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Motivation

B Uncertainties in Antarctic ice-sheet predictions [IPCC, 2013] have been
identified as a major source of uncertainty in sea-level rise projections.

B Sources of uncertainty:

e Sub-shelf melting;
e Basal friction;

e Bedrock topography;
e Climate forcing;

e Instability mechanisms.

B Robust predictions of future sea-level rise require efficient uncertainty
quantification tools and ice-sheet models to assess the influence and
importance of various sources of uncertainty.
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New perspectives for ice-sheet modelling

B Uncertainty quantification in glaciology has been restrained by the high
computational cost of ice-sheet models.

New efficient ice-sheet models such as the hybrid thermomechanical
f.ETISh model [Pattyn, 2017] can run a large number of simulations.

B Ensemble modelling methods [Bindschadler et al., 2013, Pollard et al.,
2015] have been applied to parameter sensitivity in ice-sheet models.

Stochastic methods [Le Maitre and Knio, 2010] have been developed and
applied with success to uncertainty quantification in science and
engineering [STAM UQ Group].

B In this presentation, we apply stochastic methods to the f. ETISh model to
show how these methods can deal with various sources of uncertainty in
ice-sheet models and to clarify the impact of uncertainty in sub-shelf
melting underneath Antarctic ice shelves.
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Outline

B Motivation.

B Stochastic methods for uncertainty quantification.

B Application to uncertainty in basal melting.
e Application 1: Uncertainty in global basal melting.

e Application 2: Uncertainty in regional basal melting.

B Conclusion and outlook.

B References.
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Uncertainties in ice-sheet models

Bedrock elevation
Geothermal heat flux
Surface temperature
Surface accumulation
Sub-shelf melting
Atmospheric forcing

Basal sliding coefficient

+ uncertainty

Change in volume
Change in area
Grounding line position
Ice velocity

Instability analysis

Input variables
(X1,X2, -+, Xm)
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Stochastic methods: Methodology

(1) Characterisation of uncertainties:

Available information . Probability distribution
Satellite observations Statistics P(x1ymsxm)
In-situ measurements Bayesian inference

(2) Propagation of uncertainties:

Probability distribution ,  Probability distribution

) Monte Carlo Py
Stochastic expansion

If the model is computationally expensive, propagation is performed using
a surrogate model i.e. a low-cost model that mimics the original model.

(3) Sensitivity analysis: It aims at ranking the input uncertainties in terms of
the order of significance of their contribution to output uncertainty.
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Propagation of uncertainty: polynomial expansion

B Due to their low convergence rate, Monte-Carlo methods require a large
number of simulations to achieve a given level of accuracy.

B A surrogate model acts as a substitute for g(x) with a lower computational
cost. One can approximate g(x) as a polynomial regression model i.e.

£(x) ~ g°(x) = |f GaValx),
o|=0

where Yg(x) is a polynomial of order |0l| = 01 + ...+ O, and the
regression coefficients gy, are estimated from a limited set of training points
using quadrature rules or least-squares fitting [Le Maitre and Knio, 2010].

B Polynomial regression models are efficient surrogate models for models
with smooth response and low-dimensional parameter space.
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Sensitivity analysis

B Sensitivity analysis aims at ranking the significance of the contribution of
each input variable to the uncertainty in the output variable.

B Using a high-dimensional model representation [Saltelli et al., 2008] with
orthogonal components, the variance G%/ is decomposed as

oy = Sx +...+ SX,n -+ remainder
—_—
~— ~— ~— T~
variance of Y contribution from X; contribution from X,,, ~ contribution from

interaction of
1y+-5/\m

where the sx; are the sensitivity descriptors.

B Sensitivity descriptors can be estimated from Monte-Carlo methods or
orthonormal polynomial expansions i.e.

P p
gP(x)= Y ga¥a(x)=sx= Y &g
|ot|=0 lot|=1
o =0, j#i
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Application: Problem setting

B Objective: Assess the influence of uncertain sub-shelf melting on the
Antarctic contribution to sea-level rise under a schematic RCP4.5 scenario.

B Output quantity: Contribution to sea level after a 500-year climate forcing.

Numerical model: f.ETISh model [Pattyn, 2017] applied to Antarctica.

Application 1: Illustration of propagation methods with a spatially uniform
sub-shelf melting (1 parameter).

B Application 2: Illustration of propagation methods and sensitivity analysis
with a spatially non-uniform sub-shelf melting (multi-parameter problem).
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UQ methodology

(i) Characterisation of uncertainty: Consider a uniform sub-shelf melting rate
varying between 0 and 20 [m/yr] i.e. BM ~ U(0,20). Statistical descriptors
are ugp = 10 [m/yr], gy = 1.67 [m/yr] and oy /upm = 16.7%.
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(ii) Evaluation of the model for a limited number of points :
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(ii) Construction of a surrogate model using Legendre polynomials:
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UQ methodology

(iv) Propagation of uncertainty through the surrogate model using Monte-Carlo:
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+ computation of statistical descriptors of the output: uy = 0.92 [m],

Oy = 0.49 [m] and Gy/,uy = 54%.
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UQ methodology

(iv) Propagation of uncertainty through the surrogate model using Monte-Carlo:
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+ computation of statistical descriptors of the output: uy = 0.92 [m],
Oy = 0.49 [m] and Gy/,uy = 54%.

(v) Result interpretation.
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Convergence analysis of polynomial expansion

B Graphical convergence:
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Convergence analysis of polynomial expansion

B Graphical convergence:

Sea level rise [m]

Basal melting
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Convergence analysis of polynomial expansion

B Graphical convergence:
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Convergence analysis of polynomial expansion

B Graphical convergence:

Sea level rise [m]

Basal melting
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Convergence analysis of polynomial expansion

B Graphical convergence: B Convergence of coeflicients:
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Convergence analysis of polynomial expansion

B Graphical convergence:

Sea level rise [m]

Basal melting

15 20

B Convergence of statistical descriptors:
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Univariate analysis
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B As a first analysis, we can consider each parameter separately
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Multivariate analysis: Input and output distributions

B Characterisation of input uncertainty: Sub-shelf melting rates in marine
sectors are modelled as independent and identically distributed random
variables (BM; ~ 1(0,20), i = 1,...,12). Statistical descriptors are
usn; = 10 [m/yr], 6y, = 1.67 [m/yr] and 6y, /usnm;, = 16.7%.

B Characterisation of output uncertainty: Statistical descriptors for sea-level
rise contribution after 500 years: yy = 0.88 [m], 6y = 0.22 [m] and
Oy / Uy = 26%.
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Multivariate analysis: Sensitivity analysis

B Sensitivity descriptors: B Sensitivity descriptors/shelf area:
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Conclusion and outlook

B New efficient ice-sheet models provide new opportunities for ice-sheet
modelling as they can run a large number of simulations to perform
uncertainty quantification.

B We have shown that stochastic methods can provide efficient probabilistic
tools for uncertainty quantification in glaciology.

B We aim at studying a more complete set of uncertainties (including
uncertainty in physical and model parameters) to identify and rank the most
influential sources of uncertainty in sea-level predictions.

B We aim at combining uncertainty quantification methods with a stability
analysis to identify critical thresholds in ice-sheet behaviour.
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