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Introduction
Context

Combustion engine global efficiency can be increased by valorizing waste heat
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Content of the presentation

1. Introduction

2. Comparison of waste heat recovery techniques for
passenger cars

3. Design of a scroll expander
4. Tests on a prototype of components

5. Conclusions and perspectives
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WASTE HEAT RECOVERY TECHNIQUES

Comparison based on litterature

Source: Legros et al., 2015
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HERMOACOUSTIC JOULE CYCLE STIRLING CYCLE THERMOPHOTOVOLTAIC

MEfficiency M Costs MMaturity M Packaging
Focus on power production (other technologies available for cooling: ejector, sorption)
Turbocompounding and Rankine cycle are the most promising technologies

TEG: lower produced power and low maturity

Thermo-acoustics/thermo PV: low maturity

Joule/Stirling cycle: large volume
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WASTE HEAT RECOVERY TECHNIQUES

Comparison based on simulation — Rankine cycle model
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o 3-zone evaporator model
o Models calibrated based on experimental data

o Condenser not modeled since condensing temperature is maintained constant by control
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WASTE HEAT RECOVERY TECHNIQUES

Comparison based on simulation — TEG and TC models
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o Regression model for the turbine efficiency and displaced mass flow rate

o Model parameters identified based on a turbocharger turbine
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WASTE HEAT RECOVERY TECHNIQUES

Comparison based on simulation
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Vehicle model

< Driving cycle
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Mgas: Tgas

W

WHR model

WHR systems models are connected to a vehicle model

Additional weight is taken into account

Back-pressure not considered

Power output is used to drive an electrical motor to boost the ICE
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WASTE HEAT RECOVERY TECHNIQUES

Comparison based on simulation

o Turbocompound yields the best
results if engine back-pressure
not taken into account
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WASTE HEAT RECOVERY TECHNIQUES

Comparison based on simulation
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Content of the presentation

1. Introduction

2. Comparison of waste heat recovery techniques for
passenger cars

3. Design of a scroll expander for a Rankine cycle system
4. Tests on prototype of components

5. Conclusions and perspectives
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DESIGN OF A SCROLL EXPANDER

Architecture of the Rankine cycle system
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DESIGN OF A SCROLL EXPANDER

Choice of expansion technology

o Previous works stressed the advantage of scroll machines (design simplicity, reliability,
promising performance, etc.) and water or ethanol (or a mixture) as working fluid.

A

o However, no commercial high temperature scroll expander designed for such an
application is available on the market.

o Lubricating oil may be a major issue in ORC systems, especially in steam Rankine cycle
(high operating temperatures, oil separation require bulky apparatus not compatible with
mobile applications).

|:> An high-temp., oil-free scroll expander has been designed and prototyped.
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DESIGN OF A SCROLL EXPANDER

Which nominal point?

o First step of the design is the sizing.

o The World Harmonized Light Vehicles Test Cycle (WLTC) was applied to a 120 kW
gasoline engine.

o Frequential distribution of power available in exhaust gases indicates that most of the
time, the engine power in located in the first class (0-17).

100
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Frequential distribution [%]

0
0-17 17 -33 33-50 50 - 67 67 -84

Exhaust gas available power [kW]
o However, operating conditions are highly transient.

|:> No nominal point can be easily defined and an optimization of the scroll
characteristics (mainly, the displacement) has to be conducted.
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DESIGN OF A SCROLL EXPANDER

Characteristics of the expander

o Volume Ratio
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|:> A built-in volume ratio lower than the optimal volume ratio has been selected
for compactness. That should also allow for a reduction of internal leakages.
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DESIGN OF A SCROLL EXPANDER

Characteristics of the expander

o Displacement is optimized based on quasi-static simulation of the Rankine Cycle system
(including a grey-box expander model) over the driving cycle.

o The rotational speed is a function of the displacement and evaporating pressure
= Low displacements or low pressures will yield high speed and the latter is constrained

= Large displacements or high pressures will yield low speed and a larger impact of
internal leakages
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DESIGN OF A SCROLL EXPANDER

Characteristics of the expander

There exists an optimal displacement maximizing the average power
produced by the Rankine cycle system over the driving cycle.
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DESIGN OF A SCROLL EXPANDER
Defining the geometry

o A detailed scroll simulation model is used to
define the exact geometry of the expander.

Clearance volume

o Suction port cross-sectional area has been
maximized by enlarging the clearance volume
(which is not a drawback in expander mode)

o OQil-free concept was selected: involute in coated
aluminum and tip seals in self-lubricating
material.
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Content of the presentation

1. Introduction

2. Comparison of waste heat recovery techniques for
passenger cars

3. Design of a scroll expander
4. Tests on prototypes of components

5. Conclusions and perspectives
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TESTS ON PROTOTYPES
Description of the test rig

o Open-loop steam Rankine cycle

5]

o Connected to a gasoline engine

o Produced electricity dissipated
in electric resistances

Exhaust gases

1:Pump

2 : Evaporator
3 : Expander

4 : Bypass valve

5: Condenser
6 : Engine
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TESTS ON PROTOTYPES

Evaporator

o Two heat exchangers configurations tested: counter-current and hybrid current

1.77.x
 vomelaw y 083y ‘]H%: =

o Performance expressed in terms of efficiency and pressure drops.

o Evaporator efficiency: ratio between the actual and maximal heat transfer rates
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TESTS ON PROTOTYPES

Evaporator
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TESTS ON PROTOTYPES

Pump

Pressure ratio [-]

Gear pump

Performance expressed in terms of
isentropic and volumetric efficiencies

Maximum isentropic efficiency = 45%

Maximum volumetric efficiency = 90%
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Swept volume 0.5cm3
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TESTS ON PROTOTYPES

Expander

o Taylor made expander presented previously.

o Two generations of expanders have been built: V1 and V2 (20% reduced
scroll lateral clearance).

Parameter Value

Swept volume 8 cm3
Max. rotational speed 15 000 RPM

Max. temperature 250°C
Pressure Up to 20 bars
Volume ratio Confidential
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TESTS ON PROTOTYPES

Expander

Isentropic efficiency [-]

o Performance expressed in terms of isentropic efficiency and filling factor.

o Max isentropic efficiency of 28% is achieved.
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o Very low efficiency is explained by important internal leakages.

o For V2: optimal rotational speed of 4000 rpm (antagonistic effects of speed on
mechanical losses and leakages)
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TESTS ON PROTOTYPES

Overall performance
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Conclusions and perspectives

<> A model-based comparison of different waste heat recovery techniques has been
conducted, highlighting the Rankine cycle system.

<> A high temp. oil-free scroll expander has been designed, prototyped and tested.
There is a large potential of performance improvement.

<> A pump and 2 evaporators have also been tested showing good performance.

< A reduction of BSFC of 5% on a NEDC is achievable.

<> Perspectives:
o Tests with ethanol or with a mixture of water/ethanol will be conducted.
o Test with oil will be conducted.
o Other components will be tested.

o Waste heat recovery on engine cooling loop will be investigated.
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Thank you for your attention!
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