

Liege University– Faculty of Applied Sciences Department ArGEnCo Structural Engineering Sector

Development and implementation of a methodology for hybrid fire testing applied to concrete structures with elastic boundary conditions

by

Ana SAUCA

Outline of the Presentation

Introduction

Theoretical developments

Numerical analysis of the case study

Experimental studies

Conclusions and future work

Outline of the Presentation

Introduction

Theoretical developments

Numerical analysis of the case study

Experimental studies

Conclusions and future work

Introduction

How a structure behaves when exposed to fire?

(TFRI, 2007)

Full scale testing

- Real boundary conditions
- Expensive approach

Individual testing

- Individual structural elements
- Unreal boundary conditions

(Cardington test)

Introduction

Hybrid fire testing (HFT)

- Testing individual structural elements
- Accounting for the effect of the surrounding
- Substructures:

Physical substructure (PS) tested in the furnace

Numerical substructure (NS) modelled aside

Configurations of the beam (moment resisting frame)

1. Full scale test

- 1. Full scale test
- 2. Simply supported test

- 1. Full scale test
- 2. Simply supported test

3. Simply supported test (moment on the supports induced)

- 1. Full scale test
- 2. Simply supported test

- 3. Simply supported test (moment on the supports induced)
- 4. Fixed rotations test (free thermal expansion)

Configurations of the beam (moment resisting frame)

- 1. Full scale test
- 2. Simply supported
- 3. Simply supported test (moment on the supports induced)
- 4. Fixed rotations test (free thermal expansion)
- 5. Fixed rotations test (blocked thermal expansion)

(in

- 1. Full scale test
- 2. Simply supported test

- 3. Simply supported test (moment on the supports induced)
- 4. Fixed rotations test (free thermal expansion)
- 5. Fixed rotations test (blocked thermal expansion)

Challenges of HFT

Errors \rightarrow modeling errors, experimental errors

Derive proper methods

In real HFT, the delay in communication is crucial

Development of a general methodology (not site dependent)

Research Objectives

Review the concept in fire field

Development of a new method for HFT

Method implementation in CERIB fire testing facility

Experimental validation

Control Process

Control Process

The Representation of the NS

Finite element model (FEM) for elevated temperatures
Predetermined matrix for ambient temperatures

(Predetermined matrix \rightarrow multi-linear)

Seismic vs. Fire Field

Criteria	Seismic field	Fire field	
Type of tests	Slow tests possible	Real time needed*	
Solved equation	Dynamic equation needed	Static equations possible	
Size of the PS	Small scale possible	Real scale needed*	
<i>Transfer system</i> and <i>data-acquisition</i> <i>system</i>	Ambient temperature	Elevated temperatures	

* Except for specific elements

State of the Art in the Fire Field

Korzen (1999)

- 1 DoF
- $NS \rightarrow constant stiffness$

Robert (2008)

- 3 DoFs
- $NS \rightarrow constant stiffness$

Mostafaei (2013)

- 1 DoF
- $NS \rightarrow software SAFIR$

State of the Art in the Fire Field

Whyte et al. (2016)

- 1 DoF
- $NS \rightarrow FEM$

Schulthess et al. (2016)

- 1 DoF
- $NS \rightarrow FEM$

Tondini et al. (2016)

- 2 DoF
- numerical validation

Outline of the Presentation

Introduction

Theoretical developments

Numerical analysis of the case study

Experimental tests

Conclusions and future work

First Generation Method (FGM)

First Generation Method (FGM)

Displacement Control Procedure

$$u(t_n) = \frac{1}{R} \cdot \alpha \cdot L_P \cdot \sum_{i=0}^{n-1} \left[\left(-\frac{1}{R} \right)^i \cdot T(t_{n-i}) \right]$$

Force Control Procedure

$$F(t_n) = K_N \cdot \alpha \cdot L_P \cdot \sum_{i=0}^{n-1} \left[(-R)^i \cdot T(t_{n-i}) \right]$$

FGM is conditionally stable: $R = \frac{K_N}{K_P}$

- R > 1 request a displacement control procedure
- R < 1 request a force control procedure

Analysis First Generation Method

Analysis of the previous tests

Test	Method	R	
Korzen	FCP	R<1	 Image: A second s
Mostafaei	FCP	R<1	<
Robert	FCP	0.167 (R<1) 0.756 (R<1)	~ ~

• Correct choice for **ambient conditions**!

Observations

- R varies during the test (*K*_P degradation: heating, spalling, ...)
- Multiple DoFs (requesting different procedures)

Conclusions

• Need of a **new method**

Theoretical Background of the New Method

Finite Element Tearing and Interconnecting method (FETI)

- Method developed for numerical analysis
- Uses the vector of Lagrange multiplier (interface forces)
- In the computation of the Lagrange multiplier the stiffness of the PS is considered
- FETI method can be applied in the context of HFT

The stiffness of the PS needs to be accounted during the HFT

Theoretical Formulation

New method (Second generation method)

- Displacement control
- Force control

First generation method

- Displacement control
- Force control

 $(K_N + K_P)^{-1}$

$$\left(\frac{1}{K_N} + \frac{1}{K_P}\right)^{-1}$$

$$K_N^{-1}$$

 K_N

New Method in DCP

New Method

Objectives of the new method:

A) Stability

B) Equilibrium and compatibility

C) Reproduction of the exact solution (same response as in the complete structure)

A) Stability (DCP)

Computed displacement (new method)

$$u(t_n) = \frac{K_P}{K_N + {K_P}^*} \cdot \alpha \cdot L_P \cdot T(t_n)$$

versus

Computed displacement (first generation method)

$$u(t_n) = \frac{1}{R} \cdot \alpha \cdot L_P \cdot \sum_{i=0}^{n-1} \left[\left(-\frac{1}{R} \right)^i \cdot T(t_{n-i}) \right]$$

B) Equilibrium and Compatibility (DCP)

Compatibility: the same displacements imposed on the PS and NS

Equilibrium: verified at the time $t_n + \Delta t_P$

$$\Delta F(t_n + \Delta t_P) = F_P(t_n + \Delta t_P) + F_N(t_n + \Delta t_P)$$

= $-K_P \cdot \alpha \cdot L_P \cdot \left(T(t_n + \Delta t_P) - \frac{K_N + K_P}{K_N + K_P^*} \cdot T(t_n)\right)$
 $\Delta F(t_n + \Delta t_P) \cong 0$

Observations:

$$\Delta t_P \cong 0$$

 $K_P^* \cong K_P$

C) Reproduction of the Exact Solution (DCP)

Exact solution

$$u(t_n) = \frac{\mathbf{E}_P \cdot A_P}{K_N + K_P} \cdot \alpha \cdot T(t_n)$$

HFT solution

$$u(t_n) = \frac{K_P}{K_N + {K_P}^*} \cdot \alpha \cdot L_P \cdot T(t_n)$$

Equal because

$$\mathbf{E}_P A_P = K_P L_P$$

New Method

Inspired from FETI

Unconditionally stable on R

Interface equilibrium and compatibility ensured (for proper values of Δt_P and K_P^*)

The exact solution is reproduced (for proper values of Δt_P and K_P^*)

Outline of the Presentation

Introduction

Theoretical developments

Numerical analysis of the case study

Experimental studies

Conclusions and future work

NS defined by the elastic predetermined matrix

$$\boldsymbol{K}_{N} = \begin{bmatrix} K_{11} & K_{12} & K_{13} \\ K_{21} & K_{22} & K_{23} \\ K_{31} & K_{32} & K_{33} \end{bmatrix}$$

Predetermined Matrix vs. Initial Tangent Stiffness Matrix

Predetermined matrix of the NS

• Computed in SAFIR, tangent to the loaded stage

Stiffness Matrix of the PS

• Computed in SAFIR, tangent to the loaded stage

$$\mathbf{K}_{P}^{*} = 10^{6} \begin{bmatrix} 479 & 0 & 0 \\ 0 & 26 & 13 \\ 0 & 13 & 26 \end{bmatrix}$$
Virtual HFT

PS modeled in the FE software (SAFIR)

NS constant predetermined matrix defined before the HFT

Communication: manually, Matlab, **new subroutine SAFIR**

Advantage: proper selection of the Δt and K_P^*

Procedure: Displacement control

NS: constant predetermined matrix defined before the HFT

Parametric study: Δt and K_P^*

Case	Time step	The PS's stiffness
Case 1	$\Delta t = 1 s$	$K_P^* = 1.50 K_{P0n}$
Case 2	$\Delta t = 10 \ s$	
Case 3	$\Delta t = 30 \ s$	
Case 4	$\Delta t = 60 \ s$	
Case 5	$\Delta t = 5 min$	
Case 6	$\Delta t = 10 min$	
Case 7	$\Delta t = 1 s$	$K_P^* = 5K_{P0n}$
Case 8		$K_P^* = 10K_{P0n}$
Case 9		$K_P^* = 50K_{P0n}$
Case 10		$K_P^* = 0.50 K_{P0n}$

Case 1 ($\Delta t = 1 \ s; K_P^* = 1.50K_P$)

Case with elastic NS

Axial DoF

Left rotational DoF

Right rotational DoF

Increment of displacement

Resolution transducer: 0.039 mm

Resolution inclinometer: 0.018 mrad

Equilibrium and compatibility can be achieved

•Small values of Δt needed

•Too Small Δt might induce incremental displacements smaller than the resolution of the transducers

Increase of K_P^* influences negatively the equilibrium and compatibility **Decrease of** K_P^* induces instability

Constant K_N induces slight divergence from the correct solution

Force Control Procedure

The stiffness of the PS \rightarrow ill conditioned

Applied load can be larger than the limit load

Virtual HFT of the First Generation Method

Procedure: Force Control

Stiffness ratio:

R = 0.20 (horizontal displacement)	\rightarrow FCP
R = 2.53 (rotation left)	$\rightarrow \text{DCP}$
R = 2.48 (rotation right)	$\rightarrow \text{DCP}$

Outline of the Presentation

Introduction

Theoretical developments

Numerical analysis of the case study

Experimental studies

Conclusions and future work

Tests

Tests performed in CERIB

• **Test 1** (standard test)

Tests

Tests performed in CERIB

- Test 1 (standard test)
- **Test 2** (hybrid fire test)
- **Test 3** (hybrid fire test)

Test 1

Responsibilities

CERIB

NS and HFT method

ULg

Test 2

Steps:

• Load the beam

Stage 1: load P/2*Stage 2*: in addition apply interface displacements*Stage 3*: In addition apply P

- Restore equilibrium at ambient temperature (Stage 4)
- Start the fire

First Observations of the Test 2

Multiple Errors were identified in the code of the control system:

- Unit system (*m* versus *mm*)
- Force increasing to infinity
- ...

 \rightarrow Impossibility to impose the target displacements

Test 2

Observations when restoring the equilibrium at 20°C

- No changes are registered in the horizontal actuator
- The behavior is different compared with the one expected → the beam is unloaded for reflection

Next Operations of the Test 2

The loading and the restore of the equilibrium are repeated several times

Meanwhile, more corrections of the code are done in the control system

The behavior does not improve (instability occurred at one stage)

For safety reasons \rightarrow the **test was canceled (before the fire exposure)**

Post-analysis of the Test 2

Transfer System

NS and HFT method

Lessons Learned from the Test 2

The **resolution** of the **data acquisition system (DAS)** \rightarrow produces spikes in the response of the system

Data-acquisition System

Resolution of the DAS

Test actuator with the transducer

Resolution 0.039 mm \rightarrow variation of force of 2 tons !

Lessons Learned from the Test 2

The **resolution** of the **data acquisition system (DAS)** \rightarrow produces spikes in the response of the system

The **supports** of the **DAS** were too flexible \rightarrow increased the spikes in the readings

Supports of the Data-acquisition System

Supports of the Data-acquisition System

Too flexible!

Lessons Learned from the Test 2

The **resolution** of the **data-acquisition system (DAS)** \rightarrow produces spikes in the response of the system The **supports** of the **DAS** were too flexible \rightarrow increased the spikes in the

readings

The **force** in the horizontal **jack** was less than 10% of the capacity

More appropriate **jacks** could be used

Control Process

Transfer System

NS and HFT method

Equilibrium at Ambient Temperature

Measured versus computed values

Axial DoF

Right rotational DoF

Equilibrium at Ambient Temperature

65

Conclusion of the Post-analysis of the Test 2

The **resolution of the DAS** can be improved

The support system of the DAS needs to be improved

The **horizontal jack** is not used at the maximum capacity

Errors observed in the control system

e.g. Impossibility to impose target displacements by the horizontal jack

The restoring of the equilibrium at ambient temperature has been done fast without giving the possibility to observe the process in real time \rightarrow perform the process step by step

Improvements for the Test 3

The **resolution of the DAS** \rightarrow did not change

The **support system of the DAS** \rightarrow stiffer

Support System of DAS

Improvements for the Test 3

The **resolution of the DAS** \rightarrow did not change

The **support system of the DAS** → stiffer

The **configuration of the structure** was modified to increase the axial force

New Configuration of the Structure

The **axial force** 20°C: $37 \text{ kN} \rightarrow 72 \text{ kN}$

Improvements for the Test 3

The **resolution of the DAS** → did not change The **support system of the DAS** → stiffer The **configuration of the structure** modified to increase the axial forces The code of the control system was corrected The code of the control system was **supposed to be corrected**

Realization of the Test 3

Stage 1 (Loading of the span) \rightarrow OK

Stage 2 \rightarrow again, errors in the control system were observed (control jacks pushing to infinite values)

Specimen unloaded to allow time to the operator for analysis Operator was distracted and unwillingly activated the loading Control jacks pushing to infinite values

Final Conclusion

One PS is still available

The external company was not available before February 2017

Test 1 → January 2016 *Test 2* → June 2016 *Test 3* → October 2016

No other hybrid fire test was decided to be performed

Post-analysis of the tests was done in the last stage of the thesis

Outline of the Presentation

Introduction

Theoretical developments

Numerical analysis of the case study

Experimental studies

Conclusions and future work

Control Process

Transfer System

NS and HFT method

Contributions and Conclusions

1. Numerical developments

SAFIR \rightarrow new subroutine developed for virtual hybrid fire tests

• implemented for the case when the NS is described by the predetermined matrix

Contributions and Conclusions

2. HFT methodology

The first generation method \rightarrow conditionally stable on R

• *Cause*: the stiffness of the PS is neglected

The new method \rightarrow stable in the virtual environment

- *Cause*: the stiffness of the PS is considered
- *Displacement control procedure*: stable and applicable also in the last stage of the HFT
- *Force control procedure*: might be unstable
- Parametric analysis performed (time step, estimation of *K*_{*P*})

Control Process

Transfer System

NS and HFT method

Contribution and Conclusions

3. Experimental work

Hybrid fire tests could not be performed but lessons have been learned:

Data-acquisition system

- The *resolution* affects the accuracy of the results (e.g. on the equilibrium)
- *Support system* must be stiff enough

Transfer system

- The *capacity* must be selected in accordance with the load to be applied
- *Type of dual action actuators* might be improved

Future Work

HFT method

- Analyze the case when the NS is represented using a nonlinear predetermined matrix or nonlinear finite element software
- Update the stiffness of the PS when possible
- Study the propagation of errors in a general context
- Dynamic approach close to failure might be needed
- Definition of a theoretical framework for selecting the time step, the stiffness of PS and the resolution of the data acquisition system
- Validate the concepts experimentally

Liege University– Faculty of Applied Sciences Department ArGEnCo Structural Engineering Sector

Development and implementation of a methodology for hybrid fire testing applied to concrete structures with elastic boundary conditions

THANK YOU!