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1. INTRODUCTION 1.

Linear structural dynamics is one of the many field problems of engineering
that can receive a variational formulation. The classical approach is the
kinematical one, and the discretization of the Hamiltonian variational
principle in finite elements results from a polynomial approximation of the
displacement field inside each separate region. Continuity will be secured
through identification of a suitable set of generalized interface displace-
ments, in which case the kinematical elements are said to be conforming.
Integrating the kinetic and potential energies of the finite elements leads
to lagrangian, or so-called cohetent; mass and stiffness matrices.

‘The first really satisfactory formulation of a dual principle, in which
the kinetic energy is transformed through satisfaction of the dynamic equi-
librium equations in a functional expressed in terms of an impulse field,
is due to Toupin 38 + Similar approaches where followed by Crandall, Yu Chen,
Gladwell and Zimmermann 6, 41, 24
plate problems were presented by Tabarrok, Sakaguéhi and Karnopp

+ Some numerical applications to beam and
' 35, 36

Its use as an efficient tool in finite element applications is however very

19,21

recent and has still to be generalized to the three-dimensional linear

elasticity.

This presentation gives a logical derivation of the dual dynamic
principle through the canonical form in the spirit of the Friedrichs
transformation. Its discretization results from a polynomial approximation
of the stress field within each separate region. The diffusion of the
boundary tractions will be preserved if choosing a suitable system of
generalized boundary loads that may be defined uniquely in terms of the

parameters of the stress field inside each element.

This paper also discusses the general procedure for assembling
equilibrium, or statically admissible finite elements, in order to
implement the dual principle. It will appear that, when starting from an
assumed stress field, the expression of the kinetic energy of an element
involves only a small number of interior parameters; the equilibrium
approach leads thus in a more natural way to an "eigenvalue economizer".

Zero frequency modes are associated with the other parameters, which



2.
improve the representation of the strain energy without increasing the'’
order of the eigenvalue problems. Moreover, it is shown that there is
no advantage in using the dual principle together with ;he requirement
of forcing orthogonality with respect to all zero frequency modes. |
On the contrary, experience prove; t%at, by ignbring this unnecessary
requirement, the computed eigenvalues generally converge to the exact
values by lower bounds, hence giving precious accuracy estimates by

comparison with the displacemsat approach which always give upper bounds.



2. THE VARIATIONAL PRINCIPLES OF ELASTODYNAMICS

3.
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2.1. Hemilton's principle

Hamilton's principle, or displacement variational principle,
states that for time fixed end values of the displacement field U
the Lagrangian action

ftz
flu] = J (T - V)dt (2.1.1)
t
. 1
of a conservative system takes a stationary value on the true trajectory

of the motion.

T denotes the kinetic energy of the system :

.

.lf . .
T=3 JR P uyu d R , » (2.1.2)

and V, 1ts‘potencia1 energy, can be split into different distinct parts :

The strain energy
r .
V, = J W(e) dR ’ (2;1.3)
1 R '

results from the integration of the strain energy density W(e) in the

domain R. If we restrict ourselves to the infinitesimal strains and
rotations of a linear elastic material, W can be written as a positive

definite quadratic form

W(e).- %-C?? cij € | (2.1.4)

of the symmetric strain tensor :

¢ --;- (@, u, + nj' u,) . (2.1.5)

i3

mn

The set of elastic moduli defining the tensor cij verifies the

symmetry conditions

- con  onm 1]
c“i“‘ Ci1 = €13 = o . (2.1.6)
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The relations (2.1.5) show the strain energy to be a functiopal of the
first order derivatives of the displacement field :

r .
V. = } W (D u) dR a . . (2.1‘7)
1 R

According to the symmetry properties (2.1.6), we obtain the more

explicit expression

1/ mn
Vl 2 " cij Di Uj Dm I.In dR . (2.1.8)
Finally, we deduce from the strain energy density W the stress tensor

o,, conjugated to the strain temsor € , through the energy relation

1) 1)
oW n |
9y a_e';; - c“i“j‘ ®an = _c‘:j D ou s | (2.1.9)

under the condition that the formal distinction between eij and €44
in the case 1 ¥ § be kept.

Another contribution to the poteantial energy, Vz, is a potential
energy associated to .the displacements on the part 32R of the boundary :

f
Vz - - J F(u.t) daR . (2.1010)
BZR

On the remaining part 31R of the boundary, we shall assume that
the displacements are prescribed time functions

uy = ’Jj (t) on 3R . (2.1.11)

For simplicity, we do not take into consideration other potential
energies like that associated with conservative external body forces

functions of position (for example, gravity or electromagnetic forces).

Applying the principle

with the Hamilton's principle rules
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- at the extremities of the time interval :

Guj =0 for t "tl and t=t, . (2.1.13)

- on that part of the boundary on which displacements are imposed :

GuJ =0 at all times on 31R R (2.1.14)

the following vuriational derivatives are obtained

: e petl 2.
-0 I.IJ + Di aij L 0 in R . (-1.175)

They are the dynamic equilibrium conditions written in the d'Alembert's

form. In terms of the displacement field alone, they become

o mn . ) ]
-pP uJ + Di (ciij un) = 0 . (2.1.15 )

The natural boundary conditions supplementing the essential conditions
(2.1.11) are found to be

oF
- ni ij + n— = 0 on 32R ’ (201.16)
]
where n, denotes the direction cosines of the outward normal. They

i
state that the surface tractions

:j =n, cu . ' (2.1.;7)

are prescribed functions of displacement and time

(u,t) on 3 R . (2.1.18)

oF
t-au 2

t

3 j 3

An important particular case is that of a boundary potential energy
which is a linear function of the displacement field :

F(u,t) = u, 'c'j (t) ‘ . (2.1.19)
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The natural boundary conditions reduce then to the imposition of the

surface tractions

t, =t (t) on 9 R ) ° (201.20)

2.2. The canonical variational principle

We follow the way indicated by Friedrichs2 to transform
Hamilton's principle into a canonical and, later, dual form.
To this purpose we introduce a dislocation potential A into the func-
tional (2.1.1) that may then be written as
ftz

f [: UyV,E A anUJ - J (T =V +4)dt (2.2.1)
t

1

The dislocation potential consists of three parts :

/( (C— Dw)

: 1
{ eij - 'i' (Di uj + Dj ui) } dR ’ (2‘2.2)

a first one,

Aij
R

that removes the compatibility relations (2.1.5) as essential conditions
of the variational equations for stationarity of (2.2.1) by means of a

tensor of lagrangian multipliers A,,. Correspondingly, the potential

i

energy is now expressed as
r
Vl - J W(C) dR . . (2.203)
R
The second part,

ay { v - u,(t) } doR (2.2.4)
“2 JaR J J '

incorporates the essential boundary constraints (2.1.11) as natural

boundary conditions through the vector of lagrangian multipliers o

Finally,

J.

(u -v,) dR (2.2.5)

) {
b7 Y
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introduces the velocity field, vj, as an independent field, and the

kinetic energy is now expressed as

f
Te= J p v, v, dR B . . (2.2.6)

I

(8 [

The introduction of the dislocation potentials Al and Az is a classical
procedure used in statics to provide a logical approach to the two-field
variational principles, one of which is the Reissner-Hellinger principle,
Its dual form is given in reference 15.

On the other handfhe intt?duction of the dislocation potential 8418

an essential step in the logical transformation from Hamilton's

principle to the eulerian variational principles of fluid mechanics

The first step in the simplification of the functional (2.2.1)
consists in identifying the multipliers Aij and uj. This results
immediatly from setting the variational derivatives of eij and vJ

equal to zero :

oW
A,, = == 0 : : . (2.2.7)
i) aeij
and U PRI PR 0 in R » (2.2.8)
and aj -n, aij =0 on 81R . (2.2.9)

Hence the Aij tensor 1s identified with the stress tensor oij related

to the strain tensor by the constitutive equation (2.1.9); similarly,

is identified through (2.1.18) with the surface tractions tj on the

a

3

part 3.R of the boundary.

1
On the other hand (2.2.8) shows that the u, vector corresponds to the

momentum per unit mass.

When (2.2.7) is substitued into the functional (2.2.1), the

expression

-a—‘.‘— - W (2.2.10)

e
i Beij
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that appears in the integrand of the functional is treated as a

Legendre transformation introducing the complementary energy density

¢(0), a function of the elements of the stress tensor. This transformation
is possible whenever the strains can be expressed in terms of the stresses,
in which case, through differentiation of

eij oij - W= ¢(o) N (2.2.11)

the dual constitutive equations

) .
ey " 3§I; | (242.12)

follow immediatly.
We thus obtain

8, = v1 - u1 - r1 (2.2.13)

with the complementary strain energy

f
U, = J ¢(c) dR . (2.2.14)
R .

D, u dR (202.15)

and I, = X aij 1Yy

1

—

where account was taken of the symmetry of the stress tensor.
Also the substitution of {2.2.8) yields

? + A3 w T + r3 (2.2.16)

s .
where ' = v, u, dR . : 2,2.17
3 JR p vy u, ( )

The meaning (2.2.9) of the multipliers uj on the part 31R of the

boundary is utilized in order to transform Az into

{u

2 3

{ -
A, = Ja R ni 011 - uj (t) } daR . (2.2.18)
1
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The final result is a canonical variational principle in the Friedrichs

sense, requiring the stationarity of the functional

rt

c [uywvyo] = J

2 . 1
1

16 which the various integrands are given tespeccively‘by (2.2.14),
(2.2.6), (2.1.10), (2.2.18), (2.2.15) and (2.2.17). It can be used to
develop approximate solutibns based on independeat discretizations of
displadements, velocities and stresses. Taking the variational derivatives
of (2.2.19) restitutes the natural conditions of the canonical principle.
The Euler équations are respectively :

- the dynamic equilibrium equations

-pv, =0 in R - (242420)

D, o j

1 %13

and t, =t, (ut) on 3R (2.2.21)
T 2 |
for the variations on displacements;

- the compatibility equations (2.1.5) written in terms of the stress

tensor
0o 1
o "3 (Di uJ + Dj ui) (0] in R . (2.2.22)
i) :
and 21 - ui(t) on aln (2.2.23)

e

for the variations on stresses;
- the constraints between velocity and displacement fields

plu, = v,) =0 | ‘ (2.2.24)

for the variations on velécities.
Note that all boundary conditions are now natural. For finite element
applications of the variational principles, it is important to recognize
the nature of the transition conditions at interfaces. Because the only
space derivatives contained in the functional are those affecting displa-

cements, we must consider that physical continuity
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}(u ), = (u

2,2.2
} ). | | (2.2.25)

]

is an a priori requirement; the natural transition conditions provided

by the principle and deduced from the éommbn variations (Guj)+ - (éuj)_
at interfaces are then ’ T
t + t = 0 a ° 2.2.26
( j)+ ( j)ﬁ ‘ )

From that point of view, the canonical principle behaves as the
classical principle of variation of displacements. Obviously the
interface constraints qouid be incorporated into the principle through
an additional dislocation potential and the corresponding multipliers
identified. Then, just as was found to be the case for the boundary
conditions, all transitional conditions would be cared for by the

principle.

2.3. The complementary energy grincigle of elastodynamics.

The complementary energy principle of elastodynamics can easily
be deduced from the canonical principle by specializations.
To this purpose, the functional (2.2,19) is integrated by parts with

and T'., of the

respect to the displacement field in both the terms Pl 3

integrand,
The first transformation

{ f
[, = n, o,, u, doaR = D, o,, dR 2.3,
1 Jaa 1 %3 Y JR Yy Y1 944 (2.3.1)
cancels a part of the contribution of A2 H
' ( {F

- <+ - - -

p * 8, =T, Ja . (u,t) = n, 94 uj}daR

2 ,

[

r ._
- n, o,, u, 3dR + u, D, o dR .
Jalniuj Jo U P oy

(2.3.2)
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In the second transformation,

t

[ “r. a [f dR] ‘ v
J‘l 3t, Japv-’%- t

: - jt:ja P vj uj dR dt

(2.3.3)

the term at the time limits appearing in the right-hand side'is dropped
on the basis of the Hamilton's rule (2.1.13), and the introduction of

the new requirements

é Vj = 0 for t = tl and t = tz . (203-4)

The functional has thus been modified as follows :

c[uwveo] =
{tz r .
Jtl [:JR { (Di oij -p vj)uj } dR + U1 -T
(2.3.5)

[ ' r -
+ Jazn { F(u,t) = :j uy } doR - Jala tj ug dBR:] de ’

and may be simplified by making the assumption that the dynamic equilibrium
equations (2.2.20) are a priori satisfied; this causes the first term to
vanish.«On the other hand.the integrand of the term 32R is obviously related

to another Legendre transformation

u, 2L F (u,t) = RS , (2.3.6)

J Buj

which is defined whenever the surface tractions given by (2.1.19)
depend on the displacement field, in which case the Hessian matrix

2 .
9" F .
[aui 3uJ] (2;3-7)

does not vanish. The complementary function is then such that
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3G
__t_j_ - u, . (2.3.8)

With the notations

( -
- d9R 2.3.9
B, Ja . tj uj,(t) ( )
1
d B, = G(t,,t) doR 2.3.10

the canonical functional reduces now to one that depends only on the

stress field :

ftz *
gEi] - J (U1 T = Bl - Bz) ’ (2.3.11)
t
1
provided the kinetic energy be also expressed in terms of the

stress field. The dynamical equilibrium equations (2.2.20) that must be
satisfied a priori allow precisely to express the velocity field in

terms of stresses ¢

t
1 [
v, =V +-=D [} dt . 2.3.12
1Ty, e P, oy (2.3.12)
_ 1 1
The time integration is avoided by introducing an impulse field, Tij’
such that
v, =2D, 1 (2.3.13)
J ) i ij [} eJdse
Hence we adopt the definition
rt
T - T + o dt 2.3.14
1 ’1jl Jt 13 ( )
t 1
1
which yields
aij = Iij R (2.3.15)

and we have to replace the requirements on the velocity field at
time limits by
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s ‘1j =0 for t=t and t=t¢t, . (2.3.16)
A convenient formulation of the complementary energy principle of
elastodynamics is thus the stationarity of the functional

€y 1 A‘ . 1 '
g[t] = Jt [JR{ ¢(T“) --2-‘,’-D1 T4y D T } dR
1l ‘ '

- : r
- Jaln ij'uj(c) doR - JaZR

g(tj,t)daR‘] dt . (2-3.17)

It depends only on the impulse field Tij’ since the associated
surface tractions can be written as

t,=n, T

j 1 1y . (2.3.18)

The variational derivatives of this principle are

d 3¢ .1 -
T ~ +* % (Di Dm ij + Dj Dm Tmi) o (2.3.19)
Tij :

that; in view of (2.3.15), (2.2.12) and (2.2.20), are easily interpreted
as the time derivatives of the compatibility conditions (2.1.5) :

1 o
Cij - -2" (Di v, +D Vi) 0 . (203020)

b J
The natural boundary conditions are seen to be

1 d =

1 d oG

P Di Tij + at . 0 on azR . (203022)
311.1

Both are easily interprated through (2.3.13) and (2.3.8) as expressing
the continuity of the velocity field on boundaries.
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In the special case where the imposed surface tractions (2.1.19) do
not depend on the displacement field, the Legendre transformation
(2.3.6) yields a G function that is identically zero; the boundary

requirement

€, = t,(t) on 3R  (2.3.23)
3 3 2
becomes then an essential condition in the complementary energy
formulation. Similarly, because the displacement field vanished
completely, the continuity of the 1mpdlse field (2.2.26) becomes an

a priori requirement.

2,4, Matrix formulation of the variational principles

Displacements, surface tractions, strains, stresses and impulses

can be presented as row vectors :

u''= (ul u, u3)
t' = (c1 t, c3)
€ ) (2.4.1)

' -
(ell e22 e33 Y23 Y31 le

= (97 923 %33 %3 % °12)

(11 T22 T3z Ty Ty TR

with the classical definition of .the shear angles :

Yij - in - eij + eji . (204.2)
Then, with the help of a matrix differential operator
D1 o0 0 o D3 I&
! - '
D' = © D, 0 D 0 D (2.4.3)
(0] 0 D3 D2 Dl 0

and a corresponding matrix of direction cosines for the outward normal



16.

1 3 2
N' = (o] n, (o) n, (o} n, » (2.4.4)
o o ny n, 0 o

The basic equations of linear elasticity theory recalled in the
préceding sections take the following forms

e=Du strain-displacement relations (2.4.5)

D't =-pilim=oO" dynamic equilibrium equations (2.4.6)

t = N'o ' surface equilibrium equations .« (2.4.7)
The linear stress-strain relations .

o=sHe or E™ H-l o (2.4.8)

involve a symmetric, positive-definite matrix H of elastic moduli.

Following these definitions, the functionals of both displacement

and complementary energy principles may be written in matrix form :

flu] = thz’ [-1-Jr [ o’ u dR - lj (Du) 'H(Du)dR
- N 2y 2 IR ,
r N (2.4.9)
* | t' uddR Jdt .
3R
2 !
re [ o _q° q f .
and 80 - | 2 E%J o Bl 1R --;-J % (D'7) ' (D' 1) dR
£, R R
(2.4.10)
r ) -
-J (N't)' u doR ] dt
3R :

in the particular case where the external potential energy results from

the imposition of the surface tractions on 1R.

The matrix notation adopted here reveals more suitable than tensor
notations when discretizing the functionals (2.4.9) and (2.4.10) by the
finite element method.
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3. EIGENVALUE ANALYSIS

The computation of the eigenvalues and associated eigenmodes of an
elastic structure can be considered as one of the most important goals

aimed at in the dynamic analysis of structures.

The benefit expected from a dual approach of the eigenvalue problem
is the same as that gvaranteed in statics : a bracketing of the exact
solution between upper and lower bounds when using alternately the
kinematical and equilibrium approaches. Keeping the eigenvalue problem
under variational form is the easiest way to derive the respective

properties of both analyses.
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3.1. THE KINEMATICAL APPROACH

3.1.1. The Rayleigh gubtient

Under the assumption that no external load is applied to the
system, the Euler equation of the &isplacement variational principle

reduces to
D' (HDu) =pii=0 (3.1.1)

under the a priori requirement

*

us=2o0 : ' on 31R (3.1.2)

that defines the set of admissible solutions. The natural boundary

conditions obtained from the principle are homogeneous
t = N' g=0 on 32R - (301.3)

As is well known, the general solution can be obtained by superposition

of harmonic solutions of the form
u(x,t) = u(x) cos (wt + ¢) (3.144)7
obtained by separation of the time variable.

The eigen-modes and eigenvalues of the'corresponding self-adjoint

differential system

(3.1.5)

D' (H Du) + mz pu=20 .}
u=0 on alR
are denoted by
u(l) » \I(z) 9 e u(n) see
(3.1.6)

mi 4(02 <€ ocoﬁ@i ces



' 19.
We can define the corresponding Rayleigh quotient

(
J (bu)' H (Du) dR
2 R

w- = R(u) =

1 | 5, (3.1.7)
us= Q on aln
and by differentiating it with respect to the displacement vector u,
it follows immediatly that (3.1l.7) takes a stationary value wz - wi
for the corresponding eigenmode u(i).
We recall the well known orthogonality properties :
( (D )' H (D ) dR ) . (3.1.8)
bl ole
Jo Po?’ B Py Y1 ®4
d ( ' . dR § (3.1.9)
an JR p u (1) u(j) My 1 . ole

The generalized stiffness and mass so iﬁ:roduced, Y, and "1 s are not

. i
independent of each other, since (3.1.7) gives

y
mi . : . (3.1.10)
't

A convenient choice of norm consists thus to impose

[ .
uy - JR o u'(i) Yg) dR = 1 (3.1,11)

f 2
' -
80 that JR (Du(i)) H (D“(i)) dR wy e (3.1.12)
Note that the possible zero frequency modes of the structure have to be

interpreted as either the rigid body modes or the mechanisms of the

structure, since (3.1.11) shows that they involve no strain energy.
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3.1.2. Independeat, or maximum-minimum characteti;ation of eigenvalues2

All minimum properties of the Rayleigh quotient in the displacement
approach can be deduced from Courant's theorem, often called the "minimax
principle”. '

To this purpose let us turn to the variational problem of minimizing
the Rayleigh quotient (3.1.7) under r~l arbitrary constraints taking the

form of conditions of orthogonality :

( .
J v! udR = O j - 1. steeyp I = 1 (3.1.13)
R 3

Courant's principle states that "the rth eigenvalue of problem (3.1.5)
is the maximum value which can be given to the minimum of the Rayleigh
quotient (3.1.7) by varying the r - 1 constraints (3.1.13) . This

maximum is reached for vj - p u(j)".

If we denote by m(vl. e vr-l) the constrained minima of the

Rayleigh quotient, Courant's principle can thus be written. as

mi = max m (vl. cos vr-l) = n(p Ugg)s *oss P u(r-l)) . (3.1.14)
v

3

To prove it, express the admissible solutions as expansions in

eigenmodes of the unconstrained system s

us I a,u ' | . (3.1.15)
o 1% . .

Thanks to the orthonorming properties (3.1.8 to 3.1.12), the problem is

transformed into

I a
1

minimum (3.1,16)



under the constraints

T ¢ a, =0
{wl iy i
{ , R
where cij - JR v j u(i) d
Or, equivalently,
me L di mf
1

j-1,2... r-1

minimum

21.

(3.1.17)

(3.1.18)

(3.1.19)

under the constraints (3.1.17) and the additional norming constraint

Under given constraints (3.1.17) m takes the value

B

]
-~ M
HPN
- N

P
ueN
-

®

for the particular set of values

a, = 0

i>r

(3.1.20)

l(3.1.21)

and values of a, for 1 < r satisfying the constraints which are then

reduced to

(
r
Lec a, =0
1 ij 1

<
r
X ai =]
1

j-l. 2... r-1

(3.1.22)

(3.1.23)

The homogeneous system (3.1.22) has always a non trivial solution (the

number of unknowns exceeds by one the number of equations), that can be

scaled to satisfy (3.1.23).
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The result (3.1.21) being independent of the constraints, it can be
concluded that, whatever those may be, the constrained minimum cganot
exceed the rth eigenvalue mi. Courant's principle is proved if a set
of constraints can be produced for which the minimum actually reaches
mi; it is then the maximum of all minimums. This is the case for the

choice

Vj = 9 U(j) j - 1. 2 XX} r~l

for then we find from the orthonorming properties

cij = 61.1 and, in particular ci‘1 =0 for 121r .

Thus the constraints (3.1.17) require simply that
a, =0 i= 1. 2 eee Ir=1
The choice ar =] and ai =0 i>r .

satisfies the norming condition (3.1.20) and we find

3.1.3. Recursive characterization of.eiggnvalues~

As a direct consequence of the minimax principle, we consider the
restricted class of admissible.solutions which consists only of displacement

modes orthogonal to the first r = 1 eigenvectors

(
) (] u' udR = O e e j w1, see =1 . (3.1.24)
Jo P ¥ '
Then min R(u) = mi . » (3.1.25)
u

and this minimum is reached for u = u(r);
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This well known result defines an efficient procedure for obtaining

eigenvalues recursively by minimization techniques 18,

3.le4. Minimum of the Rayleigh quot tent under constraints 25

The maximum-minimum property of eigenvalues also allows to predict

how the cigenspectrum will be modified by iwposing a set of lndepcndént

constraints :

{ .

| &'y uar=0 Jul, eee /4 (3.1.26)
R .

As a first consequence of Courant's pripciple,‘m: is the maximum value

which can be given to the minimum of R(u) when varying the r-l1 arbitrary

constraints (3.1.13) :

5 |
w_ = max m (vl. ces vr-l) . (3.1.27)

v

Next denote by xi the rth eigenvalue of the constrained Rayleigh quotient.

We may also write

"~ o .
Ww_ ™= max m (Vl o.c(Vr_l H gl g seoe gs) ) (3.1.28)

b 9
v

~

which is obviously bounded from below by the corresponding eigenvalue

of the unrestrained minimum problem.

Hence mz < 32 A . . (3.1.29)"
r r ‘

/i

.

Now let us also vary the s imposed constraints (3.1.26) : the maximum

value that would be reached by the minimum of R(u) if all r + s = 1

constraints could be varied is equal to

u2 - an m (v v 3 ) (3.1.30)
1 see r=-1 * 81 X gs ol

r+s
V8



24,
Hence we obtain the second inequality

32 < mz . (301031)

We have thus established Rayleigh's theorem on constraints :
"If s arbitrary constraints are imposed on a vibrating system of which
eigenvalues are given by (3.1.6), then the new eigenvalues Bi separate
the old ones in the sense that

2 32 2

wr < r £ wr*s . (3.1.32)

for every r < n-s",

Note that the discretization of the eigenvalue différential system
(3.1.5), as it reduces the class of admissible functions to a finite set
of displacement modes, may be considered as an imposition of additional
constraints to the eigenvalue problem. Rayleigh'é theorem guarantees thus
the upper bound‘character of eigenfrequencies computed from a kinematical

approach.

3.2, THE EQUILIBRIUM APPROACH

3.2.1. Self-stressing and vibration modes -

The variational derivative of the complementary principle
(2 04 010) is

-8l i+ (31- D' 1) =0 (3.2.1)

and ‘its natural boundary condition

Lo . -d—— -
) D" 1T + dat u 0 S on 31R (302.2)
|
to which we must add the a priori boundary condition
t=N' 1=0 o on 3,R . (3.2.3)

2
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In the spectral analysis problem we set

T (x,t) = 1(x) cos(wt + ¢) (3.2.4)
whereby the Euler equation (3.2.1) takes the form
2 -1

w4+ q} D' 1) = 0 (3.2.5)

The Rayleigh~type quotient appears in the form

[
-:- (d't)' D't dr

w? = R(1) = (3.2.6)

R
]
J  B°l t dr
R

in which the amplitude vector t(x) must satisfy the a priori boundary

condition
N' T =0 on 23,R e (34247)

As in the kinematical approach mz = 0 belongs to the spectrum of
eigenvalues of the eigenvalue. problem (3.2.5) and (3.2.6). It appears
clearly on (3.2.6) that the eigenmodes pertaining to this eigenvalues
satisfy |

D' T = 0 (3.2.8)

together with (3.2.7). They are statical self-stressing modes, that is
stress distributions in equilibrium without external forces; thus
capable of existing without inertia forces. In contrast however to the
kinematical approach, their number is infinite for a continuum (finite
but large after a discretization), while the kinematical modes are
finite in number and even non existent if the structure is at least
isostatically supported.

The self-stressing modes will be denoted by a and will be supposed

(i)

to be referred to an orthonormal basis
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[ o',y B dR = § . (3.249
oS b S Tty - 329
The other eigenmodes will be denoted by t(r) and ranged in increasing
order of their eigenvalues R
( .
o @ ot T
J (3.2.10)
2 2 2
(L)l \< 0)2 see \< Un XX}

We may assume without loss of generality that, in addition to (3.2.9),

we dispose of the orthonorming properties

f ' -1 - ‘

Jg © @ B Ty k=0 (3.2.11)

[t | 2.12
P T @b T BT (3.2.12)

f ' ' 2 :

JR (DT 7 (p))" D' Ty Ry b (3.2.13)

3.2.2, Properties of the Rayleigh quotient 13, 20

As a consequence of Courant's principle, the Rayleigh quotient
will theoretically furnish an upper bound to the eigenvalue mi »
provided 1t 1is orthogonal to all the self-stressing modes of zero

frequency.

It is of interest to note that it is quite possible to comstruct
impulse distributions that are orthogonal to all the self-stressing

modes. Orthogonality means

[ ~ .
JR g (i) € dR = 0 . (3.2.14)
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where O(i)' is any self-stressing mode, and € is the st?ain distribution
associated with the orthogonal stress distribution through the constitutive
equations. A sufficient condition to implement (3.2.14) is to make the .
strain distribution compatible :

-~ ~

€E = Du in R (302015)

with the homogeneous boundary condition

u=0 ‘ on 3R . (3.2.16)

Indeed one obtains then from integration by parts

{ , - . (
J o € dR J

(D u) dR
Z W )

g’
R (1

f 1] " r
- J (Na(i)) udR-J

(®'9, . )'4 dR
- R (1)’ M ’

and the right-hand side vanishes in view of (3.2.7) and (3.2.8). ool 6’”"‘52
The condition is also necessary as can be shown by satisfying (342.8)
with the help of stress functions, integrating (3.2.14) by parts and

using the arbitrariness in the stress functions 3%

to show that the
strains have to satisfy the integrability conditions for the existence
of displacements.

In view of
T = H. €e=H (D u) » (302.17)

the Rayleigh quotient becomes expressible entirely in terms of the
auxiliary displacement field u :

—

2 (D" HDu)'(D' HD u) dR
R ... . R (3.2.18)

R (u) = S
(D u)'(D u) dr

Slkn

[ SR

R
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This new Rayleigh quotient, that leads immediatly to the non zero
eigenvalues of the problem, has the same kinematical boundary conditions
to be satisfied ab initio as (3.1.7), but in addition the transformed

boundary conditions (3.2.7)
N'H (Du) =0 on 3R . (3.2.19)

. 13
An interesting inequality relates (3.1.7) to (3.2.18).

To prepare its proof consider the fo;lowing obvious equality

f Ab ., Ab ;

JR (Vo a - 7 ' (Vo a - 7; ) dR >0 - (3.2.20)
valid for any value of the scalar A . Expanding it gives

r ( | ( .
| patadr-23f a% dR+A2J Llowarz0 , (3.2.21)
R R

RP

and the minimum of the left-hand side is reached for

j a' b dr
R

A= . (3.2.22)

1
J-—b'bdR
RP
Hence, after substitution
f 1 -1, 2, 1, .
J -ipaadR-{J 7 a'db dR} /J 30 b'b dR} 2 0 (3.2,23)
R R R

~

Setting a = u ) . . ; (3.2424)

and be=D'" (H Du) ,

we already identify two of the integrals as the denominator of (3.1.7)
and the numerator of (3.2.18).
For the third integral
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r r | ,
| zaar=] -;-a' D' (H D@) dR (3.2.26)
R R

o f .
% (N ©)'HE@ © ds - | -;- (0G) 'H(DB)dR

R
r1,. -

- - J 5 (DB) 'H(DG) dR
R

since the surface integral vanishes on account of (3.2.16) and (3.2.19).

We obtain thus the inequalfty

~

where wﬁ denotes the classical Rayleigh quotient (3.1.7), and wz » the v
quotient (3.2.12). This means that whenever a displacement field is
chosen that satisfies both the kinematical and the stress boundary
conditions, the classical Rayleigh quotient is always a better appfoxima-
tion than the one derived from:the stress approach with orthogonality to
all zero frequency modes. However, as numerical experience shows, direct
applications of (3.2.18) usually under-estimate the frequency and conve;ge
through lower bounds when the number of degrees of freedom is increased.
This is of course due to the fact that the assumed stress modes do not
satisfy orthogonality with respect to all the self-stressing modes.
Unfortunately there is no guarantee of this property of lower boundeness,
and further theoretical research is necessary to be able to incorporate.

this into the formalism.



4, FINITE ELEMENT MODELS

30.
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4.1, The displacement approachlz' 21

Element stiffness and matrices

Consider the simply connected domain E of an element bounded by
its surface JE on which it will be ‘convenient to assume, for the time

being, that all surface tractions are specified.

The displacement field within the element will in general be

discretized in terms of polynomials contained in a 3 x n(a) matrix P(x)
u(x,t) = P(x) a(t) _ (4.1.1)

where a(t) is a column matrix of unknown time dependent coefficients.

It is important for purposes of conmnections between elements to dis-
tinguish between the displacement field along the boundary of the element
and in its interior. The boundary displacement field will be determined
unambiguously by a set q of generalized boundary coordinates. When those
are chosen; we always obtain their values in terms of the set of éoeffi—

cients

q(t) = M a(t) | o (441.2)
We shall assume, temporarily, that the homogeneous adjoint equation

M g=oO

has but the trivial solution zero. This insures that the q can be

chosen independently and that the general inverse of (4.1.2) is of type
a(t) = Q q(t) + B.b(t) _ (4.1.3)

where the first term is a particular solution, the second is the

general solution of Ma = O and contains the arbitrary column matrix b.

Substitution of (4.1.3) into (4.1.l1) yields

u(x,t) = Q(x) q(t) + B(x) b(t) (4.1.4)

with Q(x) = P(x) Q B(x) = P(x) B ' (4.1.5)
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The Q(x) are the '"shaping functions" the B(x) the "bubble functions"
so-called because they vanish atthe boundary, since the boundary dis-
placements are, by assumption, uniquely determined by the q coordinates.
When there are bubble functions, the shaping functions éte not unique,
they can be modified by arbitrary additions of bubble functions; this

is however not essential for the developménts to be presented here.

The strain field can be represented indifferently by
e(x,t) = D u (x,t) = (D P(x) ) a(t)
= (D Q(x), ) q(t) + (D B(x) ) b(t) (4.1.6)

Discretization of the strain energy is similarly

f r
ARG dE--;-J €' H ¢ dE
‘E E
- e '-- '
> @ Kaa a (441.7)
-lq'l( q+q K b+-1-b' b (4.1.8)
2 qq qb 2 Kbb e
In general
K = J (D P(x) )' H (D P(x).) dE (4.1.9)
aa E

is easier to compute and

[« .
qu - JE (DQ(x))*' H (DQ(x)) dE

A

ot
K b " J (DQ(x)) 'H(DB(x)) dE (4.1.10)
1 E ,

(DB(x))' H (DB(x)) dE
E

f
Koo = |

-

instead of being calculated from the derivatives of shaping and bubble

functions can also be obtained from (4.1.3) and Kaa
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-_l_ Y 10 ’
' z(bll*q())l\‘

N , (Qa +Bb) (4.1.11)

A

K =Q'k _Q K. = QK

q9q aa qb a

, ]
a B f K bq

» - ]
l\bb B Kaa B

Similarly the kinetic eneigy discretization

g . [

' -.l ! :
T = JE p u' udE > a'(t) Maa a(t) (441.12)

(N 5

.

f
Maa = JE p P'(x) P(x) dE d (4.1.13)

instead of being expressed in terms of a consistent mass matrix Maa »
can also be expressed in terms of consistent mass matrices for the
boundary velocities and internal velocities :

. . vl . . .
T --% q'(t) Mg q(t) + q(t) Hb b(t) +-% b'(t) M b(c)

(4.1.14)
f [ 1]
qu - JE p Q'(x) Q(x)4dE =Q' M _Q
nqb - JE [ Q'(x).é(x) dE=Q' M _B= M'bq (441.15)
‘ ] .
&bb - JEp B'(x) B(x) dE = B Maa B R
- <qu qu>
While M and
aa '
M

Mg bb

K K
qq qb
K and
aa

%q %o
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are only non negative because the rigid body modes of the element,
which must essentially be included in (4.1.1), are not associated

with any strain energy.

Discretization of the external potential energy introduces a

natural definition of the "generalized loads"

J u' & d3E = q' g* (4.1.16)
3E

x

when g = Q'(x)'z doE _ o (4.1.17)

JaE
There are no generalized loads conjugate to the bubble coordinates b,
because the bubble functions precisely vanish along 9E.

The starred notation for the generalized loads conjugate to q indicates
that they are linear functionals of the surface traction distribution

and consequently provide only "weak" information about this distribution.

The functional (2.4.9) of the displacement principle can now be
displayed in its completely discretized form for the element as

N

{ q'(Kqq q+ qu;b) +b' (Kbq q+ Kbb b)

. ’ -.' . * .
quq-r_qub) b(Mbqq+Mbbb)}dt

] x :
Vs de . ‘ (‘/././5}

Its variational derivatives with respect to q and b are

. . x
K + K b + M + M = 4.1.19
qq 9 qb aq q @b~ 8 ( )

Kyq 9 *Kp b+ M qeM, b=0 . (4.1.20)
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In view of their contribution to the kinetic energy, the bubble

coordinates are not as easily eliminated as in statics, where we can

always write

b= = l(;; Kbq q N - ) (4.1;21)

because bubble functions necessarily represent independent deformation
modes of the element and involve a positive definite.Kbb matrix.

If however, as is generally the case, we are mainly interested in the
low frequency dynamic behavior of the structure, we are entitled to
assume that the bubble coordinates follow statically the boundary
motions as in (4.1.21). Tﬁen. substituting (4.1.21), not in equation
(4.1.19), but directly into the kinetic and potential energies, we

obtain equatiohs of motion of type
qp + M §. = g* | (4+1.22)
Kgdg * Mg 9 = 8 ot
" " : ' 21
with "reduced" stiffness and mass matrices :

K (4.1.23)

-1
E " Kqq ™ ¥qb Xob ¥oq
Mo=M - KL K - -1 +k.Kiy k7t
E qq qb bb 'bq Kbq Kbb Mbq qb Kbb bb Kbb Kbq
This procedure is a particular case of a general reduction method to be
presented in section 7. In (4.1.22) qE'and g*E stand respectively for q

and g*. When the bubble coordinates are not eliminated we still consider

(4.1.22) as répresentiﬁg the equations of motion of the element, but here

Q' = (q b') g'r = (g 0)

K K )
qq qb qu qb
and KE - _ ME -
Kbq Kbb ’ Mbq Mbb
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The principle of assembling the elements consists in stating that

corresponding boundary dispiacemqptg should have common interface values,

implementing as shown earlier the exact transition conditions

u =y - along interfaces.

If w denotes the column matrix of all independent generalized displace-

ments at the structural level, the identification of displacements is

achieved by means of Boolean, or incidence, matrices LE (often called

the element localizing matrix) addressing the elements of 9 to the

proper ones of w :

(4.1.24)

Equating the sum of the virtual work of all external forces acting on

each element to the virtual work performed by the forces y* conjugate

to w, which are external to the assembled structure
zq'g g*E -w' LL'
E E

and observing that this must hold for arbitrary w :

Substitution of (4.1.22) yields finally
Kw+Mi=y*

- ]
with K L KE LE

E E

(441425)

(4.1.26)

(4.1.27)

(4.1.28)
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4,3, Dependent boundary displacements. Superelements

We turn to the case where equation (4.1.2), relating the time
dependent coefficients of a(t) and the boundary displacements q(t)
required to implement correctly the-transition conditions, is such

that
M'g=0 admits non trivial solutions.

Let g = Y ¢ with arbitrary c denote its general solution (the columns
of Y are independent). Then A

Y' q"- (0] . (403-1)

is a necessary and sufficient condition for ché inversion of (4.1.2)
and the boundary coordinates q are no more independent.

This case hypically presents itself in trying to set up conforming
plate bending elements respecting the Kirchhoff-Love assumption of zero

transverse strain 9 33.

It can be solved by constructing a superelement, that is assembling
a small number of elements, each of which suffers from dependency rela-
tions between its boundary displacements, in such a way that independence
is obtained for the boundary displacements at the assembled level.
Suppose that the coordinates of each component element are adressed
either to the boundary coordinates q(b) of the superelement or to its

interface coordinates q(i)

qE = FE q(b) + GE q(i) (4.3.2)
and consider the dependency relations
' - ' ' -
Vigag = (Vg F) agy + (g Gp) qpyy = 0
(4.3.3)
E - 1. 2. s 0y N
Then, the complete set of dependancy relations
v L]
(Y 1 F1 ) (Y 1 G1
F + G - F u| o oo ot o B e . - 3.
Q(b) Q(i) 0 § G (4.3.4)

' '
Y N FN Y N GN
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must be solvable for 9(1)' Thus the rows of G must be linearly

independent. Then we can express

q(i) =W q(b) + BDb (4.3.5)

'
1

where the columns of B represent possible "assembled" bubble modes
for the superelement.

From the inversion properties

F+GN=2O0 and GB=O0 (4.3.6)

we deduce
' v - ' -
Y E FE + Y E GE W=0 and Y E GE B (0] %.3.7)
E= 1. 2. sy N
so that qE - (FE + GE W) q(b) + GE B b E= 1. 2. XXY) N (403.8)

obviously satisfies the dependeacy relation (4.3.3).

A particular solution of

ME aE - (FE + GE W) q(b) + GE Bb

is thus available for arbitrary q(b) and b

aE - QE q(b) + PE b + BE bE . (4.3.9)

the last term containing the eventual bubble modes of the companent

element.

The situation is now comparable to that of a simple element.
The only difference is the necessity of extending the integrals
required to compute stiffness and mass to the union of the domain E,

or to the boundary of this union.



39,

4.4, The eguilibrium approach. Element flexibilitx and inverse-mass

matrices 12, 13, 21

The impulse field is discretized as follows
T(x,t) = R(x) c(t) + S(x) s(t) (4.4.1)

The stress distributions adopted are thus divided in two types :

a) In S(x) each column is a set of stresses in equilibrium without

body loads. Thus

D! S(X) = Q0 - (4.1002)

b) In R(x) each column corresponds to a stress distribution that

requires a non zero distribution of body loads
D' R(x) = v(x) T (44443)

In general R(x) and S(x) together constitute a complete representation
of t(x,t) in terms of polynomials up to a given degree and v(x)
contains at least the inertia loading due to a rigid body motion of the

element.,

The iﬁtensities c(t) and s(t) of the stress distributions are the
unknown time functions to determine so that deformation compatibility
be satisfied in some "best" sense. Extremization of the functional

(2.4.10) is a convenient tool to use for that purpose.

Along each facet BGE of the boundary of an element, the assumption
(4.4.1) generates a set of independent surface traction modes. To each
surface traction mode a time dependent intensity is attached.

The set of intensities constitutes a column vector ga(t).

Hence if Na denotes the direction cosines operator for 3QE and Ta(x)
the identified surface traction modes, the following identity must hold
for arbitrary ;(t) and ;(t)

N'a R(x) ; + N'a S(x) ; H Ta(x) 8u(t) on BaE (4.4.4)
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The elements of ga(t) are called generalized loads; in contrast

to the kinematical approach they give strong information about the
surface tractions distribution, that can be reconstitued from the
knowledge of their values. Each time a choice is made for the measure
of intensity of a.Surfa?e tractiom mode, this measure becomes related

to the values of ¢ and s. Consequently we dispose of matrix relations
- + '
ga(t) Ga c(t) Ca s(t) for BGE

Denoting by g(t) the column of all -independent ga(t) defined on the
partial boundaries, we finally obtain

g(t) = G e(t) + C s(t) , (4.4.5)

and this equation plays a role very similar to (4.1.2) in the
kinematical models. The matrices G and C are called the load

connexion matrices,

The virtual work of surface tractions on prescribed boundary
displacements can now be subjected to a discretization coherent with
(4.4.1) and (4.4.4). On the partial boundary 3aE

- -
u' t dOE = W' T (x) g (t) dOE = ¢*' g (t) (444.6)
Ja E Ja E a gﬁ : o qa 80
o a
where  q* = T' (x) W dIE (444.7)

.

Again, collecting in q*(t) the independent q*(t) defined on partial
boundaries, the virtual wotk of surface tractions receives a canonical

scalar product form

I u' t d3E = g'(t) q*(t)' A (4.4.8)
9E

The quantities defined by (4.4.7) are linear functionals of the
boundary displacement field and provide only a weak knowledge of this
field. It will be observed that from the viewpoint of strong and weak
knowledge the roles of displacements and forces is here reversed as

compared to the kinematical models.
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We are now in a position to discretize completely the complementary

variational principle (2.4.10)2

1(0. _10 .-l.' [ ) c' ° l
2 JE ' H " 1t dE 2 ¢ ?cc c+c ch s + 2

s' F

§8 .

with a positive definite flexibility matrix

F - F
cc cs
F F
sc s8

F R'(x) H ' R(x) dE .

),

F = JrE R'(x) H! S(x), dE
F, :/E Stx)H Ste) 4 E
] .

and L L (D'7)'(D't) dE = Lorne
2 E P 2

which introduces a positive definite "inverse-mass" matrix

' 1
¥ JE EP

(
%-(D' R(x))' D'R(x) dE = J = v'(x) v(x) dE

(4.4.9)

(444.10)

(444.11)

(4.4.12)

Substituting (4.4.9), (4.4.11) and (4.4.8) into the variational principle
(2.4.10), the variational derivatives, with Sc and 8s vanishing at the

time limits, yield

- . wy _ ' -
(Fcc ¢ + ch §) = Nc +G' q 0o
v v . K 3
- ' -
(Fsc ¢ + Fss 8) +C'gq 0

They are the compatibility conditions looked for.

(444,.13)

(4.4.14)
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4.5, Solution of equilibrium approach in terms of unknown displacements

The use of unknown generalized displacements for assembling finite
elements at the structural level by localization is a convenient
procedure that is also applicable ‘to equilibrium types of elements.

The only difference is that the generalized displacements are "weak"

and are essentially of the interface type. Hence interface identification
of weak displacements will result in equilibrium of conjugate generalized
loads. Since those however are "strong" they will enforce complete
interface equilibriuﬁ of surface tractions, which was a requirement of
the complementary variational principle at the structural level.

The weak displacements on the boundary, q (t), were already defined

but we have still to attach weak conjugate displacements to the body
loads generated by (4.4.3). This is again obtained by virtual work
considerations. The body loads are given by

-D'tw=D'"R(x) c= = v(x) c . (4.5.1)
Their virtual work, put in canonical form,

f o * ’
- J u' D' T dE = P ' c . . (4.5.2)
E .

[ _ .
ylelds p* - - J v'(x) B dE (4¢5.3)
. E

linear functionals of the internal displacement field.

*o -/ le}u- df:// —-ru,)v(x)dt’}c. =« Nc ﬁ“ﬁ'ﬂd {Mm
Now - D' ¢ also represents the inertia forces - p ii. _DT: V{;s)clf)'{“
Consequently, considering the kinetic energy,

-d__}- , . -r u'. -f 'o'a
T A N c ch JE(pu) u dE JE(D‘)udE

- c'.J v'(x) udt = ~-c' p *
E

and comparing

p*a-Nec | (4544)
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L]

The introduction. of p* as conjugate to c also furnishes an

interpretation to -1 :
6=--N p* (4.5.5)

In view of (4.4.18) the compatibility equation (4.4.13) and (4.4.14)

can be rewritten together as

v ‘ %
é q A
F ( > = C' ( ) (4.5.6)
E . E * x .
5 P
E E

in terms of the elements complete flexibility matrix (4.4.10) and a

complete load connexion matrix

G c - |

L (V]

Noting that (4.4.5) can be rewritten in the form

: o«
CE ( . ) - < . (4.5.8)
s &
E .

E

differentiating and substituting in this the solution of (4.5.6), we find

x
() o=
= K ' (4.5.9)
" E * x ‘>
c ' P

vith Ry = Cg Fo' €'y C | - (445.10)

the stiffness matrix of the equilibrium element.

Introducing now the mass matrix of the element, defined as

0o 0
N

o
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The system (4.(._’) is finally pAresented in the same form as that
(4.1.26) of a kinematical element

» (L) L) -0

However, while in the former case it was a discretized form of the
dynamic equilibrium equations, in the present case it is a discretized
form of the compatibiiity.conditions (2.4.5).

4,6, Kinematical freedoms of eguilibrium elements

A set of weak dispiacements

(")

P

that produces no strain energy is one for which

x' x N N U
u KE u =« (C EY ) FE (c E Y )=0

Since FE is positive definite, such weak displacements are all found

as non trivial solutions of the homogeneous system -

c' Faeo (446.1)

or, in view of the structure (4.4.21) of CEA,

x x

c' ¢*=0 p* = -G'q (446.2)
Attention can thus be focused on the first of equations (4.6.2).
For any non trivial solution it furnishes for the boundary part q*,

the second equation furnishes the corresponding internal part p*.
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Rigid body modes of the element must evidently produce solutions.
They can be found by inserting iigid body displacements fields for u
into the definitions (4.4.7). Any non trivial solution other than
rigid body modes is a kinematical freedom of the element; it is an
undesirable feature, the exact converse of the non independence of
generalized boundary displacements in kinematical models. Indeed it
can be viewed as an undesirable dependence constraint on the generalized
loads. Equations (4.6.1) is the homogeneous adjoint of (4.5.8) and
provides the necessary and sufficient conditions for (4.5.8) to be
invertible., More simply, the non trivial solutions q* of the first of
equations (4.6.2) provide‘the conditions

X' (g -G ¢) = 0 - . (446.3)

for s to be expressible in terms of g and ¢ in (4.4.5).

As long as u* represents a rigid body mode, the conditions (4.6.3)
merely express the required global equilibrium between forces applied
at the surface of the element and inertia loads. But if there are
additional kinematical freedoms the set of g forces is submitted to
further restrictions.

It is also.i?teresting to note in (4.4.5) the possible existence of

non trivial s = h vectors, such that
Ch=20 . (4.6.4)

The corrésponding states of stress

T = S(x) h | ‘ (4.46.5)

do not produce surface tractions and are in equilibrium without body
forces. They are really self-stiessing states within the element.

By analogy with the kinematical models they could be called stress
bubble modes.
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4.7, Structural assembling of eguilibrium models

Turning back to equation (4.5.9) after partionning the stiffness

matrix
° Q* .*
- 4.7.1
B -quE & * quE Py (4.7.1)
‘% ‘%
. - [ ] 02
‘e quE 94 ¥ KppE Pg (4:7.2)
we substitute
—1 .* ) ‘
CE - NE pE . (4.703)
and localize the weak boundary displacements by
x x
From (4.7.2) we then obtain a first set of dynamic equations
-xlyp*ax L wFexr X E=1,2...N (4.7.5)
E E PqQE E PPE "E ’
If there are no interface and external bouﬁdary inertia loads
\ -
IL'C g, =0 (4.7.6)
E
Time differentiation of this and substitution of (4.7.1) and
(4.7.4) produces
' ‘% ' x
(; N L) v+ g L'; qua Pg 0 (4.7.7)

The structural eigenvalue problem is finally reduced to the standard

form

(K =-0lM) x =0 (4.7.8)

(-]
where x is a vector of amplitudes of the weak displacements

x X x W* and
pl [] pz 9 ooy pN ]



K 0 K L
ppl pql 1
o} K 0 K L
pp2 Pq2 2
. -
K = 0 o} - o 0
0 o} o K K
PPN pqN In
[] [] 1] 1]
L1qu1 L, quz N A quu_ g Ly xqu L
| _
N1 o) 0 o o
1
-1
o} N, o) o o
° -
M = 0 0 - 0 0
-1
0 0 0 NN 0
0 o o o o
- -

Because of the absence of any inertia attached to the wr part of the
displacements (the last row and column of ﬁ are zero), it is possible
to eliminate w™ statically by using the equation (4.7.7). The degrees
of freedom of the eigenvalue problem are thus reduced to the set of
all internal degrees of freedom p; o Because this number is usually
quite low compared to a kinematical approach of equivalent idealiza-
tion, the equilibrium approach to dynamics appears as a natural

"eigenvalue economizer".
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5. EIGENVALUE ANALYSIS IN THE PRESENCE OF KINEMATICAL MODES
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5.1. Introduétion

The problem of determining the natural frequencies and mode shapes
of structures by matrix iteration on the linear system

-

Kx= m2 M x . , (5.1.1)

becomes complicated when the stiffness matrix K, iﬁstead of being
positive definite, is only non negative. This situation prevails in
free-frec beams, for instance, or,'mo:e generally, whenever the
structure is capable of undergoing displacement modes without storing
deformation energy. Such modes will be indifferently referred to as
kinematical or rigid body modes. The matrix K'being singular, a

3

commonly proposed procedure consists in applying a spectral shift a

and solve the modified problem

(K+al) x= (@ +a) Mx (5.1.2)

In an improved version of this procedure14

the spectral shift is
obtained by separate elementary modifications to the stiffness and
mass matrices in order to eliminate the presence of the kinematical
modes.

The technique discussed here consists in generalizing the concept of
a flexibility matrix to positive semi~definite stiffness matrices.

8 and can be modified in order to obtain a

It was first proposed in
symmetrical iteration matrix. When applied to an analysis in finite
elements, it requires the non-trivial preliminary operation of deter-
mining the kinematical modes. This can be achieved by applying the
Gauss inversion algorithm to the original stiffness matrix.

Such a numerical procedure, using a Choleski factorization, was first

applied by Craig and Bampton 5

+ However advantage can be gained from
the Gaussian inversion ability to preserve the symmetry of the original
matrix while selecting at each stage the largest pivot on the diagonal.,
Moreover the latter procedure is characterized by a minimal growth of

round-off errors 3% 40.



50.

5.2. Kinematiéal modes and deformation modes

K is positive but only semi-definite if there exist non trivial

solutions of
Kx=0 ‘ (5.2.1)

They may obviously be considered as modal shapes of problem (5.1.1)
associated to a zero eigenvalue. We denote a fundamental set (linearly
independent and complete) of such solutions by x = u(i) (i=1,2.0.p)
and refer to them as the kinematical modes.

The other eigensolutions of problem(5.l.1)are modal shapes associated
to non zero eigenvalues. A complete set of those will be denoted by

X = x(r) (r = 1,2,440); they are referred to as the deformation modes.

Modal shapes belonging to different eigenvalues are known to be ortho-
gonal with respect to both the stiffness and the mass matrix. ifodes
belonging to the same eigenvalue can always be rendered orthogonal to

one another. Consequently and without loss of generality

= § ' M x = §

"y Mug) "y X ) MRy = Sor

Y)
(5.2.2)

] - ' - 2
u (1) M x(r) 0 x (s) K x(r) W 6

rs

Relations like x'(r) Ku = 0 and u'( K Uy ® 0 are only weak

(1)

consequences of the equation

3)

K u(i) =0 | (5.2.3)
satisfied by the kinematical modes. Equations (5.2.2) show additionally
that the modal shapes were normed to unity with respect to the mass

matrix.

Introduction of the modal matrices

-

) *** %) )

U= {u } X={ x

(1) X x(o)

allows to present the same information in matrix form
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k U=0 ' | (5.2.4)
U'MU®=E | - (5:2.5)
X' MX=E, o - (5.2.6)
U'MX=X'"MU=0 (5.2.7)
X' KX =4 . - (5.2.8)

where Ep and Eo are identiiy matrices of dimensions p x p and

0 x g respectively, while A 1s a diagonal matrix of the eigenvalues wi.

(U X) .being a base matrix (square with linearly independent

columns) ahy vector x admits of a unique modal expansion
x=Ua+Xb o (5.2.9)

whose columns of coefficients are immediatly obtained by application

of the orthogonality relations as
a=U"Mx b=X'"Mb (5.2.10)
Similarly, M being positive definite, (M U M X) is a natural
base matrix for the unique expansion of an arbitrary force amplitude
vector '
p=MUc+MXd (5.2.11)

with c=U'p d=X"p (5.2.12)

The modal expansion (5.2.11) is in terms of the inertia force

distribution pertaining to each modal shape.
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5.3, Static equilibrium conditions

Let us momentarily turn to the more general equations of motion
K q + M & - p(t) . v (5.301)

from which problem (5.1.1) is derived by setting p(t) = O and
assuming harmonic free vibrations (q = x coswt). Introducing normal

coordinates

P o .
q(t) = i ni(t) Uy * i g.(t) X(r) (5.3.2)

equations (5.3.1)are transformed in a set of uncoupled single degree
of freedom oscillators, governed by the "normal equations"

ni - U'(i) p(t) ) (i = 1,...,9) (503f3)
w2 e +E =x', . p(t) (£ = 1,000,0) ©(5.3.4)
r °r r (xr)

If the external load vector p is static (independent of time) the
normal equations show clearly that the necessary and sufficient
conditions for the existence of a static response are

U'(i) Pp= o) .l(i L l.ooo.p) (503.5)

Each condition expresses the nullity of the virtual work performed
by the static load on a kinematical displacement mode.

They are a reminder of the fundamental theorem of statics through
virtual work and are fully equivalent to the conditions of global

equilibrium.
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S.4. The projection operator A, Pseudo-inversion of K

The static equilibrium conditions (5.3.5), that can be summarized

in the matrix equation
U'p=0 0 A (544.1)

show, by reference to (5.2,12), that the modal expansion of the static
load p should not contain the part pertaining to the inertia loads
of the kinematical modes ( c = 0),

Then, to any arbitrary loading vector p corresponds a modified loading

vector P satisfying the global equilibrium conditions (5.3.1)

pmp~-~MUc=p=-MUU'DPD .
or p=A"Dp (5.4.2)
with A'«=E-MUU' (5.4.3)

(E denotes here the identity matrix for the complete vector space
of dimensions p + o).

As a verification we find

U'p=U'A' p=0O (5.444)
because U' A' = U' - (U'MU) U' =U' =U' =0 (5.4.5)
Moreover we find

X'p=X'A'p=X'p (5.4;6)
because X' A' = X' « (X' MU) U' = X' (5.4.7)

(544.5) and (5.4.7) are equivalent to the selective properties of the

projector operator A :

AU=0 or Au,, =0 (i=1,.00p) (544.8)

(1)

AX=20 or A x(r) - x(r)' (r=l,...,0) (5.4.9)
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Moreover, we have

’ - . ' - e
A'MU®=0 or A' Moy, =0 (5.4.10)

A' MX=MX or i A' M x(r) = M x(r) (5.4.11)

The relationship (5.4.2) has a well known dynamical interpretation

that becomes apparent when it is reformulated as

pP=p- i (' gy P) Mugy

.

and use is made of the dynamic equations (5.3.3)

P'P";“i““u)

The application of the arbitrary static loading p induces accelerations
in the kinematical degrees of freedom. Suppressing the deformation modes,
the addition of the induced inertia loadings to p, as in the right-hand
side, yields according to d'Alembert's principle a self-equilibrated

system.

By introducing (5.4.2) we have now insured the existence of a

solution to the modified static problem

K q=- _A' P . (5.4.12)
for arbitrary p. The solution is however not unique; to any particular
solution q = F° P , We can add a general solution to the corresponding
homogeneous equation. Thus

q=- FO P+ U 8 (5.4013)
where g is arbitrary. As any g can always be represented in the form

g=R'p

by a suitable matrix R', the general solution can be placed in the form
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q=(F +UR") p (5.4.14)

This solution is a generalized pseudo-inverse of the singular static

problem
Kg=p (5.4.15)
F= FO + U R' (5.4016)

is a flexibility matrix that is a generalized pseudo-inverse of the
singular stiffness matrix K. .

In 8
Substituting .

it was called a matrix of extended influence coefficientse.

q=Fp (5.4.17)
1;to (5.4.12) and noting that p is arbitrary
KF=A' \ (5.4.18)
This pseudo-inverse relationship replaces the classical inversion
-1

KK " =E

valid in the absence of kinematical freedoms.

5.5. Unicity of a pseudo-inverse. Isostaticity constraints

The whole problem of finding a pseudo-inverse to K consists in
obtaining a particular solution Fo to equations (5.4.12).
The practical answer to this problem is precisely related to the
introduction of additional requiremehts that remove the arbitrariness
in F. Suppose that we require of the pseudo-inversion (5.4.17) that
the solution q be orthogonal to the kinematical modes for arbitrary p :

U'Mq=0 (5.5.1)

Then, substituting(5.4.13)and using (5.2.5)
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U'MFop-o-g-O

- - ]
hence q (Fo uu'H Fo) P

N

This solution of (5.4.12) will be‘denoted by

q=Gp (5.5.2)
and the pseudo-inverse

G = Fo -uu' M,Fo = A_Fo (545.3)

will be shown to be independent of the particular choice Fo.
Indeed it is readily apparent from (4.16) that any other particular

choice F., 1is related to Fo by

1

- L
F1 Fo + UR

where R' is some fixed matrix. But then, in view of (5.4.8)

A F1 = A Fo
The pseudo-inverse G is not only unique, it is also symmetrical.
A simple proof consists in transposing relation (5.4.18) and post=-

multiplying it by F, then
FFKF=AF=gG

and in view of the structure of the left-hand side, symmetry is
obvious.,

Except for the fact that orthogonality is here defined in terms of a
positive definite matrix M and not the identity matrix, G coincides
with the mathematical pseudo-inverse of K as defined by Penroseal-

It can also be shown 8 to coincide with the spectral expansion of the
dynamic influence coefficients matrix (K = mz M)-l, amputated of the

terms corresponding to the kinematical mode shapes :
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Ger i ' . | (5.5.4)

2 X(x) * ()
r

=™~ Q
€

The unicity of (5.4.17)follows more generally from a set of o

additional constraints of type
S' q®=- 0 (5.5.5)

provided S' U be a non singular p x p matrix.

Indeed, substituting (5.4.13) we must have

s' Fo p+S'Ugm=0

(] =1 .

and then g = - (S' U) S F° P
whereby q = F -U (s u)~t g F, P
and a more general pseudo-inverse

Fe (E=-U(s' U)™F ") F,=PF, (5.5.6)
Unicity is proved by the same technique

PF, «=PF +PUR'=PF

1 o o-

because P U= (E-U (S'U)"Ls') u=o0
Constraints such as (5.5.5) can be qualified by their property to
suppress the kinematical freedoms; for if we restrict displacements
to the kinematical modes

q=Ua

and apply the constraints, there follows

S'Ua=0 » implying a =0,
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since S'U is non singular. Consequently we can conceive of (5.5.5) as
physical constraints linking the structure to a solid reference frame
in an isostatic manner. The structure can then accept an arbitrary
static loading p and a unique flexibility or influence coefficients

matrix Giso can be produced such thdt

9= Cigo P !
Giso is symnetrical and has for instance the clementary structure
KL o
(= B
Giso - (505.7)
0 0 .

when assuming that suitable constraints are obtained by preventing
the p last displacement components to take place.
An automated selectioﬁ of the constraints will be presented in section5,7.
When the arbitrary loading p 1is replaced by A'p, the structure |
becomes self-equilibrated without the reaction loads due to the
constraints. As a matter of fact, since they are isostatically
determined, thfy can but vanish and we can conclude that

= Giso A" p
is a possible displacement vector of the unconstrained structure.
The role played by the constraints is reduced to the determination
of a particular set of displacements without the indeterminacy
contained in (5.4.16); the unicity of pseudo-inverses of type (5.5.6)
is thus physically clarified. Moreover the solution found

F= Giso A' ’ (5'508)

is now quite easily obtainable. It also furnishes a new direct proof

of the symmetry of

G=AF=A Giso A" (5.5.9)
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5.6, Iteration in semi-definite eigenvalue problems

The deformation modes x(r), which satisfy

2
K x(r) - W M x(r) . .

will also satisfy the system

F' K x = w: F' M x

(x) (r)

where F' is the transpose of a pseudo-inverse of K.
Considering the transpose of the property (5.4.18) and using (5.4.9),

this can be written in the form

F' Mx (5.601)

(r) © e *(x)

2 .
Ar ll(ﬂr ' (506.2)
and suggests the use of F'M in a power iteration scheme to solve the

new eigenvalue problem
F'Mx=)x (5.6.3)

Because of (5.6.1) this problem admits precisely the unknown
deformation modes as eigensolutions. There remains however to
investigate the nature of the ¢ stili missing eigensolutions.
They can be termed "parasitic solutions" because the kinematical
modes, thfough eigensolutions of the original problem (5.1l.1), are
generally no more solutions of (5.6.3). It is a remarkable property
of pseudo-inverses F obtained through the use of isostaticity
constraints that they induce in (5.6.3) parasitic solutions of zero
characteristic value A , which are thus wiped out at the very

first iteration. To this purpose we must prove that
F' Mw=2O0 (506016)

admits p non trivial linearly independent solutions.

Indeed, when the construction of F is based on (5.5.5), we have obviously
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S' F=20 or F' S=0 (5.6.5)

a property that is also easily verified on (5.5.6).
Thus

wveMlss (54646)

is a non trivial solution of (5.6.4) for arbitrary s and, the »p
columns of S being linearly independent the proof is completed.
Observe that when F is taken to be the symmetrical G matrix,

corresponding to the constraints (5.5.1), the parasitic modes

weMt W M) s=Us

are the kinematical modes themselves, whose natural frequency zero
has thus been shifted to infinity. -

As a final conclusion the problem (5.6.3) in which F 1is of type
(5.5.8) or |

A Giso Mx=Xx . (546.7)
is well adapted to power iteration and will provide initial convergencé
towards the deformation mode of largest characteristic number A
(or smallest natural frequency). Classical deflation algorichms 11,21
are applicable to the successive determination of modes of higher

frequency.

5.7+ Numerical computation of kinematical modes

Suppose that rows and columns of the original stiffness matrix
are ordered in such a manner that suppression of the p last degrees
of freedom, qp , suppresses the kinematical degrees of freedom.

The other ¢ = n - p degrees of freedom may thus be interpreted as

generalized deformation coordinates.

Hence the singular static problem (5.4.15) admits of the

partitioned form
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(Koo Kop) '<qo> _ (Pa) ; » 57

K K |
po oo b Po

-

the static equilibrium condition to be verified by the right-hand

side vector will be explicited further.

Performing o Gaussian inversion steps leads to the set of

equations

-1 .
- KOO (po - K q ) » (5.702)

q o b

(+]

and substitution of this into the second equation (5.7.1) transforms

the initial system as follows :

-1 -1 —
Kao - Koo ¢ Kop Py Y
. = . (507.3)
K .K-l K - IK-l [ K q p
po ao pe po oo ap P P

From a computational point of view, it is essential to point out at
this stage that the symmetry of the initial matrix will be preserved
by the following changes of sign

B 1
- -1
Koo Koa'Kop ~Pg 9
- . (5.704)
-1 -1
K QK K - K .K .K "'q "p
pa* a0 pp  po‘aatop || e P
-1

Next consider the submatrix Kpp - Kpa . Koa . Koo which, in view
of the positive semi-definite character of the initial matrix, is
expected to vanish. The proof follows by setting the linear homogeneous

problem (5.2.1) into the partitioned form

=0 ’ (5.7.5)
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the solution of which are the kinematical mode shapes. Indeed the first

equation (5.7.5) associates to any arbitrary choice of the kinematical
degreces of freedom q , the set of dependent generalized coordinates

K-l

qa == oo ° KUD qp . (507.6)

Introducing(5.7.6)into the second equation - (5.7.5) yields

-1
(Kpp - Kpo N Kao . Kop ) qp 0

for any qp , terminating the proof.

The static problem (5.7.4) reduces thus to the form

-1 -1 1 B
= Ksa Koo * Kop TPy 9
= . (5.7.7)
-1
oo * Koo O T 9 Po

v

from which one deduces the expected global equilibrium conditions

. KUU Pa - p . (5.708)

po P

As another consequence of (5.7.6), the modal matrix

(5.7.9)

defines the linearly independent set of kinematical modes associated
to a unit displacement of each kinematical degree of freedom successi-
vely. These modes still have to be orthonormed in order to verify the
assumed properties (5.2.5).

On the other hand, setting the p arbitrary independent
coordinates qp equal to zero provides a particular isostatic

reference frame. Hence .(5.7.7) also yields
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K 0 ' ‘
ag
Giso - { ) . (5.7010)

The numerical inversion procedure will thus be organized as follows :

1. The pivot element is chosen at each inversion step as the largest

term of the diagonal which has not yet been utilized : say

kii ® jpax kjj j L 1. see N . (5.7.11)

J

2, The other elements are transformed according the following rules :

1
i
x x ky k i |
- K e kX ail LR j#i  (547.13)
ij Ji k.. :
ii ii
k . @ k
* x i i2
i
T Ul U
o ki1

3. The ﬁrocedure is restarted until all non zero terms on the

diagohal have been inverted.

The symmetry of the initial stiffness matrix has obviously been
preserved by the sequence of operations (5.7.11) to (5.7.14), and the
algorithm may thus be performed even when limiting the memorization

of the K matrix to its lower - or upper~half triangular part.

Note that other procedures like Choleski factorization » or Gauss=-
Jordan elimination21 do not perm&: the pivot selection anywhere on the
diagonal when storing the initial matrix under triangular form .

As a consequence of this symmetry property of the Gaussian inversion
algorithm, the associated growth of round-off errors is minimized when

choosing the best pivot element at each inversion step 39’40.
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At the end of the inversion procedﬁre, the kinematical modes
are obtained on rows and columns assxiated with the zero diagonal
terms, Setting then equal to zero the same rows and columns gives
the symmetric matrix Giso' Both operations needed havé thus been

performed together.

5.8, Obtention of a symmetric iteration matrix -

Consider first the change of variables
; = T X - o (5.801)

where T denotes_the'upper-triangulat matrix resulting from the

Choleski decomposition of the mass matrix :

MeT'T . (5.8.2)
The transformed kinematical modal matrices

'6-1_:0
verify the simple; ;rﬁhonorﬁﬁlit§ rela;ions

-6' .6 = Ep . » . (508.3)

and the'eigenvalue problem

AG, A" Mxeix . (5.844)

has to be rewritten as
T .A-Gis

o A' T' ; a A; i (508.5) .
If we still introduce the new pfojection operator

< K=1-TT ’ s " (54846)
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‘(5.8.5) changes into

AG, A'x=2Arx (5.8.7)
180

with the transformed flexibility matrix

- . . A
Giso T Giso T . (5.8.8)

Note that the matrix product (5.8.8) does not involve a larger number

of operations than (5.6.5) if taking into account the triangular

form of T. Finally, the pré-~ and post-multiplication by the projection

operator reduces the operation of obtaining the iteration matrix to

a sum of dyadic products

- - -
S=A Giso A
- - -.-—' —-— - — -
Giso uu Giso Giso uu . (5.8.9)
T TL] v m Tre
+ U . (U ('180 U) « U .

The use of (5.8.9) extends to hypostatic structures the possibility

of reducing the memorization of the dynamic flexibility matrix to

its upper or lower triangular part 21. ‘



66.

6. THE REDUCTION METHODS
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6.1, INTRODUCTION

It is economically unrealistic to solve eigenvalue problems
involving more than a few hundred degrees of freedom on present day
computers. As acceptable finite element idealizations of aerospace
and civil engineering structures generally involve thousands of
degrees of freedom, it becomes necessary to reduce the size of the
eigenvalue problems by methods that preserve the accuracy of the
low frequency spectrum,

A first approach outlined in this paper uses the classical elimination

27,43

procedure based on the assumption that a certain number of

degrees of freedom may be’ reduced by static considerations.
28,37

Use was made of the Kato and Temple theorems on bounding of
eigenvalues to improve the algorithms by adding the possibility of
comput ing bounds to the error introduced by condensation ;7-
Coupled with the finite clement method, the climination algorith
allows an easy step by step build-up of the whole structure
(substructures'in series). The results obtained in treating large
scale applications show that the loss of accuracy for the lower

frequency modes is negligible.

An alternative, briefly discussed in this paper, concerns the

method of coupling substructures in parallel and consists in treating

the whole structure as an array of several sub-regions already

separately condensed.

In both cases it is agreed to limit either the deformation modes
of the structure, or those of its constitutive parts, to some known
modes, r(i) s smaller in number than the one n of the degrees of
freedom of the initial idealization. They are chosen as the most

representative of the low frequency behavior of the structure.

The possible motions.of the structure, q , are thus restricted

to the form
q= R a (6.1.1)

where R denotes the (n x m) matrix collecting the selected modes r(i).
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Expressing that the potential and kinﬁfic energies associated

with a displaceme@t mode are restrained by (l1.1) gives

U= -;- a' (R' KR) a (6.1.2)
2 | :
- -‘;— a' (R" MR) a , . (6.1.3)

where K and M denote the structural stiffness and mass matrices

respectively. One thus introduces the reduced matrices
T(- - R' KR R (6.104)
and M=R'"MR . (6.1.5)

defined in the new system of generalized displacements a .
4,23,26
The various reduction methods {(elimination of variables,
coupling of substructures, branch modes) encountered in the litterature
do not essentially diffef from each other, except by the choice of
the deformation modes r(i) + The influence of this choice can however
be a deciding factor on the accuracy of the process, as well as on its

flexibility in dealing with practical applications of various sizes.

6.2. STATIC CONDENSATION OF VARIABLES

Consider the matrix equation governing the natural frequencies

and modal shapes of the global structure in the form

Kqe= wz Mq » (6.2.1)
One possible technique, due to IRONS 27 s for reducing the size of
the matrices involved consists in making a choice of a subset q. of
coordinates to be eliminated; the complementary subset Being denoted
by ag (coordinates to be retained). Equation (6.2.1) is thus partitioned

as follows

+ M

2
Ker Ip * Kge 3¢ =@ (Mpp 95
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2 ,
- 6.2
Kep g * Koo 9 =@ (Mg a * Mg ap) (6.2:3)
Imagine 9 to be split into two contributions
qc - qs + qD (602.4)
where the "static" part dg fs given by
-1 (6.2.5)

95 = = Ko Ker %

as if in (6.2.3) one neglected.the inertia forces, and a "dynamic"
part q which is then governed by the transformed (6.2.3) equations

.

2 2 =
(Kgg = o™ Meday = o™ Moy qp

- -1
with Mer = Mer = Mee Kec Ker
The static condensation method consists in neglecting 9, and
substituting directly for 9. the right-hand side of (6.2.5) into the
kinetic and strain energies, which then become quadratic forms in QR

only with "reduced" stiffness and mass matrices

- -1
MoowM. =M KIKk =K _ K:rM +k_ Kiu_ kKlk (6.2.9)
RR RR RC CC "CR RC CC "CR RC "CC "CC "CC "CR *
eM -n Krk -k kLE (6.2.10)
RR RC "CC "CR RC CC "CR *er
The eigenvalue problem is reduced to the condensed one
®_ -wH . )q =0 (6.2.,11)
RR MRg R i

The procedure is of course a particular case of (6.1.4) and (6.1.5)

I

(6.2.6)

K , (662.7)

-1
= Kee Ker
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First order corrections

The validity of the condensation algorithm depends of course on :the
extent to which 9, is really negligible. To investigate the conditions

under which this is true, consider the eigenvalue problem

2 !
(K..=-u MCC)qC = 0 _ (6.2,13)

cC

to which the original problem reduces by applying the contraints

q] = 0 . (6-2014)

Let ul $»u§ € eee S M

c (6.2.15)

' -
1 Mo ¢ = Sy

An arbitrary vector q, as a unique expansion

with coefficients determined from (6.2.15) as
]
M
1 1 "cc ¢
Th = (L ''M
us 9% (1 ¢ ¢35 Moo 9¢

and, since qc is arbitrary, we obtain the spectral expansion of the

identity matrix

m m
- 1 ] - L
I i c, ¢’y MCC f c; (MCc ci) (6.2.16)
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Noting that the eigensolutions verify

u? M ¢, =K ¢ ({i=1, 2, ... m) we have also

. ¢ x (6.2.17)
H

The following results derived from (6.2.16) or (6.2.17) will be of

. Interest @

2 -1 o w%

K m L —¢c, c' M (6.2.18)
cc cc .21 1ice
i
m /
KRC i (KRC ci)(MCC ci) (6.2.19)
2 m m2 l
.} — '
w MRC i uz (MRC ci)(KCC ci) (6.2.20)
i

We are now able to show that the range of validity of the condensation

algorithm is that for which holds

2
1’5 -me <<l (6.2.21)
S

¢ being the order of magnitude of ;he errors we are prepared to accept
in the low frequency modal shapes. In other words the low frequency
spectrum 6f (6+2.1) will be accurately represented by the eigensolution
of the condensed problem (6.2.11) up to eigenvalues wz satisfying
(642.21), To show this we discuss the solutions of (6.2.6), which we
put in the form ‘ ‘

2 ~1 2 -1 =
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and (6.2.2) in which we substitute (6.2.4) and (6.2.5) to bring
it into the final form

- 2 = 2 2 -l =
(Kpg = @ Mpplap = (W™ Mpe = Kepday + w™ Ko Kee M R R

(6.2.23)

1f wz is such that (6.2.21) holds we can observe by comparing (6.2.18)
-1

to (6.2, 16) that mz ch cc is a matrix whose elements are of orxder e
compared to the unit matrix. As a matter of fact (6.2.21) with e < 1
is sufficient for the convergence of the expansion

-1

2
)~ 1, I+ KCC MCC +. (w K

2

(I"'(d IM) + e

CC CC CC CC

Comparing (6.2.19) and (6+2,20) and making the natural assumption that

-

the vectors

MCC ci and MRc ci

are of the same order of magnitude, and similarly for

ch ci and KRC c

then, under (6.2.21)

2

w MRC of order ¢ Fompared to KRC (6.2.24)
and also m2 K-l M.~ = O(e) and mz A-l'_ = 0(e) (6.2.25)
CC "CC CC C& *er

The zero order solution of problem (6.2.22), (6.2.23), fully equivalent
to (6.2.1), is then given by

- B -
(K w MRR)QR 0 q, =0

RR (6.2.26)

where :? ~is some eigenvalue of the condensed problem satisfying the
low frequehcy requirement (6.2.21) and ;k the associated modal shape

of the retained coordinates, while
— 1 - -

,
9 == Ko Ky 4 = age
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Equat ing now the terms ol order ¢ In both equations

2 -l =
6qD w ch MCR qR (6.2027)
K. -22W )éq =6w?H,_ q -K, 6q +@2K KIH_ 3 (6.2.28)
RR RR R RR "R Rc D Rc cc cR °R

where quA and GqR are the first order couwections for modal shape
and 6w2 an eventual first order coutection to the eigenvalue. The
first order value of 9 is explicit in (6.2.27). Observing that it
causes the last two terms‘of (6.2.28) to cancel

— —2—

(K -w GwZ.H

RR re? 9, " kR IR .(6 «2,29)

This 1s a singular systgm to calculate _6qR and the hecessary and
sufficient condition the right-hand side has to satisfy for a
solution to exist is obtained by premultiplying by';'R, which will
make the left-hand side vanish by virtue of (6.2.26)

2 — S— -—
0= Sw q'R MRR ay

ﬁkR being positive definite, the conclusion is that

8wl =0
The conclusion that the eigenvalue correction is at most of second order
was to be expected by virtue of the stationary character of the eigen-

values obtained from Rayleigh quotients.

The only solution of (6.2.29) is now
GqR =da 9

where 6a 1is a, still undetermined, small scalar. There is no loss of
gencrality in taking 6a = O since this will merely change the scale
of the eigensolution, correct to second order, by a factor (1 + éa)-l

and since



74,
q.(1+6a) t= 6q (1+6a) ™! = 6q. - 6a &g Ly 8q
D D D D ** D

neglecting second order terms, this will not change (6.2.27).

To summarize : if the spectrum of problem (6.2.1) is to be determined
accurately up to some definite frequency, the coordinates to be condensed.
should be numbered and chosen in such a way that the smallest eigenvalue
uf of the constrained probiem (6.2.11) sufficiently dominates the
highest eigenvalue ';2 of the condensed problem (6.2.7) that fits into

the required spectrum, The ratio
w2/ uf -c (6.2.30)

determines the order of approximation to which the modal shapes of the
condensed problem represent the exact modal shapes within the required

spectrum, The first order correction on the modal shapes is given explicitly

by

6qR =0 éqc - GqD given by (6.2.27).

The eigenvalue correction is of second order.

As a last observation , if the structure has kinematical freedoms
(rigid body modes or mechanisms) they should not be inhibited by the
choice of condensed variables.

6.3. BOUND ALGORITHMs 27» 30

In problem (6.2.1) define the successive iterates of an arbitrary

starting vector 9,
- K M q (6.3.1)
and the corresponding Rayleigh quotients.

' K ''M
o, = q'y 9p - q'p 9p-1
2 M M
poa Ma qa' Maq

>0 (6.3.2)
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Further developments necessitate the definitions of the zero order

Schwarz quotients

qQ' Mgq

p o= T
2p+1 q P M qP*l

and of the bilinear forms

- ' -
(qp aqp*l) K(qu qu*l)

A (a,8) =
P v K
9 per © Ipe1
- M - .
B (Q.B) - (qp qu+1) (SP qu"‘l)
P '
1 p+l H qp+l'
We have
AP(G.B) = sz . P2P+1 - (G*B)pzp+1 + aB

Bp(a.B) " Pop+l * Pope2 T (“*B)°zp+z + aB
Noting that Ap(a,a) and Bp (a,a) are positive definite
250

Pop * Popel 2“‘°29+1 tae >

‘ 2
Popel * Pope2 ~ 20 Pyp v 0 20

and those expressions take their minimum value respectively for

o= °2p+1 and o= 92p+2

For those values the inequalities (6.3.8) and (6.3.9) go into the

well known Schwartz inequalities

(6.3.3)

(6.3.4)

(6.3.5)

(6.3.6)

(6.3.7)

(6.3.8)

(6.3.9)

(6.3,10)
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ggyﬁov-Bogoliubov bounds -

Let the unique expansion of qp in eigenmodes be
q =1 a q
P a P (n)

Then, since

and, under the orthonormality relations

. . , _2
V@ ®9p) = S U m) ¥ 9m) ™o Sun

we find

2 2 2
i . (wn - a)(wn - B8) )
Ap(a.B) - ; (an - ;—9 (6.3.11)
Za
n
n

Setting B = a and comparing with (6.3.8)

2, 2 2
) i an(wn - a)

. 2 2
pr'°2p+1 - 2a92p+1 + a ? mln(wn-a)

I a2 n
n
n

whatever be o , there is an eigenvalue wi » closest to a , and
corresponding to the right-hand side minimum.

Setting o = » Which 1s known to give its minimum value to the

pr+1
left~hand side, we find

o (b, =»p ) 2 (w2 -p )2
2p+l “'2p 2p+l’ 7 M 2p+1
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which ylelds the Krylov and Bogoliubov bounds

Papel " ‘/°2p+1(°2p - p?p+1) 3 w§ $ Ppner * /‘gpi-l(DZp - ozpﬂi
(6.3.12)
In particular for any trial vector q,
o, - /oo =) <u sp *+ /o (o = p) (6.3.13)
1 1'Po 1 y S A1 1'Po 1

and if 9, is known to be a reasonable approximation to a modal shape
(6.3.13) furnishes bounds to the corresponding exact eigenvalue of the

discretized structure. Since discretization is known to give itself

upper bounds to the eigenvalues of the continuous structure, the upper
bound of (6.3.13) is valid for the continuous structure. There is no

similar guarantee for the lower bound.

Iterates with large values of p , based on (6.3.1), will produce close

2 R .
wy of the discretized structure,
since the iteration process converges to this value. However, applying

bounds (6.3.12) for the first eigenvalue

deflation techniques that shift already computed eigenvalues to zero,
Krylov sequences of iterates can beAproguced whose quotients pzp

and pzp_'1 converge towards the next wj « In this case (6.3.12) can
produce close bounds for it. It should however be observed that in this

case the upper bound is clearly worse than the simpler one

;»j < Pope (6.3.14)

Let o and B 1lie in the inter@al between two consecutive eigenvalues,
then it is clear from (6.3.11) that

Ap(“.B) = pzp L4 pzp‘.'l - (a + B) pzp+1 + GB > O (6‘3.16)

Take first a - w and

(6.3.17)
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Substitution into (6.3.16) produces the bounds

B =-o»
— 2 . ,%¢, (6+3.18)
8 - p i 2p+l

2p+l

1f, fgr instance, p2p+1 comes from a Krylov sequence that converges

to w; the upper bound is "nat;rally" verified and all that is needed
to obtain the lower bound to wg is a knowledge of some lower bounds

8 to the next eigenvalue w§+1. The Krylov sequence can be pushed far
enough for B8 = 92p+1 > ? to be satisfied. )

If 9, is me;ely an approximate modal shape associated to Wy the
inequality wy S P, is zitisfied but, for i.>21, there is no guarantee
that the iterate q; = K™ M q, will yield wy < Pqe Thus if we only
work with iterates based on the original K-l M dynamic matrix it is
prcferaple t? consider q, to be the approximate modal shape in order
to sccure mf <0 and work backwards to compute 'bo from 1, = M-'1 K 9,

Even in this case it will not always be possible to know a lower bound

B to mi*l that verifies B8 > PL in order to have the lower bound
B=-op
b, ——2 <l
1 B -p i
1

Had we worked with Bp(a.B) instead of Ap(a,B) we would have found
that (6.3.18) holds also with 2p+l ‘replaced by 2p+2 and 2p
replaced by 2p+l. In other words if

2
Wi S Pge < B S0y

B-»
o) —-—-ﬂ_(wi<p

B"D q+1

q+l
q+l

holds for any two consecutive Schwartz quotients.,

Take next g = wi‘ and

2

S8 < Popey S Yy

i-1 °
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Then, (6.2.16) gives

pz"a

2
O2p+1 < Qi < pr*l Py

- (6.3.20)
p+l 7%

and this bounding algorithm also holds for any two consecutive Schwartz
quotients. It is of a less pfactical value. It produces an upper bound to
a given elgenvalue. from the knowledge of one.of its lower bounds (p2 +1)
and of an upper bound (a) to the pteceding eigenvalue. A simple way of
obtaining the inequalities (6.3.19) under which (6.3.20) holds is of
course to take for o a lrigher Schwartz quotient from a Krylov sequence

converging to mi-l

« Then, provided p and q are high enough
b =P .

-2 (6.3.21)

2
(.l)i < pp+1 o

p+l p*q

Introducing the convergence estimator
/o
k - _&—— - 1 (603.22)

of a Krylov sequence.
The Temple-Kato bounds yielded by (6.3.18) for the lower and (6.3.20)

for the upper, can be put in the form

2 2
k™ p k™ p
+
°q+1 a- _._.Jl_l_) < mi < pq+1 Q1 + ;___J¥§%;_) (6.3.23)
B~-p q+l
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6.4. THE SUBSTRUCTURE TECHNIQUE 16, 21

Ihe concept of substructure

The method of substructures may be conceived in two different manners,
as shown on figure 6.1« C '
If the substructures are considered in parallel,reductions are processed
separately in each of thém. One then expresses transition conditions at
interfaces in order to assemble the whole structure. It is thus required,
when analizing the separate substructures, to keep the degrees of freedom
in terms of which connections are expressed. The procedure is illustrated
in figure 6.1l.a. : in fact, it has to be interpreted as a method of
coupling substructures that will be discussed briefly further..
It may reveal successful]l when transition conditions between substructures

involve a relatively small number of degrees of freedom.

On the other hand, substructures in series are défined in a slightly
different manner, as shown in figure l.c. |
A substructure results here from the addition to the preceeding one of a
certain number of finite elements. A degree of freedom cah be eliminated
when it is no longer required for assembling the remaining elements.
One generally prefers this laégr technique, since it gives a smaller
maximal band with when analyzing structures that do not split naturally

into strongly uncoupled subregions.

Organization of the elimination algorithm

The NtP substructure is defined as that part of the whole structure that
has been assembled at the end of the preceding assembling operation.
In the last step it represents the condensed form of the whole structure.

Let us denote by :
=N, the number of elements to be inserted in the Nth substructure;

- kl and m, , the clement stiffncss and mass matrices;

i
R T the localization operators of the clements;

- KN-l and ﬁ&-l s the reduced stiffness and mass matrices of the preceding

structure;

- LN-l » the localization matrix of the preceding substructure formally
)

considered as a "super-element" for the next assembling sequence.



8l.

For each substructure the following set of operations, which is also

described by the first flow chart, defines the elimination algorithm :

1) The K and M matrices of the preceding substructure are readdressed

attending to their localization operator :

-l
Ky = Ln-1 Kn-1 Iy-1
(6.4.1)
-L' M. . L
My = Ln-1 My-1 Byar
2) The n_ new elements are added to the substructure ‘:
- !
I\N K oiﬂ.iklwl
(6.4.2)
- L}
MN MN + i L 1 mi 21

3) Reduction is achieved using the matrix R defined by (6.2.12) :

- '
(6 a“ o3)

)
MRR = R"MR

space
It reduces the size of the K and M matrices.allowing'for the assemblage

of the elements of the next substructure.

At this stage, a displacement q can be eliminated if it satisfies the

following conditions :

- it has not been specified in the list of the remaining displacements
qp - all elements in which this displacement appears have already

been included.

The last reduction operation produces the reduced matrices Ekk and ERR

of the whole structure, for which we solve the eigenvalue problem
(6.244),
The approximate modes obtained can be restituted into the whole set of

structural displacements by recalling for each substructure, in reverse
1

order, the matrix KEC . KCR' These are stored on a disk unit during the
elimination procedure,

-1 ‘
. qc -- KCC KCR qR (6.4 &)
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Error measure : computation of the first iterated vector 17, 21

e e e ied — e’ s - eme mm Cve G e e - — tmm mm em o

Bounds to the error produced by the condensation are obtafined by applying
the alporfthms (6.3.13) and (6.3.23), provided the Rayleiph and Schwarg

quotients can be computed for chc'aﬁbroximation of cach eigenmode q(i).

First the Rayleigh qudtient ° associated with the approximation 9,

of q(i)

q, = R i) : (6.4.5)

is simply equal to the eigenvalue ;i of the reduced system :

' ' >
I, Ka, . q R(i),KRR R (i) - 52

o [ ' kvl i
o M5 U rei) Mpr (i)

. (6.4,6)

Next, the computation of the Schwarz quotient requires the formation of
the first iterated vector, to which a slightly different definition is

given from that of section 6.3, :
q, = °, K" "Mgq ' (6:4.7)

The Schwarz quotient takes thus the form

q' Mgq
pl - po 0 o ] (6.4.8)
1] M q
1 o 1

The static problem (6.4.7) should obviously be solved without assembling
again the whole structure. This is possible if, when assembling the whole
structure, we store on peripheric devices all the elements needed to
compute (644.7)., |

Indeed the first iterate q, is the solution of the linear system

KRR Ker UYr- 8g
(=) () e

Kpe Kee 9%c g¢c
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where the loads g appearing in the'right-hand side of (6.4.9) are the

fnertia loads assoctated with the approximate mode a, :

BR = [ Mew  Mre \ /Yo
g - » oy . (6.4.10)

& Mer  Mec Sc¢c

From the second equation in (6.4.9) we obtain the condensed displacements

¢ of the first iterated vector in terms of the qp ¢
e = Ko (B = Kop 9pp) . (6.4.11)
1C cCcC '°C CR 1R

By incroducing equation (6.4.11) into the first equation in (6.4.9),

we obtain :

-1 -1

Kpr = Kre Koo Ker? 9k = #e ™ Ke * Kee 8¢ (0.4.12)
or K - My @ (644.13)
RR qu ’ RR "OR . » “.

by use of equations (6.4.10) and (6.4.4).

Therefore the displacements retained take the same value for the

first iterated vector 9 and for the fundamental solution q, ¢

4Gr ® YR ' ' ‘ , (6.4.14)
this has already been pointed out in the error analysis of the elimination
process. The formula (6.4.11) used to compute the condensed displacements
shows that their expression is corrected by the influence of the inertia
loads 8¢ that were neglected in the zero order approximation. In order to

compute the Schwartz quotient (6.4.8), we also need the inertia loading
g™ G M q _ (6.4.15)

for the whole structure. It will be restituted by the following recurrence

process : if we denote by'ER the reduced inertial load
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PR T  (6.44.16)
RR “oR : ’

the loads 8¢ and gy are given successively by

=2 Y |
gg ™ W (Mg dop * Moc ¢ (6.4.17)
and gy = ER + Koo x’é g . (6.4.18)

To compute the first iterate (6.4.7) and the error measure coefficient

0 A
a2l . ,  (6.4.19)
it will thus be necesséry to recall the mat:x:icea-!(m1 K-l K M
CC ®* "CC CR '’ "CR
and M C for each substructure. This is achieved at best using direct

C
access data set.

The second flow chart sequence glves the detalled organization of
the program scequence that achieves the recursive procedure described
by equations (6.4.4) and (6.4.9) to (6.4.19). We define q, as the
eigenvector restituted in the complete set of degrees of freedom.
Its components that are retained or eliminated in a specified substructure
are collected in the vectors 9R and 9.c respectively; the same notations
hold for the first iterate 9 and the inertia load g« The transfer
operations from q, to 9.R and qoc'(denoted by an arrow in the flow chart)
are performed by recalling the iocalization vector of the substructure :

it gives the address of each component of~qoR or q . in 9,0

Finally it is important to note that the error measure coefficient,

k2, will only be used to produce lower bounds to the exact eigenfrequencies;

indeed we have established in section 6.2 that the computed eigenfrequencies

:2 are the most accurate upper bounds.to. the eigenvalues of equation

(2.1.1).
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6.5. THE COUPLING METHODS

When solvinpg approximately the eigenvalue problem of large structures
by synthetising the results of a parallel analysis of the constitutive
parts, the difffculty lics In the.choice of the deformation modes to be
adopted for representing the motion of the different subregions.

Indeed these modes must satisfy two essential conditions :
- to give an accurate representation of the internal teaiavior for each
subregion;

- to allow an easy expression of transition conditions along interfaces.

When using the method of substructures in parallel, the generalized
displacements of each substructure are split in two categorieé :
- the boundary degrees of freedom, ags .
- the interior degrees of freedom, 97+
By analogy with the assembling process of kinematically admissible
clements, an accurate rcpresentation of the static behavior of a
substructure interacting with the adjacent ones implics that the conformity
of the displacement field along the interface is preserved.
In other words, we have to include all deformation modes generated by any
sollicitation of interfaces.

They are collected in the modal matrix

1

() (L

oL Ki1 * Ko

> . (6.5.1)

We superimpose to the boundary modes (6.5.1) a certain number of interior
deformation modes selected as the most representative of the substructure

consldered, They may be restricted without loss of gemerality to the form

n- () s

which is obtained by imposing zero boundary displacements.
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Burty's method

When the interior deformation modes ¢I chosen are part of the
vibration modes ¢N of the substructure, one obtains the method of
substructures coupling proposed by HURTY 2 and used in conjunction

with the finite element method by CRAIG and BAMPTON 5.

The normal modes

¢N are solutions of the interior eigenvalue

problem

2 o
KII ¢N - W MII ¢N . » (6.5.3)

and the reduction matrix takes the form

I o

. R = ;>' .
N 9%

N

One obtains for each substructure the reduced stiffness and mass matrices

( :(LL ;NN> anc‘l M= ( i j ) (6.5.4)

b |
[ |

with. the sub-matrices
K., = - KoLk
Ko = XL~ Kup R Ky

——

KNy

Mg =My v Mpp o Mppoop v Qg 4p)" (6.5.5)

o'y K11 oy

My = My = &'y Mpp oy * Mg ooy

Moy = &'y My oy
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Hurty's method seems particularly well adapted to the eigenvalue computation
of for instance a complete aircraft structure as a combination of the ‘
ecigenmodes of each part analyzed independently. Indeed, the eigenmodes of
cach part of the whole structure are strongly‘uncoupled from cach other,

as it is generally obscrved experimentally from vibration tests,

This is due to the fact that the eigenfrequencies of the fuselage are

very different from those of the lifting surfaces.

The use of static modes

The vibration modes uéed in Hurty's method are specific of the
high frequency behavior of the substructure. It can therefore be objected
that the method does not lead to a correct representatioﬁ“of\the quasi-
static behavior of a substructure considered as a part of thé whole
structure, Refining the subdivision into substructures reinforces this

wecakness.

Hence another way of reducing the internal discretization of the
substructure consists to admit, as a first approximation, that the
internal deformation modes selected are those obtained by static applica-

tion of the inertia loads generated under rigid body motion.

In other words, the set of normal modes proposed by Hurty are
replaced by the set of static modes obtained by application to the

substructure of the inertia forces conjugated to its rigid body modes.

This later procedure also presents the advantage of avoiding the
solution of the eigenvalue problem for each substructures successively,

and replacing it by a static analysis, the cost of which is much reduced.

Its application to plate like structures 22 has shown that an
important reduction of the number of degrees of freedom can be achieved

without any significant alteration of the lower frequency spectrum.
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9c —= 9

MCI‘ ’MCC

r= Gp + krc - Kee 9
gr —

ke + Ker

1

-1
Qe = Kee (Uc = Kep 9

Qe = 9

-1 =1
Kee o Kee - Kep

FIGURE 6.3
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7. NUMERICAL APPLICATIONS OF ‘THE DUAL ANALYSIS TO PLATE LIKE

STRUCTURES

The namerlcal applications prcucqtnd are llnited to the dual analysls
of thin plate structures. The corresponding plate bending finite elements
.'n'c‘ [HlTustrated on figure 7.1« The conforming dluplacement elements are
derived as shown by figure 7.2 by assembling triangular subregions to
form a super clcmentg'33 « In cach subregion a cubic polynomial represcnts
the deflection. The degrees of freedom are the deflection and two slopes
at each vertex, and the slopes normai to the external interfaces.

In the equilibrium models, parallelogram and triangle shapes are used.
A linear variation of the bending moment field is assumed, as shown by the
figure 7.3. The variables are concentrated loads at vertices, bending
moments and Kirchhoff shear load along interfaces, plus the internal
degrees of freedom corresponding to the inertia forces which corrcspond

to the three rigid body modes of the element.

7.1. Cantilever square plate

Figure 7.4 illustrates the application of the dual analysis principle
to a cantilever plate of uniform thickness. It has been analysed first
with only one element for the whble plate, and then using finer and finer
grid up to 36 clements which corresponds roughly to 200 degrees of
frecdom o the kinematleal approach conforming quadrilateral olcement
denotes CQ o Two diffqrent subdivigions of the eclementary square mesh
fnto cequilibriwn triangular elements (FQL) have been adopted for the dual
approach. The finest idealization = note that it corresponds to the 3 x 3
subdivision - 1nvolve§ 600 degrees of freedom, from which 216 only
contribute to the kinetic energy, and hence are retained in the ecigenvalue

problen.

One can appreciate the monotonic convergence properties of the
finite element solution, and the effectiveness and usefullness of the
bounds computed to the eigenfrequencies. With relatively few elements,
good approximations of the five first eigenfrequencies are obtained,
and the gap between bounds has been reduced so that their average value

represents for practical purposes an exact solution (difference
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less than 0,2 7 for the five computed eigenfrequencies).
It is also worth pointing that cquilibrium models yield for crude

fdealization better results than compatible clements.

-

Flgures 7.5 and 7.6 represent the elgenmodes obtained from both
approaches, as well as the convergence associated with both types of

models when Increasing the number of degrees of Lrecdom.

The modes obtained by using equilibrium models correspond to a
"weak knowledpe' of the displaccement ficeld. It Ls thus necessary to
compute (from the knowledgé of ﬁhe generallized displacements conjugated
to the inertia forces only) an average displacement of the element as a
rigid body. The discontinuities of the nodal lines translate the mathe-

mat ical concept of dislocation which is specific of equilibrium models.

7.2. Point supported plates

As the point support represents for plate bending problem a severe
test due to the singularity at these bending points, the accuracy
obtained by finite elements has therefore been tested on a sduare
plate point supported in the center of each quarter plate (figures
7.7 and 7.8). Two grids of finite elements have been used : 4 x 4
and 8 x 8 {n the case of equilibrium models, 4 x 4 and 12 x 12 {n the
case Qf conformlng models. The Qincr CQ nubdivisfion involves 54l
degrees of freedom, and account was taken of the symmetry to solve the
cigenvalue problem. The same remark holds for the second equilibrium
approach, since it counts 2133 generalized displacements, from which 768

contribute to the kinetic energy.

The very good agreement between the dual analysis, which yield
very narrow brackets for the exact eigenvalue solution, allows to be
very confident in the behavior of these elements in the case of point

support.
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Jo3e Cant ilever :;_Ig_«_sw plates

Figures 7.9 to 7.14 illustrate the dual solution of a cantilever
plate for various skew angles.

In the displacement .‘m.:lly:;is by €CQ c¢lements, the finest prid
corresponds as before to 231 degrees of freedom, from which 27 are fixed.
The results collected in the figure 7.9 confinn the upper boundencss
guaranteéd by the kinematical approach. Note that the finite element
solution deteriorates for increcasing skcewness.

The equilibrfum approach (figure 7.10) underlines the same phenomenon,
The finest mesh uses now 50 clements and 420 free generalized displace-
mentss Only 150 of them appear in the eigenvalue problem. Note that in
some cases the computed frequency»appears now to be an upper estimation.
Hence we conclude that the lower bound properties expected from the
equilibrium models can fail when the discretization adopted reveals

too crude for a correct representation of inertia forces.

Au other fmportant factor (s the type of subdivisfon adopted for
triangular elements : Lts Influence Increases with the skewness of
tha plate,
All cthese remarks strike up from the examination of the figure 7.11 and
7.12 which represent, for modes 1 .and 2, the convergence as a function
of three factors @
-~ the number of degrees of freedom in terms of which the eigenvalue

problem is solved;

-~ the skewness of the plate;
- for triangular equilibrium models, the type of subdivision adopted.
In order to facilitate the interpretation of the diagrams, the curves

associated to different skew angles have been shifted horizontally.
The deterioration of the eigenvalue solution with the skewness of
the plate becomes evident. Note also the considerable influence of the

type of subdivision adopted.

The figure 7.13 represents the modes 1 and 2 for 0 = 45°; those
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corresponding to equilibrfum models have to be interpreted in the same

way as described for the square plate (section 6.1).

Finally the results reported gn figure 7.14 allow a comparison
with analyses realized by other authors. Among others, note that
the experimental eigenfrequencies given by BARTON 1 » even after the
correction compensating the additional'inertia due to aerodynamic
forces, are not bracketed by the bounds obtained from the dual analysis.
The advantage offered by a dual analysis appears clearly in this case,
as it allows a better understanding of the discrepancies between
experimental results and an analysis. The difference between experiment
and numerical approach is very likely due to the difficulty to achieve

a perfectly clamped support.

The comparfson with other numerical results also underlines that

. 4
non conforming kinematical elements V3 do not guarantee upper bounds

to exact eigenfrequencies.
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* non dimensional circular frequency

SOQUARE CANTILEVER PLAIE

m = mass/unit of area

D = bending rigidity

2 SUBDIVISIONS :

Y / ‘ -‘K-
w a’ . 2 l
D 7 2
m ' y i
"
a
DISPLACEMENT - APPROACH
YT 1 X 1 2X2[3X3JI|4X4|5X5|6 X O

i Vohatd 301 1419 | Yabdo Vbl 3041

2 222 3,606 8.535 8.518 8.513 8511

) 20,90 zl.;— 21.38 21,33 21.31 21.30

4 35429 27.03 27.39 ‘27,28 27 .24 21,22

5 W N AL .0 Moz 30499

EQUILIBRIUM APPROACH
1 X 1 2 X 2 3 X 3 4 X 4
HODE  W® g DI @ DR @ DK @

1 3,447 3,453 3.462 3.466 34067 3.469 3,468
2 7.450 1,246 8,410 8.479 8475 4,498 3,492
3 20.74 20,76 21.16 21.21 21.24 21.20 2i.20
4 25,07 26,73 26,89 27.07 27,10 27.10 20
5 PIRTA 23,92 .14 .72 30,05 30.89 10,83

J
)

cIouUrt

C 7 !
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AlA

VSIS

>

BCUNGS TO EISERFREQUENCIES BY DUAL ALY SIS

POINT SUPPORTED SCUARE PLATE
. EQUILIBRIUM CONFORMING |

MODE| TYPEY 4 x4 | 8 x8 | Tx12 | 4x4 |
' 1 ts-s| o1e.504 | 19.586 | 19.596 | 19.616 |

2 | s-s| 23,335 | 23.368 | 23.360 | 23.426
| 3 | S-A| 31.540 | 32.323 | 32.642 | 33.175 |

4 [ A-nl 33050 | 34,659 | 35.074 | 35.460
i

6 1 S-al 35.007 | 35,214 | as.208 | 35,01

6 |s-5| - 54.077 | 55.365 | 5¢.714
» - -

NON DIMENSIONAL FREQUENCY _wa?

-~

™m

N P )

FIGURE

7.7



JPPOR

T

+1

+1

+1.

Ay
“ '/
., ’
\‘ o .
o g -
+
0 0
© O
+ *
-
Vd K +
»,
\)
0 [Topd
o o
o
= 10
AN O‘/ .
N Pl
+
-
!
~; ——
‘~~.‘~- "“"
w)
. ()
\ '
\
:m (=]
10
]
]
¢
! 10
/ - .
S 7/ )
/ obeas
-
-
'I
ra

MODZ 3

MODE 2

MODE 1

.’.-.--'&2 R u‘;__-.oo
o o
\ ) -—/
[, \ 'l
. »
\\‘ 3 r n
: o . o/ . w
-
+ c © St 17 O
¢ [ (@]
l’ J \ . z
"4 (o] (N
i / ’m“\\‘\\
-"-““\C‘) }.”--‘Q-—
n n
« < g -
] b »
// O \\\
4 N
. N,
l" O/..-- N
)
/D)
Q
Q
=
0 e L e s
N ,
\‘ ,f
4 -
(Y SR TSR S S e
4 0 " )
(&) O
* [

FIGURE 7.3



SKEW CANTILEVER PLATES

non dimensional circular frequency
--/: : .
— 2
Ww a
W =
D
a —

m

m = mass/unit of arca

X D = bending rigidicy

DISPLACEMENT APPROACH

1x1 | 2x2 | 3x3 | 4x4 | 5x5 | 6x6

3.652 3.602 3.591 3.587 3.586 3.585
9.376 8.872 8.765 8.731 8.717 8.710

15 27,31 22,06 22,42 22.32 22.28 22,26
35.21 26.74 26,52 26,41 26.37 26,36
h7.42 35.14 34.38 34410 33.99 33,94

4,159 3.948 3.954 3,943 3.938 3.935

10.12 9,683 9.532 9.480 9.456 9.443
30° 28.72 26.22 25.75 25,56 25,47 25,41
40,09 27,08 26.36 26,12 | 26.03 25.99
52.33 43,03 42,06 41.67 41,52 41,45 .
s 4022 hob24 AV 4560 Yy
12,19 (YY) 11,0 1,32 11,30 11429
45 31.42 28.43 27,65 27.37 27.25 27.18
48.37 34,15 32,62 32.18 31.98 31.86
72.04 56.91 52,35 51.38 51,04 50,90

FIGURE 7.9
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INTRODUCT TON

When a linear elastic structure has been idealized into a
discrete undamped system, by means of the finite element method or
any other discretisation procedure,' the basic equation governing

its motion under external time dependent forces is :
Mg+Kgq=£(t) (8.1)

where M and K are the symmetric mass and stiffness matrices, respec-
tively; q and { are the generalized displacements and acceleration
vectors, respectively, and f(t) is the generalized force vector.

The mass matrix M is positive definite while the stiffness
matrix K may be only non negative if the system has internal machanisws

or rigid body degrees of freedom.

In order to solve the basic equation(8,1),two major classes of
methods can be used :
The first alternative consists in the direct integration of the
coupled equations of motion(8,1)by mcans of finite differences or
any other numerical inCegration procedure.
The other one is based on a preliminary modal analysis of the system
leading to the uncoupled equations of motion which may then be
integrated separately in order to get -the general solution of
equation(8,1) by superposition of the displacements in each eigen-

mode shape.

In spite of strong difficulties relative to stability and
convergence, especially when response is to be computed over a
large time range, the direct method seems to be often preferred to
the modal decomposition one. It avoids a rather extensive modal
analysis that may reveal prohibitive, for large systems, mainly when

high frequency excitation is significant.

The purpose of the present paper is to show that such a choice
is not always justified and that methods, based on a partial modal
analysis including a sufficient number of significant low frequency

modes, can be used successfully in many transicnt responsc problems.
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MODAL ANALYSIS OF LINEAR ELASTIC SYSTEMS

Mree vibrations of a diascrete linear elast le systen are governed

by the homogencoun fovm ol bante aguat fon (1)
Mg+Kqg=0 (8.2)
which has particular solutions of the form :

q = x c1(mc+¢,) . (8.3)

leading to the eigenvalue and eigenvector equation ¢

.

(K - w2 M) x =0 (844)

the solutions of which are the H elgenmmles aml the N associated

circular eigenfrequencies w

1 of the system, N belng the nuamber of

degrees of freedom.

Mechanisms and rigid body modes are the m non trivial solutions

of the equation
Kuw=o (845)

and may be considered as particular eigenmodes with corresponding

zero eigenvalues.

The following important orthogonality relations hold between

the different normal modes :

U'(r) M u(j) = ].lj Grj (j = 1. XXX m)
K U(j) a 0 (r Ll 1. csey m)
() =1, coe, w)
x' Mou = 0 (8.6)
(S) (j) } (S Ll lﬂ*l.ono.N) .
x' M x = . ) . (i = m+1.o.o,N)

(s)

(i) i “si
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whore W and Y are the genoralized wass and stiffness, respectively,
th ’
asnoclated with the L normal mode shape and are bounded by the

relation ¢
2 .
yi'wi ui . (8.7)

«SU befng the Kronecker's symbol,
1t the systewm has no mechanisms nor rigid body degrees of freedom, its
stiffness matrix K is non singular and equation (8.4) may be rewritten
as :

K-l

M x (8.8)

B em— X

(1) (1)

mi .

nhowlng that tha elgenmodos K ava hoe algonvactors of Lha wmalvlx

)

associated with the eigenvalues

--1——
Y172

1
The matrix D, which plays a very important role in structural dynamics,
is called the dynamic flexibility matrix of the system
The extension of theé notion of dynamic flexibility matrix to hypostatic
systems was first carried out by FRAEIJS de VEUBEKE i who demonstrated
that the extended dynamic flexibility matrix of an hypostatic system is

given by :

with G = A Giso A' (8.11)
mw o ou,, . u' M

where A= (E~- I Q) () ) (8.12)
J=lu 4) M u(j)

is a projection matrix with selective properties :
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A u('_)-() (r = 1, sae, m) ‘
el)

AX (S.lll;"l..oo..N)o

(s)

- X

(s)

Giso denotes a symmetrical static flexibility matrix obtained by
imposing to the system any isostatic reference frame. ‘
Assuming the symmetrical form, or equivalently, the orthogonality
to all zero frquency modes, yields the particular extended static
flexibility matrix G given by (8.11). |

The following pseudo-inversion relations hold between the K

and G matrices : .

K G = A'
(Uelh)
GK=A

Finally, equation (8.8) becomes, for an hypostatic system :

K u(J) = () (J =1y eaey m)
(8415)
G M X (1) 7 X(i) (1 = m+l,.es,N)

THEC MODE  DESPLACEMENT  METHOD

The orthogonality relations (8.6) show that the eigenmodes
(u(j), x(i)) are linearly independent and form a complete set in
which the general solution of basic equation (8.1) admits a unique

expansion :

In N

q=- jfl cj(t) ey + 1-£+1 “1(°) (1) (8.16)

so that (8.1) can be rewritten as :
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m . N
I £ Mu + L (n, M x +

n, Kx, ) = f(t) (8.17)
=1 J () [=m+1 i (1) i (D

Suecesslve premultiplicatton oL(“~r7)by (u.(r) s Vol e, m),
. ]
(x (s

(8.6), yields then the uncoupled normal equations of motion :

) s = m+l, .{., N), with use of the orthogonality relations

“ u' £(t)
I -.__gr_)__'_. (r-l, ceey m)
Y]

r r
’ (8.18)
, x" ) £(c)
g + w, ng = -———Tr————- (s = m+l,..q,N)
3
which may be easily solved, by use of the Laplace transform and
convalution theorem, into :
u' L
L = ~-Ll J (t = 1) E(r) dt (C =1, vevy m)
r Yr Jo
(8.19)
x' t
t ‘
n = —(s) J sin w_ (t = 1) £(r) dt (s=m+l,es.,N)
s w_ u s
s '8 (0]
providing zero initial conditions are assumed :
£,(0) = £ (0) =0 (r=1, vey m
(8.20)
”"(“) - ”“(") - 0 (“ - lll"l..oo.N)-

lence, the general solutlon of (8.1) 48 given by :

m u, u' rt N x, .x' rt )
qt) = T -Q-)—-Ulj (t=1) £(1) dv + I —(-L)—-‘—QJ sinu (e=1) £(x)dT
(4 ()

1=l "y ikl Y My

(8.21)
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And the equivalent static force which would at each time, produce the

actual stress field is :

N M ! t
g(t) = K q = I - 20T (5) w r sin w,(t=-1) £(1) dt
() i=m+1 ui 1 0 : '

(8.22)

Equations (8.21) and (8.22) glve the complete solutlon of basic
equation (8.1) providing all the normal eigenmode-shapes of the system
are known. If this is not the case,.and it will never occur practically
with large systems for which a complete modal analysis would be prohi-
bitive, only the first n normal modes are known and can be used to
compute dynamic response. '

The problem 1s then to determine under which conditions an incomplete
n-fold set of low frequency normal modes will be sufficient for
computing of displacements and stresses with satisfactory accuracy

by truncation of the expansions (8.21) and (8.22) to their n first
terms.

To this purpose,let us supposc the transient external loads are of

the type :
£(e) = p « ¢(t) (8423)

where p 1is a constant static force applied with time history ¢(t)
(it should be noted that this is not a restriction since any general
load can be expressed by a superposition of such terms).

We have now to check the convergence of the expressions :

n X x' P rt
I (1) S (1) %—-J sin Wy (t=1) ¢(t) dt (8.24)
i=m+l i i‘0
n Mx, .x', ..p rt
and z (:) (i) wg J sin mi(t-T) o(1) dt (8.25)
i=m+]1 i 0

when n is increased. It can be seen that each term of the expansions



(8.24) and (8.25) is a product of two different terms :

a static term

X X P Mxegy X'y P

Vi My

which depends only on the static force p and a time dependent spectral

term

L sin w, t x ¢(t) or wy sin w, t x ¢(t) which depends only

Wy i
of the spectrum of the time history ¢(t).

Hence two types of convergence can be expected :

a) a pseudo-static convergence which will occur if n is large
enough to allow a good representation of the static force p
by means of its expansion in the n fold set of the known modes,
this is to say that p must be quite orthogonal to the (N ~ n)

unknown modes which will consequently not be excited.

b) A spectral convergence which will occur if the time history ¢(t)

is such that the convolution integrals L sin w, t % ¢(t) or

W i
w, sin oy x p(L) converge to zaro when I Is Increased so that

the component of the yeaponse In the unlinown hilgh Mieguancy madea
may be neglected in comparison wich that in the known low-frequency

modes

If we consider for instance the step loading

p(t) = v(e)

sin w; t o(t) 1 - cos w; t

- 2
w
i w,
i
, 1
we obtain a spectral convergence with rate -3 for the displacements
w
but no spectral convergence for the L equlvalent static

force and hence no spectral convergence for the stresses.

100,
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Let us now consider an harmonic loading ¢

¢(t) = sinw t

t

sin wy t x ¢(t) w, sinw t - w sin W, t
- -
w, 2 2
i wg (mi W)
provided Wy is great compared to w we get again a spectral
convergence with rate lf for the displacements and, again, no spectral
convergence for the mi‘ stresses.

It should be outlined that only the quasi-static convergence is
valid for both displacements and stresses calculation and that spectral
convergence of the displacement solution does not at all imply

convergence for the stresses.
If convergence is insured, we may write the mode displacement

approximations for displacements and equivalent static force, which

are

m u, u' t n x,.\x' (t
q(t) = -Sl%—-Lll j (t=1) £(1) dt + L 1) @) J sinmi(t-r)f(r)dr
3 0 0

j=1 t=n+l “1 My
(8.26)
n  x,. x' t
g(t) = I -iil-—iizﬁj sin w, (t=1) £(t) dx (8.27)
i=m+l Wi 0 . :
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THE  MODE  ACCELERATION — METHOD

This method, generally attributed to WILLIAMS 2, (sce also 3’4),
was, in fact, already presehted by Lord RAYLEIGH 3 (V,100) in a

slightly different, but equivalent manner.

Basic equation (8.1) is a dynamic equilibrium equation in which

three different forces are involved :

T £(t)

the applied force

the equivalent static force : g =K q

a=M3g

the inertia force

If incrtia forces were removed from the system, the solution of (8.1)

would be the quasi-static solution, which is, with assumed non singular

stiffness matrix :
. -1 .
q(t) = K £(t) (8.28)

and can thus be obtained independently of any modal analysis.

If inertia forces are to be taken into consideration the exact solution

is obtained by adding to(8.28)the static displacements they produce :
-1 -1
q(t) = K~ f(t) - K " a (8.29)

Thus, as pointed out by WILLIAMS, only the inertia forces need to be
expanded in the incomplete n fold set of the known modes, but neither
the applied force nor the equivalent static force, as done is the mode
displacement method.

We shall now write, according to (8.16) :

-1 A ‘
q(t) = K = { f(t) - 1:1 ng Moxeg } (8.30)
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Using (8.18) and (8;19) we get

rt

. x' .
n, = —:fil (£(t) - v Jo sin w, (t-1) £(1) dt } (8.31)

and the new approximate solution of (8.1) becomes :

-1 n Mx i)x2i rt .
q(t) = K ~ { £(t) = I = [f(t)-wi J sinw, (t=1)£ (1)dT]}
i=1 My )
(8.32)
that is with use Jf (8.8) :
n x,..x', ., rt _ n x,..x',.
q(t) = I J-l-)—JL)-J sinw (e-0£(0)dr +(K T - =G L)y £(r)
i=1 “i ¥ Jo t i=l w? u,
ifi
(8.33)

In a éuite analogous way, Lord Rayleigh started from the uncoupled
normal equations of motion(8.18) and pointed out that the normal
inertia force may be neglected in comparison with the normal stiffness
force, when the period of the considered mode becomes small when
compared with that of the operating external loads. If this is true,
except in the n first modes, we may rewrite the normal equations
(8.18) in the form : '

. x' f£(t) |
n.+w%n - (1 =1, veep, n)
i i i My
(8.34)
x' f(t)
wi ny = ——11%-———— (1 = n+¥l,...,N)
i.

thus we get @

xl
