-4 2
m -1 (1+m .) 2111o o r(mo)s (mo)
+1 2 B
Fm) = [ L. B@m) + a2 A ) - 2 o_ Clm )
-1 (1+m2)2 ° °
(4.35)
Uy
Gm ) = dY = m2 (D(m ) + o2 B(m ) -2 «_E(m_) )
o -1 (em2)2 o ) o o o o
1 *+ mdyY - r(mo)
H(mo) " / " s
0o =1 1+ m2 ng o
+1- :
1 m2dY 1
I(m ) = — ———— == ({2m_ - ( arctgm_(a_+1) - arctg m_(a -1 '
°  m2 j-l 1 +m2 md { 0" | £ %o ao. B Moeo™1) 1)
o o
+1 nY <
K@) = [ —a=m? I(mn) -aqm H(m )
o -1 1 +m2 o o o o’
while we also need the simple integrals
+1 +1 +1 ‘
X = -2- k 2 ‘- 2- 2 = 2-
[ xzaz=3m [ zxax= s [ X2zdz = 5
-1 ° -1 | -1
(4.36)
+1 . +1 2 ’
]  Zdx =22 ] ¥ax=3
-1 ' -1
For |8 J <1 the expansions in power series of B, are :
B2 B!
1 o (]
i’f(eo) 1 "'-3-"""5."}"" xXx .
: , (4.37)

. 2 B‘G
2 g(Bo) 3 + 5 + 7 + [ X J
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, 82 8! |
'%'h(ﬁo) "'5" +"7£ +'§"°‘ + e (4.37)

Determination of u (p).
The part of the strain energy density which depends on the unknown um(p) is

1 :
W=z, Ne, te; NDa
From (4.28) and (4.,3I) we have
Et ) Y m 1
R 4.38
2 1+v © 3p p2) o2 7p ( )
Putting
m’ 1 ‘
q' = ~— 3= I D ' (4.39)
14m2 2p :
A u ‘ '
$0) = = 2o Bym (4.40)
a2 z2 °
the remainder of the energy density may be written :
Et 1 e . '

The best choice for ¢(X) will be that which minimizes the energy

+1 +1
= g2 . X
v,=a [ [ W, ZdXdY min
-1 =1
under the assunption that um(X) is given for X ==1 and X =+ 1,
From (4.41) this expression becomes under the assumption of constant thickness t
+1 1 . . ' : '
/ ('5 Z $2(X) + 0 y'"(X) o ) dX min (4.42)
=1
where the vector y'(X) 1is :
+1 1
' = ' = - - i =K
Y'(X) = [ 2zq'dy = | o ~m ZIi (m,) Zmolx(mo)XZ 1 K(m_)Z+X

-1
-21<(mo)zx+x2 (4.43)
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(4.42) furnishes the differential equation to be satisfied by &(X)

L (" Xa+2z2)=o0

dX
The first integral is
c -
. -a"-1- = Y' (X)a
Q =
Z

from (4,43) we find :
° 1
¢ =<z ( ¢, +m Zld(mo)o;2 + 2 m H(mo)XZ ay = a * oo ( K(mo)Z-X )

+ o, ( 2K@m )zX - X% )

Noting that : P=P,* aX = _‘.:_Z
o

we obtain from (I,2) and (4.40) :

X

v=az [ -z(-’-‘-)-dx

(4o tsd)

(4.45)

(4.46)

(4.47)

To evaluate the integral (4.47) it is necessary to introduce the following

functions :

X mX + A
: [6)

dX 1
f—z - n 7y _=n(X, mo)
(o] (o]
X m X + A

XdX 1 o .
| =5 (nx=2n=5—] = £X m)
(o] m

o.

X mX + A AmX

XdX 1 ( o o ‘
] ===~ (1n - — ) = 6(X, m )
o Zz ngo A mOX-a-A_ (o}

X .2 mX+ A AmX

X<dX 1 0
f'_z""'é'(mox'-z"““ A +mX+A)'u(X’mo)
o 2 m0 [} ,

So that the vertical displacement is ¢

(4.48)



G T, X

ve Z {
A mOX + A

+ moH(mo) n(X,mo)X + 2moH(mo) E(X,mo)
(4.49)

+ (K@) n&m) = 6w ))ag + (K@) £X,m)) -~ u(X,m))ag + ¢, }

It is easy to shown that

(n(x’mo) ) -.}A-{.
’ m =0
o
1 x2
g(xm ) T e
( "o ). o -+ o 2 A
[o]
2
(s6m) ) - X
m_+o0 222
[}
3
( u(x.mo) ) ‘ "':13"}'("'
n, > o A2

The vertical deflection for a rectangular spar takes the form :

€ "% X

) .
X + moH(mo)X a, * moll(mo)x ay + X ( K(mo) -5 ) o,

ve
(4.50)
2 y =X
+ %2 ( K(mo) 35 ) o, * ¢,
which is a cubic function of X , and the element is equivalent to the rectangu;
lar spar given by de VEUBEKE 3 .
From (4.41), (4.42) and (4.44) the'part of strain energy depending on um(p)

may be found

+1 (4
1+v ° 1 1 1
E—UZ-I a2{¢(-5--2-z¢(X))}dX--2-a' asza (445I)

-1

where the matrix sz is given in figure 7.
The displacement obtained previously (2.25), (2.50) can be completely determined
by (see fig, 8) this suitable sequence of generalized coordinates :
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‘ N (4.52)
o ' .
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The matrix relation (4.52) may be easily inverted

a |
az |
ay, y _ |
= U 1
ag |
a |
c
1 -VTU-I l
)
where
0 2 0
-1 0 1
U-l - l+m° 1 - 2'
0 -2 0
l -
-1 2 -
1
-1 A !
\'4 =
1
X 1
0
mOHn (-l,mo)
. 2moH.t;(-1,m°)
1
A -moﬂ.
Kn(-1,m )=§(=1,m )
2KRg(=1,m )=u (=1,m )
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The stiffness matrix turns out to be

Et W'

KBZZI +v$

(B} + B + B, ) W

Using the formulae (A.5) the cartesian stresses are calculated in the local axes

Et d :
xy | T @wwa oW

where :

1+v+m2

1+m2

% m(v_+ m?) 1 - m?

1 + m?

_mQ1 ~-v)

N3 ’

1 +m

0 1 2X - 0 Y 2KY 0 o

Y

0 m ZH 2m_HXZ 0 KZ 2KZX m 0
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- Appendix A

Relations between natural and cartesian stresses and strains.
If U and V denote the cartesian components of displacement, we have from the

cartesian components of the contravariant base vectors (see Appendix B),

U=u -Zu V==u (A.I)
p pm ? 'm

while the operators

3y 3y 3p 3y om P om
}Ience . € :-a-g = (-2— -2_3__) (u -E u )
X 9X - ‘3p p om P P m

oU , 3V 1 9 .. m ) m 9 1
Yxy "3y T ox  p om (up P uy) + (ap P am) ? 'm
or, finally
m m?
€ 1 - = —_ €
X P p2 P
1 2 n
- - (A.2)
ny - ° P p2 Y"np . o
. o 1
. — €
' ° o2 m

on the other hand, from direct equilibrium consideratioms,

S ' vY1+mZ o o o
P b4
Tmp. = -m 1 o 'l"xy

g n2 _.2m 1 .o
- 71+4m2 Y1+m2 v1+m2 y



and, considering the definitions (I.I2)

Op 1 o o Ox

= -2 L
mp - P P o Txy (Ao3)
a n2 2 m 1

ep 1 n m? ex

Yup - o ' P 2mpl v, (A.#)
€0 o o p? €
Ox 1 o o cp

Ty = m , | P o o Tmp (A.5)
ay m2 : 2 mp p2 o

The matrices in (A.2) and (A.5) are respectively the tranSposé of those in
(A.3) and (A.4), as befits the fact that, from Clapeyron's theorem, the strain
energy density is numerically equal to either of the forms ’

- -1- ( '
9] 5 (ox Txy oy) (ex ny ey)

-

5 o )'(

°p Tm'p m e1: Ymp em)
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Appendix B

Contour integrals for the invariants of the strain tensor,

By analogy with the formula

+- P > m -
u ugp-o-ugm

we define contravariant base vectors Ep and Em by

U=u gP+u g

P m ®

The scalar product of this with g and 5& yields in view of the defini

of the covariant components up and w

-m *nm -’-‘ *p *.am +=
g o 8p g o g =1 8 « 8 =8 o gp o
Hence
Ep has cartesian components 1 and o
| (.
P P
The following consequences will be found useful later :
Y
2., LT
ap om
(B!
-?-E-,‘:l’:--l-m ﬁ;m—a—lgp
ap . P g om P

We now establish, first in cartesian coordinates, a formula for calculating
first invariant el =c ey of the strain tensor by contour integration
(fig. B) ’

/[ e  dxdy = I/ f%— ‘) dxdy = § (2u + mv)ds
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A y n(2,m)

?(-m,z)

Figure B

Hence, if A denotes the area over which the double integral is extended,

we obtain the intrinsic definition
1 1 - >

6 = lim < [[ 6 dA=1lim < ¢ (. n)ds (B.4)

1 Avo" Al 7] Aro A A v

which allows the direct evaluation of e1 in natural coordinates,

For the second invariant of the deviator

0, = (ey = e)? +v2,
ou V2 VvV Juy2
5, [ax'?;?) (ax '33?)
- (34, 3Vy2 3V _ 3uy2 Qu 3V _ du 3V
(ax + 3}') + (ax 9 ) + 4 (ay b4 X ay)
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Hence

(B.5)

0 =02 +y2 + 2q
2 1
where
o =Y _23u
9X oy
o =2 (222Y_ 3uldvy
9y 9x 9X 3y

el has already been reduced to a contour 1ntegral;Jfor w (twice the material

rotation) we have
J[ wdxdy = ¢ (iv - mu)ds

and, consequently, the intrinsic definition

o = Lin 7§ @, Das (B.6)
Fina1i§
”adﬁy-¢{uh%%-b%)+vug§-m%)}M
. “f (V- ud)as
and the intrinsic definition
@ = lin +¢ (-g% %), ds (5.7)

In this last formula, the z
has a unit vector T% x Ty .
We now apply formulas (B.4),

-»>
B u on it

direction on which the vector product is projected,

(B.G) and (B.7) to our trapezoidal coordinates.

( Along AB of figure 2, the outward normal is = g/ |§m| and the projection of

1
NI 3 e sy B T
& [&"|
B el (- BLUT )



The flux of u along AB is finally

1+m
(-m up + um)dp

Adding the contribution of CD

3 (l4m2
m ( > u -mn up) dmdp

Along AC the outward normal is - g°/ |§p| = - gP , the projection of u
- -p -Vp - - "Pp . -nl > . ~
u g . u g 8 up + > u the flux of u along AC

-p up + m um)dm .
Adding the contribution of BD

)
T (r up m um)dpdm

Dividing the total flux by the area pdpdm , we fin&, according to the contour
integral definition of 6,

13 13 (14m?
2 onw eusum - + o= e -
el % (p u m um) > > u -m up)
1+m2 " m : A
- + - o . ' B.8
€ p2 €m P an (B.8)

In a similar manner we calculate the circulation of a along the contour which

is )
u /14m2 dp = ub dp along AB

- vpdn =-u dn along AC

and finally for the whole contour

ou 3um
G - p ) dpdm
Whence
Ju ou
el (2.1 B.
“* 7 Gm op ) (8.9)
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The contour integral for o requires :

(B.10)

-
ou 1 T >m
along AB e (u_ g+ u gD
| 3%t Az 3P P |
-l (2P om _ )
JTrmz 0P o p °
along AC .9.:‘;.=;l§_ (u gP +u ™
’ ot p om
1 ou »p
s (G- E )
Noting the following values of the vector products
P x P =g xg =0
1 1
@ xg),==-E =D, = -3
.m L P
P P
we obtain
v W - dp au L uu
along AB (-E-xu)zds- p(m-Bap - p.é.r.;_..._.__P.p )
' Ju du u_u
: dm D m D
’ AC M e oo - w3
along . > (um prm up - . )
and finally
du u u u_ 3u u2 u
p2 M ~mp P3P P pap pam p ™.
After development and reorganization of terms, we find
w a 2 (Ymp €n ep)
and this gives for the invariant eé
BST.
*
(]
| o g
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