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Abstract

This paper describes a method to automatically
derive multiharmonic finite element formulations for
coupled, nonlinear electromechanical problems. It focuses
on models of electrically actuated micromembranes using
both a staggered and a monolithic Newton iteration
scheme. Two- and three-dimensional examples highlight
the main properties of the proposed method.

1. Introduction

Many applications require the computation of the
steady-state response to a time-harmonic excitation. In
order to evaluate the cross-talk between electrically ac-
tuated vibrating micromembranes for example, one may
excite a given membrane in the array using a harmonic
electric potential and compute the perturbation induced
on the other membranes in the array. To solve such
coupled electromechanical problems [1]] one can use a
time-stepping method (e.g. Newmark’s method [2], [3] in
combination with a Newton linearisation at each step) and
wait until the steady-state is reached. As an alternative, for
linear problems it is straightforward to perform a harmonic
resolution (in Fourier space) to obtain the desired steady-
state solution. For nonlinear problems however additional
harmonics appear. Truncating the Fourier series of the
unknown fields and approximating the Fourier coefficients
by finite elements in this case leads to a large coupled
nonlinear system. This method is called the multiharmonic
or harmonic balance finite element method. It has been
shown in [4]] that the convergence of the Fourier approxi-
mation is generally of order N~! (where N is the number
of Fourier terms considered in the truncation) but can be
much faster for simple harmonic excitations [S] [6].

The multiharmonic method has already been inves-
tigated in several fields [S), [Z], [81, [9], [10], [LL].
Its effective use on large scale applications is however
impeded by two main factors. On the one hand the size
of the nonlinear system is multiplied by N compared to the
time-domain approach. On the other hand the derivation
of the equation terms in the multiharmonic formulation
(even for N =2) can become extremely tedious when done
manually.

In this paper we propose a general framework to derive
the terms of the multiharmonic formulations automatically
based on symbolic computation. This allows to derive
systematically, without user effort, the multiharmonic

formulations of (multi-) harmonically excited nonlinear
systems, even when the time dependent unknown fields
appear in nonpolynomial form. As an application example,
we apply this framework to the analysis of electrically
actuated micromembrane arrays, discretised using high
order finite elements. The multiharmonically vibrating
mesh is naturally handled in the nonlinear system, which
is either solved in a staggered iterative scheme or us-
ing a monolithic Newton iteration. For conciseness, the
handling of the large scale algebraic systems resulting
from the multiharmonic formulation will not be addressed
in this paper. As was recently shown in [12]], domain
decomposition approaches can be advantageously used in
this regard.

The paper is organised as follows. In section 2 the mul-
tiharmonic resolution framework is presented on a simple
1D example before being applied to the full nonlinear
electromechanical problem in section 3. Section 4 presents
numerical results on 2D and 3D models of electrically
actuated micromembrane arrays.

2. Multiharmonic Formulation
A. Electrostatic Formulation on the Undeformed Mesh

Let us consider a 1D electrostatic problem solved
in terms of the electrostatic potential v on a multihar-
monically vibrating mesh, deformed by the mechani-
cal displacement u. The system is excited via a time-
harmonic Dirichlet boundary condition on the electric
potential v = Visin(2nfpt) on an electrode. A reference
potential of 0 is imposed on the ground. Let us assume
that the electric potential solution v and the mechanical
displacement u# can be approximated by the truncated
Fourier series v = V;sin(2nfyt) + Vasin(3 - 2nfpt) and
u="Uy+Ujcos(2-2nfyt), i.e. considering the first and
third harmonic for the electric potential and the constant
term and second harmonic for the displacement. While
this limited expansion is chosen for the simplicity of the
following analytic calculations, it will be seen in Section
4 that it already leads in practice to very good numerical
results. The goal of the multiharmonic resolution is to find
the Fourier coefficients V;, V3, Uy and U;.

Since the mesh deformation u is decomposed as a sum
of harmonics, integration on the mesh deformed by 1 must
be handled carefully. All the quantities are brought back to
the undeformed mesh [[13]], by introducing the change of



variables for the 1D x coordinate x* = x+ u, with Jacobian
J. Denoting by Q the undeformed configuration and by Q*
the deformed one and using relations dQ* = |J|dQ and
V* = J7!V leads to the following weak formulation of
the electrostatic problem: Find v in an appropriate function
space such that
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holds for all test functions v with v =7 on the electrode
and O on the ground, and where € is the electric permit-
tivity. On the undeformed mesh the formulation becomes
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and |J| =149 a"‘ in this one dimensional setting. Equation
(@) can be rewrltten as:
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It should be noted that in 2D and 3D extra Jacobian
terms appear. Some of those can be neglected in small
displacement applications but not in the kind of vibrating
micromembrane test cases we consider, where the dis-
placements can be large compared to the overall geomet-
rical dimension of the problem. Also note that because of
the abrupt change of J and |J| between a solid material
and a non-solid material like e.g. air, one should avoid
any kind of averaging for the Jacobian at these interfaces.

B. Multiharmonic Expansion

In order to obtain the final multiharmonic formulation,
the non-polynomial factor G := 7‘ is first computed in
weak form: Find G such that
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holds for appropriate test functions G'. G itself is com-
puted using a multiharmonic resolution. In practice it is
well approximated with two Fourier coefficients: G =
Go+ Gacos(2-2mfr).

The next step could then simply be to symbolically
replace v and ‘ (and u in 2D and 3D) by their truncated
Fourier expansion and then expand the whole formulation
and multiply the sines and cosines together using recur-
sively the following four identities to leave only sines and

cosines of degree one but at higher frequencies:

cos(a)-cos(b) = “’S(‘; +0b) COS(a2 —b)
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sin(a) - cos(b) = sin(a2 +h) sin(az —b)
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Doing so at this step would however make the number
of expanded symbolic terms increase dramatically. In 1D
it can be shown that it increases as N because of the
product between G and a—;, while in 2D it increases as N*.
In order to avoid this issue and limit the explosion of the
number of terms one can multiharmonically precompute
all products of terms that are known, i.e. all terms but
the unknown and the test function. Best is to multiply all
known terms 2 by 2 recursively until the whole term has
been computed.

In the 1D case there is only the i JI known term so that
there is no need to perform the previous step. One can
immediately move to the next steps:

« replace the multiplied known term and the unknown
by their truncated Fourier series;

« expand the formulation;

« apply time derivatives to the sines and cosines;

o use () to transform the sines and cosines powers
and products into sums of higher frequency sines and
cosines.

This amounts to transforming (3 into:
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which is valid for any time ¢ and can thus be split into
three independent equations, with the sine terms removed.
Taking the equations corresponding to the Fourier ex-
pansion of v, i.e. the terms multipled by sin(2mfyr) and
the ones multiplied by sin(3 - 2mfyt) gives an excellent
approximation of the actual electrostatic formulation and



leads to the final multiharmonic formulation: Find V; and
V3 such that
1 . dV3
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holds for appropriate test functions v'.
This system can be rewritten in matrix form:

i mp[2)-(3]
Kv,v, Kwy, V3 0

where each of the four blocks can be generated using a
usual monoharmonic finite element assembler.

As can be seen, even for linear electrostatic problems
the harmonics V| and V3 can be coupled if the mesh is
deformed. To understand that this makes sense simply
consider a mechanical membrane vibrating harmonically
as a sine wave and a constant applied electrostatic voltage
between two electrodes. Even though the electrostatic
voltage on the electrode is constant the voltage inside the
membrane will vary with time and thus the overall voltage
will have a constant component plus a harmonic compo-
nent. In case the membrane displacement is a constant
or simply zero then the electric potential harmonics are
uncoupled and the off-diagonal blocks Ky,y,and Ky,y,are
zero as can be seen in (7) when G, is set to zero.

C. Implementation Aspects

It should be no surprise that the multiharmonic for-
mulation for the 2D and in particular the 3D case will
contain a lot of terms, since the computation on the
vibrating mesh is brought back via a coordinate change
on the undeformed mesh. Nevertheless, all that is needed
for the symbolic calculations is an algorithm able to
perform symbolic expansions of polynomials into sums
of monomials (e.g. 2 (a+b)*> =2a>+2ab+2b?), readily
available as expand in the Matlab software for example,
and a function able to transform powered sines, cosines
and products thereof into sums of non powered higher fre-
quency harmonics (e.g. replace cos(x)? by %+ 3 cos(2x))
using recursively the four trigonometric identities in (3).

In practice the symbolic computation is a matter of
seconds for the assembly of the stiffness matrix of the
electrostatic problem while the evaluation of the Jacobian
matrix for Newton’s iteration is significantly more expen-
sive (up to 2 minutes with 4 harmonics on the 3D test
case presented in section 4 in our non-optimised Matlab
code).

3. Nonlinear Electromechanical Coupling

We can readily use the above multiharmonic frame-
work to compute the steady-state behavior of 2D and
3D electromechanical systems. In order to avoid lengthy
derivations only the 2D formulation is presented in what
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Fig. 2. One membrane of the 2 by 2 3D micromembrane array - Side
and top view.

follows, in its time dependent form. This form is what the
multiharmonic method is fed with so as to automatically
derive the corresponding multiharmonic formulation for a
required number of harmonics.

Consider an electromechanical system with a mechani-
cal subdomain Q,, and an electric subdomain Q.. (A star
superscript will here again denote a deformation by the
displacement field.). Let v be the electrostatic potential
defined on Q = Q,, u the displacement field defined on
Q,, C Q with components u, and u, and M the 2D elastic-

ity operator defined by M (u) = | % % aa% + aal—'; 7.
We consider the following weak formulation of the elec-
trostatic problem with Dirichlet boundary conditions on

I', C 9Q,: Find v such that
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holds for appropriate test functions v'. Defining E, = %

and E, = g—; and using the Frobenius matrix product
A:B =Y, ;A;;Bi;, we consider the following weak for-

mulation of the 2D linear elasticity problem with Dirichlet



boundary conditions on I';;, C 9Q,,: Find u such that
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holds for appropriate test functions u’, where v is Pois-
son’s ratio, £ Young’s modulus and p the mass density
(all homogeneous anisotropic). The second term in (10)
is the (nonlinear in v) electrostatic force computed using
the virtual work principle, see e.g. [14].

We consider two solution schemes for the coupled elec-
tromechanical problem. The first is a staggered coupling
that consists in solving the electrostatic and elasticity
formulations (@)-(I0) in alternance. In this case only
the assembly of the stiffness matrix of the electrostatic
formulation (9) requires the multiharmonic framework.
Indeed, all the harmonics in the elasticity formulation
are uncoupled and can be solved independently. The
second solution scheme consists in solving @)-(I0) at
once in a monolithic manner, using a Newton-Raphson
scheme. In this case, the linearized coupling terms have
to be computed to obtain the Jacobian matrix [[15] of the
coupled system. This matrix involves higher order powers
of the unknown fields leading to a massive amount of
terms in the multiharmonic expansion.

4. Numerical Results

We consider both a 2D model of a 2x1 vibrating
micromembrane array (Fig. [I] not to scale) and a more
complex 2x2 3D model (Fig. 2 also not to scale). One
membrane in the 2D array consists of a silicon membrane
vibrating in the air due to an electrostatic force coming
from a sine voltage applied between the electrode and the
ground. In the 3D case the electric ground is separated
from the mechanical clamp by an insulating silicon oxide
layer and a silicon bulk. Formulation (I0) is solved in
the silicon and silicon oxyde while formulation (9) is
solved in the silicon, silicon oxyde and in the air. The
mesh is made up of 3546 second order quadrangles in 2D
and 1024 second order hexahedra in 3D. Homogeneous
Dirichlet boundary conditions are applied on the clamp
for the elasticity formulation and on the ground for the
electrostatic formulation.

For the numerical tests, the following geometrical and
material characteristics have been used: membrane length
of 50 wm, thin support pillars thickness of about 5 um,
membrane thickness 0.2 wm, height of about 5 um,
electrode length of 10 wm; silicon and air with electric
permittivity €gicon = 3.9 - 8.854-10712F /m and g, =
8.854-107'2F /m, Young’s modulus E = 150 - 10N /m?

Fig. 3.
scale) in a 3D 2 by 2 micromembrane array excited by a sine electrode
to ground voltage on the upper left cell - flipped for illustration.

Skin of the first and second harmonic displacement (not to

T~

r'( X—-

Fig. 4. First and second displacement harmonic (both exagerated

by a factor 1000) on the only excited membrane of the 2D 2xl
micromembrane array when the excitation potential is 5V at 100kHz.

and Poisson’s ratio v =0.3. The 5V, 100kHz electrode-
to-ground excitation voltage is applied on a single of
the 2 or 4 membranes. With a sine voltage excitation
it has been observed that the electric potential solution
v and mechanical displacement u can be expanded as:
v ="V, sin(2nfor) + V3 sin(3 - 2w fot) + Vs sin(5 - 2 for) + . . .
and u = U+ Uacos(2-2mfpt) + Uscos(4 - 2nfot) + ...
Note that if an extra continuous bias was added to the exci-
tation, the extra Fourier coefficient in the excitation would
be automatically handled exactly in the same way except

Fig. 5. First ten displacement harmonics (not to scale and flipped) on the
only excited membrane of the 2D 2x1 micromembrane array when the
excitation potential is 5V at 100kHz. For clarity the harmonic numbers
have been ordered ascendingly from the north to the south of the figure.
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Fig. 6. From left to right: sparsity pattern of the electrostatic stiffness
matrix, elasticity stiffness matrix and electromechanic Jacobian matrix
for three harmonics per unknown field (2D with a third order quadrilat-
eral mesh).

that there would be twice as many harmonics to consider
in the Fourier expansion: v = Vy+ V) sin(2nfot) +Va cos(2-
2nfor) + Vasin(3 - 2nfor) + Vacos(4 - 2mfot) + Vssin(5 -
21 fot) + and u = Ug + U;sin(2nfor) + Upcos(2 -
2nﬁﬂ)4—U§snﬂ3 2nfot) + Uscos(4 - 2mfot) + Ussin(5 -
21 fot) +

Fig. [3] 111ustrates the 2 by 2 3D array beyond the first
resonance mode. The two harmonics of the mechanical
displacement are depicted: the first Fourier coefficient
Up has a low wavenumber while the second one, U,
has a higher wavenumber. Fig. [] illustrates the two first
harmonics of the mechanical displacement in the 2 by
1 2D array below the first resonance mode, when the
excitation voltage is 5V and its frequency 100kHz. The
harmonic on the bottom is the constant harmonic while
the one on the top vibrates around the bottom one at
a frequency of 200kHz. From a physical point of view
this makes sense. For a very low excitation voltage and
frequency one expects to get same absolute values for
the amplitudes of both harmonics. Fig. [3] illustrates the
higher harmonics (from the first to the tenth) on the same
problem. Amplitudes are not to scale and some have been
flipped for illustration.

Fig. [ shows the sparsity pattern of the finite element
matrix for the multiharmonic electrostatic formulation
on the left, for the elasticity in the middle and for
the electromechanical Jacobian on the right when three
terms are considered in the Fourier series of both the
displacement field u and the electric potential field v. For
the electrostatic and Jacobian matrices one can see two
main parts: the part corresponding to the solid region
in the bottom right corner and the remaining region on
the top left corner. The Jacobian matrix is made up of
both the three electric potential harmonics and the three
displacement harmonics. As expected the electrostatic and
Jacobian matrices have their harmonics coupled. They are
not however for the elasticity matrix, since the elastic-
ity formulation is linear and must be computed on the
undeformed mesh. This matrix need not be generated
using the multiharmonic method. It can be generated in
a classical way and LU decomposed for every harmonic
independently.

The solution of both the staggered and the monolithic
multiharmonic formulations has been validated against

Mechanical displacement (m)
Electric potential (V /108

Log10(maximum of the amplitude absolute value)

) i i P i
1 2 3 4 5 6
Number of the harmonic considered in the unknown field

Fig. 7. Maximum absolute value displacement (m) and electric potential
(V /10%) for every of the six first harmonics when the excitation potential
is 5V at 100kHz.
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unknown field Fourier expansion.
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the original time-domain solution of the staggered elec-
tromechanical formulation obtained using a Newmark
scheme. In all cases the very large number of time-
steps required to approach steady-state with the time-
stepping approach makes both multiharmonic resolutions
(staggered and monolithic) orders of magnitudes faster.
When the driving voltage is low, the staggered multihar-
monic scheme is computationally more efficient than the
monolithic one. Close to pull-in, i.e. with a stronger non-
linearity, the opposite is true. Accuracy wise, two or three
harmonics are often sufficient for the problem at hand with
a purely sinusoidal excitation (see Fig.[7). In order to study
the computational efficiency in terms of the number of
harmonics, we show in Fig. [SHIT] the time to derive the
multiharmonic formulation using symbolic computation,
the time to generate the multiharmonic matrices, the time
to perform a LU decomposition of these matrices and the
condition number of the matrices versus the number of

Fourier terms considered in every unknown field truncated
expansion. Results are shown for both the 2D and the
3D test cases. With 16 GB RAM on the test computer
the 3D Jacobian matrix could be LU decomposed with
2 harmonics per unknown field while the electrostatic
formulation could reach about 10. In 2D the limit was
at about 8 for the Jacobian matrix.

Fig. [§ and [9] show that the symbolic computation
step to derive the multiharmonic formulation takes a
non negligeable proportion of the total generation time
which itself takes up to 5 times longer than the LU
decomposition (displayed on Fig. [I0). Note however that
the symbolic computation time does not depend on the
number of elements in the mesh. Finally, Fig. [TT] shows
the almost independence of the condition number with
the number of Fourier coefficients in the unknown fields.
This is an important point since the electromechanical
formulation tends to have a bad conditioning because of
the huge difference between the mechanical and electrical
stiffnesses. (The condition number shown is the condition
number of the diagonally scaled matrices [16].)

5. Conclusions

This paper has detailed a new method to allow for
a multiharmonic resolution of finite element formula-
tions that must be computed on a mesh deformed by
a (mechanical) displacement. Tests have been performed
for a 2D as well as a 3D vibrating micromembrane
array using both a staggered nonlinear resolution scheme
and a monolithic Newton iteration. In both cases these
multiharmonic formulations outperform the classical time-
stepping solution methods. While the number of terms
in the formulations grows significantly with the number
of Fourier harmonics considered, a completely automatic
derivation of these terms makes it fully transparent to
the user. Once basic symbolic computation routines are
available, the implementation of the technique only relies
on classical finite element technology, and can thus be
quite easily integrated in existing codes.
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