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Abstract. In the framework of the Sobolev approximation, we
have developed in the present paper the theory of the n't order
moment W oc [(E(A)/E, — 1)(A — Ap)"dA of a P Cygni line pro-
file E(A)/E. due to a resonance doublet line transition with an
effective wavelength 1,. We show that in the optically thick
approximation, the asymptotic value W2 is entirely dependent
on both the doublet separation 4 and the type of the velocity
field v(r) characterizing the expanding atmosphere. As expected,
the most useful P Cygni profiles appear to be those which are
unsaturated. From the observed moments WP of such profiles,
it is possible to derive the value of the parameters W2-°, irrespec-
tive of the types of the velocity and opacity t3,(X’) distributions
and of the doublet separation A. The parameters W2 (n =1, 2
and 3) are simply related to astrophysical quantities of general in-
terest. For instance, W2 is directly proportional to M (level),
where M is the mass-loss rate and 7" (level) the average frac-
tional abundance of the relevant ion. Adopting eighteen possible
combinations of realistic velocity and opacity distributions, we
have carried out extensive numerical calculations of W2. Al-
though we intend to publish elsewhere the bulk of these data
(~17280 pairs of calculated moments), several diagrams of astro-
physical interest are presented here. For instance, we explain how
to use the very compact “log, o( W2/W2" — log, o( WP-0/ WD)
diagrams in order to infer the value of W2° from the measure-
ment of W2, We also describe how to determine the types of the
velocity and opacity distributions from the location of the ob-
served moments WP in theoretical “log,o(W?) — log,o(— W)”
and “log;o(W;) — log,o(W?)” diagrams. Finally, we discuss the
limits and the possible applications of this theory to existing sets
of observations.
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1. Introduction

A very convenient way to retrieve the physical information
contained in an observed P Cygni line profile E(1)/E, due to
a single resonance line transition 1 = 2 is to make use of its cal-
culated moments W oc [(E(A)/E, — 1)|A — Ay,|" sign (A — A,,)dA
(see Surdej, 1985 and references therein). As a first application,
we have suggested to represent in theoretical “log,(W;) —
log,o(W5)” diagrams (n # n’) the measured values of the moments
W3 (n =0, 1,2 and 3) in order to infer the types of opacity (t],(v))
and velocity (v(r)) distributions characterizing the rapidly ex-
panding atmosphere in which the observed line profile is formed.
We have also shown that the moments W§, W, W5 and W3,
measured for an unsaturated P Cygni line profile, are directly
related to the column density N, to the fractional mass-loss rate
M (level) -V (level) representing the average fractional abun-
dance of the considered ion —, to the column momentum and to
(twice) the column kinetic energy, respectively, of the relevant
species in the flow. The relation between W35 and Ma™® (level)
has been generalized to the cases of resonance doublet (Surdej,
1982) and subordinate (Hutsemékers and Surdej, 1987) line tran-
sitions. However, the other relations (n = 0, 2, 3, etc.) as well as
the use of the “log; o(W3) — log,o(W3)” diagrams are not directly
applicable to the analysis of resonance doublet profiles. There
are at least two reasons for this: (i) the expression of the line
profile function E(A)/E, characterizing a doublet line transition
appears to be more complex than the one describing a single line
transition, (ii) if A;, denotes the central wavelength of a resonance
doublet, the above expression of the moment has to be replaced
by W oc [(E(A)/E, — 1)( — Ap)"dA such that physically tract-
able relations may still be established in the optically thin
approximation.

Because most of P Cygni profiles observed in the UV spectra
of early-type stars, planetary nebula nuclei as well as in the opti-
cal spectra of high redshift BAL quasars are due to resonance
doublet line transitions, there is an obvious interest to develop
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the theory of the n'® order moment W?2. The present paper con-
stitutes a first step in that direction.

In Sect. 2, we first establish the expression of W2 assuming
that there is no radiative coupling between the two single reso-
nance line transitions of the doublet. The complex radiative inter-
actions between line photons emitted in the transitions 1 =2
and 1 =3 and atoms located throughout the expanding atmo-
sphere are subsequently taken into account when deriving the
general expression of W2 in Sect. 3. Asymptotic values of W2 in
the optically thin and optically thick approximations are also
derived there. Section 4 deals with numerical applications and a
few diagrams of astrophysical interest are presented and de-
scribed in Sect. 5. The physical representation of selected param-
eters derived from the observed moments of resonance doublet
P Cygni profiles is given in Sect. 6 and general conclusions form
the last Section.

2. Approximation of a resonance doublet by two independent
line transitions

Adopting the following expression for the n'® order moment W7
of a resonance doublet P Cygni line profile (the subscript “D”
standing for “doublet”)

S
where the effective wavelength of the doublet is

Ap=(1—¢&hy, + €hy5, )
with

&= fi3/(f12 + f13): )

A2 f12 (r€SP. Ay3, f13) denoting the central wavelength and os-
cillator strength of the line transition 1 = 2 (resp. 1 = 3) and v,,
the maximal radial velocity u(r) of the flow, and making use of
the dimensionless frequency

A—2p\ ¢

Xp= ( - ) <, @
D Ve
it is straightforward to reduce Eq. (1) to
1+ed
E(Xp) "

WP = f (—E—” - 1) X dX,. )

—1-(1-¢)4

It is also very convenient to define (cf. Eq. (4) and Fig. 1) the
dimensionless frequencies X and Y associated with A,, and 4,3,
such that

X=X,—¢d (6)
and
Y=X,+(1—-¢d, W)
with
4 = Avys /v, , (8)

Av, being the Doppler velocity separation between the two line
transitions of the resonance doublet (cf. Surdej, 1980, hereafter
referred to as Paper I; see also Lamers et al., 1987). If one may
assume that the composite line profile E(X ,)/E, results from the
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Fig. 1. Schematic example of a resonance doublet P Cygni line profile
E(A)/E, plotted versus the observed wavelength A and the dimensionless
frequencies X, X and Y (see text). We have here assumed that 4 = 1/2
and ¢ = 2/3

mere superposition of the two line profile functions E,,(X)/E,
and E 4(Y)/E,, each being independently formed from one an-
other, we obtain the interesting relation

+1
WP = f(—Elg(X) - 1)(X+aA)"dX

-1 <

N J’(E%(Y)_l)(Y—(l—s)A)”dY. ©

-1 <

This result is rigorously exact in only two cases: (i) when the
expanding atmosphere is optically thin to the spectral line radia-
tion, and (ii) for values of the doublet separation 4 > 2.

Defining the moments W22 and W!3 (the subscripts “12” and
“13” referring to the single line transitions 1 = 2 and 1 = 3, re-
spectively) by means of Eq. (5), where we have replaced X, by
X and Y, respectively, we can express Eq. (9) as follows:

W8 =W + W§,
WP =Wi2 + Wi 4+ eAW}2 — (1 — ) AWE3,
W2 = Wiz + W3 + 26 AW1I2 — 21 — ) AW 13
+ 2 42°WE + (1 — g2 A2W L3, (10)
W2 = Wi2 + W3 4+ 3eAWi2 — 3(1 — e) AW L3 + 362 A2 W12
+3(1 — &2 AW + S A3WE? — (1 — g3 A3W 3,
i.e. the moments W2 (n = 0, 1,2 and 3) appear as straightforward
linear combinations of the moments W2 and W13 (n’ < n) of
each of the single line transitions forming the resonance doublet.

It is interesting to consider now the two usual asymptotic regimes:
the optically thin and optically thick approximations.

2.1. The optically thin approximation

For the case of optically thin lines, it is easy to show (see Appendix
A) that the moment W&, associated with a single resonance
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transition i = j, is directly proportional to the oscillator strength
fi; We can therefore write the equality

eW2=(1—-¢gW}3, 11)
such that relation (10) reduces now to (the subscript “o” referring
to the optically thin case):

WhO = (WE + W),

Whe = (Wit + W),

W20 = (Wi + W3 + 4% ¢(1 — e)(W2 + WE), (12)

WRO = (W12 + W) + 34%4(1 — (W12 + W)

+ A3 (1 — g)(2e — DN(WE2 + Wi3).
Replacing the values of the moment W22 + W}3 in Eq. (12) by
those given for an optically thin, single resonance line having an
equivalent oscillator strength f, = f, + f;5 and a central wave-
length 1, (see Surdej, 1982, hereafter referred to as Paper II),

it will be easy and useful in Sect. 3.3 to compare the above results
with those derived from the rigorous expression of W2.

2.2. The optically thick approximation

Equation (10) can also be conveniently used to calculate asymp-
totic values of W2 when the atmosphere gets optically thick and
A — 2. Assuming that 7,, > 1, 7,3 > 1 (see Paper II), we have

Wit = Wi = wiiek — w, (13)

such that Eq. (10) now transforms into (the subscript “t” refer-
ring to the optically thick case)

Wt =2W5,

WP = OWY, + (26 — 1) AWY,,

W2 = QWY + 226 — 1) AW, + A% (26> — 26 + 1) W',

W2 = 2WY + 326 — 1) AW, + 3 4%(2e% — 26 + ) W
+ (6 — (1 — ) 4°W,

(14)

i.e. the moments W2 (n = 0, 1, 2 and 3) are simple linear combi-
nations of the moments W%, (n’ < n) of an optically thick, single
line transition which central wavelength and oscillator strength
are not necessarily specified. Replacing in Eq. (14) the values of
W' by those calculated for the case of a single resonance line
profile that is formed in an optically thick atmosphere (see Paper
II), one easily derives the asymptotic values of W2, Since the
former ones essentially depend on the velocity distribution char-
acterizing the outflow, we have reported in Table 2 values of
W' and WP for the three velocity fields listed in Table 1. We
have also adopted X,,;, = —0.01, ¢ = 2/3 and 4 = 1.8. These re-
sults will be compared in Section 3.4 with self-consistent calcu-
lations of WP,

3. The general case

Considering a three-level atom model, the transfer of spectral
line radiation in a rapidly expanding envelope is complicated by
the fact that photons emitted at a point R in the transition 3—1
may interact with atoms at distant points R’, via the line transition
1 = 2. We refer the reader to Paper I for a comprehensive study
of these distant interactions between atoms and line photons. In
the framework of the Sobolev approximation, we establish here-
after the general expression of the resonance doublet profile

143

Table 1. Adopted velocity and opacity distributions for calcu-
lating the moments WP of resonance doublet P Cygni line profiles

(A) X' = = Xpin + (1 + X1 — 14/L)
(B) X' = _Xmin + (1 + )(min)(1 - I/L)
(©) X =1-(1-X2,)/L

(o) T(X') =d(1/L)/ X' dX’
B TX)=1-X

0  TX)=1

0 TX)=(01-Xx)"
@) (X)) =(1-X)

m TX)=1Xx

formed in an atmosphere that is rapidly expanding around a
central stellar core having a finite radius R,.

3.1. Expression of the resonance doublet profile E(X p)/E.

The general expression E(Xp)/E. of a resonance doublet P
Cygni profile formed in a spherically symmetric atmosphere may
be written as (see Eq. (I1.42) for the restricted case of a point-
like star)

EXp) _En(X=Xp—ed) En(Y=Xp+ (-4
E, E, E

E.ps(Xp)

+ E. s
where the different contributions refer to the scattered line
photons in the resonance transitions 1 =2 and 1 = 3, as well
as to the stellar photons which did not suffer any scattering. In
the absence of limb darkening and assuming that the central
core radiates with an intensity I, that is constant over the
frequency range X,e[—1 — (1 — ¢)4,1 + ¢4] (see Fig. 1), one
can easily derive, with the help of Egs. (I1.56), (I1.67) and (I1.69),
the following expressions:

c

(15)

1

) ax’

PY(X) P (X, X)—,

VOO PLX,X) 55

max(]X|, = Xmin)

if Xe[—1,0],
ax’
PY,(X)P (X', X) —
12( ) 12( s )2X,’
max(|X™|, = Xmin)

if X €0,X°],
1, if X e 1X°,1],

En(X) _
=

c

(16)

Table 2. Asymptotic values of W’ and W2 according to Egs.
(13) and (14) for e =2/3and 4 = 1.8

Velocity field

log(—Wp)  log(Wh)  log(—W3)  log(W5)
A —1.143 —0338  —0.636 —0.660
B —0914 —-0323  —0.607 —0.609
C —0.724 —0344  —0.609 —0.616

log(—Wg") log(WD") log(—W3") log(W3")
A —0.842 —0058  —1.387 0411
B —0.613 —0057  —0.842 0419
C —0.424 —0.101  —0.539 0.380
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with
Xoin = —Vo/Vao » (17

v, being the radial velocity at the stellar surface and where the
frequency XV fulfils the condition

XV = —X/(1 - 2W(L(X"))). (18)
W(L(X"™)) stands for the geometrical dilution factor

1
W) =501-v1- /Ly, (19)

evaluated at the radial distance r(X™) = L(X™)R,,, where the re-
duced radial velocity

X' = v(r)/vy, (20
is equal to — XM,

The frequency

X0=1- 2W(Lmax) (21)

is such that for X > X°, there is total occultation of the rear
part of the expanding envelope contributing to the line profile
at the frequency X. L,,,, denotes the size of the atmosphere in
stellar radii R, units. Reminding results (1.24)-(1.26), (I1.58)
and (I1.64), we easily obtain the expression of the integrands in
Eq. (16):

PY,(X') = (B32(X") + J3(X)/1)71 (X)) 4LHX) (22)
and
Pt x) - L= ST, X)) o

T1z(X/,X)ﬂ%2(X() ’

where 7,,(X’, X) (resp. 7],(X’)) represents the fictitious opacity
in the transition 1 =2 evaluated at the distance L(X’) along
directions making a cosine angle
b= —-X/X", (24)
(resp. u = 1) with the radial direction. B1,(X’) denotes the usual
escape probability of a line photon (cf. Eq. (I.10)). We also have

o lmepraXie) o, de
ﬁfz(X)—Q;LW Ty P
(25)
and
T3(X) h(X")
= 1- —1a X" "
I, Q(R’R")ﬂis(X”)( exp(—113(X", "))
(1 —exp(—711(X', 0))) _dﬁ (26)

71X, w) 4n’
such that 1,83, and J?, account for the mean intensity of the
radiation field in the transition 1 = 2 due to the diluted stellar
continuum and to line photons emitted in the transition 1 =3

by distant atoms located at points R”(L(X")) along directions
" (cf. Paper I). In a very similar way, we find that

1
r ! a dX(
PY3(X)Py5(X',Y) exp(—113) mesr

Tl
max(|Y|, ~ Xmin) X

ifYe[-1,0],
1
E5(Y) , , . dX’
—E = PH(X) Pia(X' Y ) exp(—Th0) 757
max(|YN], = Xmin)
if Y €]0,X°], (27)
1, if Y €]x°1],

where the factor exp(— 7} ,) expresses the probability for a photon
emitted in the line transition 1 = 3 to escape the expanding at-
mosphere without being scattered in the line transition 1 == 2 by
atoms located at large distances from the point of emission. All
quantities appearing in Eq. (27) can be defined by analogy with
those in Eq. (16), with the exception of (cf. Eq. (I1.64))

PY(X) = (X i a(XALAX)), (28)
where

sy [ Lo ep (T ) do

= f K dn 29)

Q=4nW

Note here that if the central continuum source were point-
like (ie. L., » 1), the contribution PY;(X") would reduce to
P5(X") = (1 — exp(—173(X’))). We remind that P, 4(X’) repre-
sents the probability for a stellar photon emitted with an initial
frequency X' to be scattered at a distance L(X') and that
P,5(X",Y) corresponds to the probability that this photon will
finally escape the expanding atmosphere along a direction making
a cosine angle ¢ = — Y /X' with the radial direction. As far as
the fraction E, (Xp)/E. of unscattered stellar photons is con-
cerned, its contribution to the resonance doublet P Cygni line
profile in the frequency interval X,e[—1 — (1 —¢)d,ed] is
easily derived to be

EnXp) . ¢
S = 2 [lexp (— oK' 2)) exp (= sV aa)) g dity

¢ 0

(30)

where
X' =(ed — Xp)/pyz» (€2))
with gy, = /1 — (1 — @2)/LX(X), if Xpe[—1 + ed,ed],
and similarly
Y'=—(Xp+ (1 —e)d)/us, (32)

with g3 = V1 — (1= @)/LAY), if Xpe[—1— (1 —#)4,

—(1 — &)4], 7y, (resp. 7,3) being set equal to zero in Eq. (30) if
no solution (X", u,,) (resp. (Y’, 1t13)) is found. We can now make
use of all previous results (Egs. (15)—(32)) to derive the explicit
form of Eq. (5).

3.2. Expression of the moment WP

Inserting relations (15), (16), (27) and (30) in Eq. (5) and following
a procedure similar to that described in Appendix B for the
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particular contribution of E,.(X)/E,, we obtain the general result
1

we= |

~Xmin

1
- (—X'i + ed)y"

—(1-2W(L(X")))
. (1 —exp(—1,,(X", 1))
TlZ(XI’I't)
fl Ti3(X) BR5(X) 4LHX) 1
ﬂia(X') 2 —(1-2W(L(X")))
(I — exp(—13(X, 1))
‘513(Xluu)

T1(X)(B1:(X) + J3(X)/1) 4L*(X)
Bia(X)

dudX'

1

~Xmin

(=X'u—(1—gay-

-exp(—1),)dudX’

1 Xmin s ted
+2 [y du, [ Xy

0 ~V1-(1 - ) Lax—(1-2)4
“(exp(—712(X', p15))exp(—113(Y', p113)) — DdXp.

For values of L, > 1, the “point-like” star approximation is
essentially a good one and it provides a very useful model to
understand more easily the asymptotic behavior of more general
solutions given by Eq. (33). We merely state the result when
R, — 0 (the subscript “*” stands here for the “point-like” star
approximation)

(33)

1

wpre= |
(1= exp(— X)) exp(— i) + TaXITEAKYIALIX)
03
3mSR
¥ { A f (~Xu— (1= o) ay
e T e (e (i) — DXy, (34
o

3.3. The optically thin case
3.3.1. Central core with finite dimensions

For unsaturated (t,, < 1,7,3 < 1) resonance doublet P Cygni
profiles, Eq. (33) is easily transformed into (see Appendix C)

1
wpo = f 712(X) W(L(X"))4L*(X")

~ Xmin
1

(— X'y + ed)"dudX’
—(1—2W(L(X")

1
+ [ w@)wea)are

~Xmin

145

1
- f (—X'u—(1 —e) Ay dudX’
—(1-2W(LEX"))
1
- [ a0
~Xmin
1
1
o f (—X'u + edy dudX’
1-2W(L(X")
1
- [ w04
~ Xmin
1
1
= f (—=X'u— (1 — &) 4y du dX'.
1-2W(L(X"))

35)

Considering the particular values of n =0, 1, 2 and 3, Eq. (35)
leads to the results

1
WBo= [ (X)) + FaX))(1 — 4L*W)dX',

~ Xmin
1

who= [ X@,(X) + X)) — W)dxX',
—X.lnin

Wpo= [ X2(@L(X) + 7,4(X))

~Xmin

-%(W(I +(1=2WP) —1+1-2W)P)L2dX" (36

1
+&(1 — &) 42 f (@A X') + T (X)) — 4L2W)dX,

= Xmin
1

[ xewam+ r13(X'))<1 - f) (1= wyax

~Xmin

D,0 _
W3 -

1
+3¢(1 — ) 42 f X'(T1,(X") + :(X)1 - W)dX'

~ Xmin

1
+ 26 — 1)1 — ) 4° f (X))
= Xmin

+ T5(X))1 — 4L2W)dX' .

Referring to the asymptotic expressions established in Appen-
dix A for the moment W (n = 0, 1, 2 and 3) of a single resonance
line transition i = j, we conclude that result (36) is essentially
equivalent to that given in Eq. (10) provided that all Wi have
been replaced by their corresponding expression from Eq. (A.1).
This agreement partly testifies about the self-consistency of the
results derived in this chapter.

3.3.2. The point-like stellar core

Following a similar reasoning as that in Appendix C, expression
(34) of the moment WP*, established for the case of a point-like
star, simplifies in the optically thin approximation to

1 +1
1
Wpxo = _if T;z(X,)E:[(_XIIl+8A)"dﬂdX/
1 1 +1
+ [ )5 [ (Xu— (- aydudx’
~Xmin -1
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1
F (=1t [ f L)X — edydX’
— Xmin
1
+ f 1’13(X’)(X’+(1—8)A)"dX’:I. 37)
= Xmin

For the particular values of n =0, 1, 2 and 3, we obtain

D%,0 __
WE*0 = 0,

1
Wpeo= T X(@aX) + (X)X,
2 1
wpeo= 2 [ X2 + tha(X)dxX’, (38)
~ Xmin
1
WREO = | XP(@a(X) + (X)) dX'
1
+3e(l —e) 4> [ X'(T1(X") + 175(X"))dX".

~Xmin

3.4. The optically thick case

If the expanding medium is optically thick to the spectral line
radiation in the transitions i = j (i = 1,j = 2 and 3), we can make
in Eq. (33) the approximation exp(—1;;) = 0, provided of course
that the corresponding direction of light propagation crosses
a surface of possible interaction. Furthermore, expressing in
Eq. (33) the fictitious opacity 7;(X’, u) in terms of its radial com-
ponent, i.e. in a spherical envelope

dinL dinL
/ — (X 2 —_ —_—_
Tij(X3#)_TlJ(X)/|:‘u <1 dlnX’>+d1nX’:|’

we directly see that the optically thick expression of WP does
not depend anymore on the form of the opacity distribution
7i(X") but that it essentially relies on the type of velocity field
v(r) characterizing the expanding atmosphere. Although it is not
possible to reduce Eq. (33) to a simple analytic expression when
7;;> 1, we can establish such expressions for f,(X"), f1s(X),

34(X), etc. and therefore suppress one level of integration in
Eq. (33). Taking into account the exact form of the geometrical
loci of distant interacting points (R, R’) as a function of the rela-
tive doublet separation 4 (cf. Eq. (I.14) and see Hutsemékers,
1988), we have illustrated in Figs. 2—5 the results of numerical
calculations of W2 versus 4 = 0.0, 0.2, 0.5, 0.8, 1.0, 1.2, 1.5 and
1.8 for n =0, 1, 2 and 3, adopting the velocity fields A, B and C
explicited in Table 1. Let us note the very good agreement be-
tween the results calculated here for 4 = 1.8 and those reported
in Table 2.

(39)

4. Numerical applications
By means of Egs. (2)—(3) and since
fo=Ji2 + fi3s

the fictitious radial opacity of a resonance doublet line transition
(TH(X') = 17,(X") + 113(X")) may be expressed as (cf. Eq. (I1.19))

(40)

A(el) d(1/L)
v Xadx”

T(X") = KMn(level) 41)

-0.4 —==
| Pl ~=--=----F---
L WD't /// \(;1
Oglo(— 0 ) //
/
/ "r’ ..........................
/ N
S0 4 -

! l !
1.0 2.0
A
Fig. 2. log, ,(— W5") values calculated from Eq. (33) as a function of the
relative doublet separation 4 = 0.0, 0.2, 0.5, 0.8, 1.0, 1.2, 1.5 and 1.8 as-
suming that 7,,, 7,3 » 1. The three curves refer to the velocity fields A,
B and C given in Table 1

2.0

Fig. 3. Same as in Fig. 2 but for log, (W2

0.0

D
log]o(-Wz’t )

-3.0

T 0
0.0 10 20

Fig. 4. Same as in Fig. 2 but for log,,(— W2
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0.0 1.0 2.0

Fig. 5. Same as in Fig. 2 but for log, o(W5")

with the constant

ne? _
K= e SoAp/(AniEM o Ry, (42)

where:

A(el) represents the abundance of the relevant element,

[t is the mean atomic weight of the nuclei and

M, is the unit of atomic mass; all the other symbols have
their usual meaning.

Inserting Eq. (41) into expression (36) of W, we easily recover
the linear relation existing between the first order moment of an
unsaturated resonance doublet P Cygni profile and the mass-loss
rate M (cf. Paper II and Surdej, 1983a, b)

Ael)
3

w0 = KMa(level)g*'(c0) ; (43)
where the average fractional abundance
| n(level)(1 — W)dL/L?
aW(level) = +— , (44)
[ —wydL/L?
1
and
¢'(0) = — [ (1 — W)dL/L* = —0.89271. 45)
1

If one adopts now the form of the opacity distributions given in
Table 1, namely
(X)) = C*T'(X)), (46)
we find out by inserting the last relation into Eq. (36) that the
fictitious radial opacity t;,(X’) may be rewritten as

wPor(X’
. ity : 7
[ X)X -wydx

— Xmin

(X') =

It therefore appears straightforward to compute the moments
WP (cf. Eq. (33)) and W2-° (see Eq. (36)) as a function of the par-
ameter W20 for various opacity and velocity distributions as
well as for different values of the doublet separation 4. Because
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the moments W2% and W2-° in Eq. (36) appear to be linear com-
binations (involving the doublet separation 4) of more elemen-
tary moments alike those expressed in Eq. (A.1), it is also very
convenient to define and use the following moments

W, = W2 — g1 — &) A2 W2,

Wy = W2 — 3¢(1 — &) A2WP — ¢(26 — 1)(1 — &) A3WD. (48)

In the optically thin approximation, the latter ones reduce to

1
2
W9 = f X2h(X') (WL + (1~ 2W))
= Xmin

— 14 (1 —2W)P)L2dX’,

F 1
W3 = —Xf X'%;,(X’)(l — E) 1-wydx', 49)
ie. alike W5° and WP in Eq. (36), W9 and W3 are not depen-
dent on the doublet separation 4. Furthermore, we shall see in
Sect. 6 that the latter moments are simply related to astrophysical
quantities of general interest.

Considering the 3 velocity fields and 6 opacity distributions
listed in Table 1, we have computed for the eight doublet separa-
tions 4 = 0.0, 0.2, 0.5, 0.8, 1.0, 1.2, 1.5 and 1.8 the pairs of mo-
ments (W§, WE°), (WP, W), (W2, W2°), (W,, W3), (W3, W3°)
and (W, W9) as a function of 20 values of log;o(W?) in the
range [—3.5,3.5]. We have also adopted the values ¢ = 2/3,
Xmin = —0.01 and L,,,, = 1000. There results a total number of
(3 x 6 x 8 x 6 x 20 =) 17280 pairs of calculated moments which
may be represented against each other in many various ways.
These data as well as more details about their calculations, ac-
curacies, etc. will be published in a separate paper (Hutsemékers
and Surdej, 1989a). Some of the most representative diagrams
constructed from these data are illustrated in the next Section.
We also discuss there the potential use of such diagrams in the
context of astrophysical applications.

5. A few diagrams of astrophysical interest

We have illustrated in Figs. 6 and 7 typical “log,o(W?P) —
log, o(W2-%)” curves for n =0 and n = 3, respectively, and for
two different values of the doublet separation (4 = 0.2 and 1.0).

0.0 T T T T T T T T T
D
log10 (—W0 )8
1.0} I .
C C
L B B .
A A
-20+ —
i £=0.2 £z10 |
-3.0 | | ! | 1 1 BN B | 1 1 |
-3.0 -20 -10 0.0 1.0 20 30
Do
log]0 (-W0 )

Fig. 6. “log, o(— W5) — log, o(— W5°)” curves calculated for the eighteen
possible models from Table 1. The results are shown for two values of
the doublet separation 4. A, B and C refer to the different velocity fields
used for modeling the expanding atmosphere
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0.0+

D
log,, (W, )-

-0

=20

. 1 1 1 1 1 1 1

3'93.0 -2.0 -10 0.0 1.0 20 30

D,0
log,, (W,")

Fig. 7. “log; o( W5) — log,o(W%°)” curves calculated for the eighteen pos-
sible models from Table 1 and two different doublet separations

One notices immediately that apart from a mere translation (cf.
the indicated arrow), there exists a great similarity between two
curves pertaining to a same velocity and opacity model but dif-
ferent values of the doublet separation. With the exception of a
few notable cases (cf. n=2 and 4 >0.6; n =3 and 4 > 1.2 for
the models A.a, A.n, B.y and C.y further described in Hutsemékers
and Surdej, 1989a), this trend appears to be very general and we
can take advantage of this as follows. Let us construct from our
data “log, o( W2/WP*) — log,o(WD-°/WP) diagrams (see Figs.
8-11). In agreement with our previous statement, we find that,
within a very good approximation, these new diagrams are in-
dependent on the value of the doublet separation 4. It therefore
becomes possible, on the basis of a single “log, o(W2/W>*) —
log,o( WP:°/WPH” diagram to determine the value of the param-
eter W20 from the measurement of W2 and the knowledge of
WPt versus A (cf. Figs. 2-5). If the P Cygni line profile under
study is sufficiently unsaturated, our measurements fall on the
linear part of the curves and we recover the result W20 = W2,
irrespective of the velocity and opacity distributions. As the
observed line profile gets more saturated, the derived value of
WP-® becomes more and more dependent on the choice of the
velocity and opacity distributions. It is only then possible to
derive a lower limit to the value of the parameter W2:° As
log; o( WP%) — o0,log, o(W?P) tends towards the asymptotic value

|
-30 -2.0 -1.0 0.0 1.0 2.0 3.0
D,0,,, Dt
log,, (W, /W ")

Fig. 8. “log,(Wo/W2") — log,o( W5°/W5") curves calculated for the
eighteen possible models from Table 1 and 4 = 0.5. Note that within
a very good approximation, these calculations are irrespective of the
doublet separation 4

!
-30 -20 -10 0.0 1.0 20 30
Do, ., Dt
log (W /W’
glO( 1 1 )

Fig. 9. Same as in Fig. 8 but for “log,o(W2/W?" — log, o( W20/W2y”
curves

T T T T T T
0.0
0
S‘ o~ éﬂ‘l
R
3 of C.m ; -
0O~ A.
B.6
E A. C.6_05_
oi_ -20 B.¢€ Bp C.yY -
L c.e Aa -C.B
B.a
'Of c.a 00 0.5
-30 1 ! 1 | | I
-30 -20 -1.0 0.0 1.0 2.0 30

D,0, ., Dt
log,, (W, 7TW>")

Fig. 10. Same as in Fig. 8 but for “log,o(W5/W2") — log,o( W2 %/W5*)”
curves

! !
20 1.0 0.0 10 2.0 30
Do, Dt
log /(W /W3 )

Fig. 11. Same as in Fig. 8 but for “log,(W%/W5") — log,o( W5 /W2’
curves

log; o( WP (see Sect 3.4). As already discussed for the case of
a single resonance line transition (Surdej, 1985-Paper III-), it
should also be very useful to represent in theoretical “log, o( W?) —
log,o(W2)” or “log;(W,) — log,o(WZ)” diagrams observed val-
ues of the corresponding moments in order to infer the type
of the velocity and opacity distributions characterizing the line
profiles under study. A general look at our data (cf. Figs. 8-11)
indicates that for odd values (n = 1,3,...) of the order, the mo-
ments are mostly sensitive to the form of t;,(X’) whereas for even
values (n = 0,2,...) of n, the moments are opacity dependent at
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moderate optical depths but entirely velocity dependent as the
line profile gets progressively saturated. Therefore, we suggest as
a first possible application to use simultaneously “log, o(W?) —
log, o(—W3)” and “log, o(W,) — log,o(W?)” diagrams in order to
characterize at best the velocity and opacity distributions from
measurements of the relevant moments. Such diagrams are illus-
trated in Figs. 12 and 13 for 4 = 0.5. Note that for optically
thin lines, the linear part of the theoretical curves is irrespective
of the doublet separation (their slopes may be found in Table 3).
It is very likely that other combinations of the calculated mo-
ments will prove useful to the interpretation of observed line
profiles. Any such diagrams may be constructed from the numer-
ical data compiled in Hutsemékers and Surdej (1990).

6. Physical representation of the parameters W2-° and W?°

Following a similar approach as in Paper III for the case of a
single resonance line transition and adopting the definitions

Vi=WwDPo  forn=0,1,
Vo =w? forn=23, (50)

we may combine Egs. (36), (41), (42) and (49) to derive the
interesting relation

. Ael
V8 = K MX™ T7™(level)g*(o0) —;(:—). (51)
The average quantities are defined as
| X" 'n(level)F(L)dL
XmT=1 (52)
{ n(level)F (L)dL
1
and
{ n(level)F(L)dL
a™(level) =1 —— (53)

[ FAL)dL
1

D
log (W)

log ,[-W)

Fig. 12. “log,o(W?) — log,o(— W3)” curves calculated for the eighteen
possible models from Table 1 and 4 = 0.5. Here, the linear part of the
curves remains independent on the doublet separation. However, the
saturated part (higher values of |Wg| and W?) is very much dependent
on 4
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00

—~ -20|

-30

-40

Fig. 13. Same as in Fig. 12 but for “log, o(W;) — log, o(W?2)” curves

We also have

4"(c0) = an(L)dL : (54)

where the function F,(L) is expressed by
4L°2W — 1
L? ’
(1r-=w
L

F o(L) =

F(L)= -

FyL)= %(1 — W1+ (1 =2W)}) — (1 —2W)?), (55)

1 1
Fil)=—13 <1 - T)ﬂ - W),

leading to the values g®(o0) = 0.14159, ¢°(c0) = —0.89271,
g“*(00) = 0.60971 and ¢°*(c0) = —0.76029.
Adopting the following relations

V00"+ 1
0,= %, 56
Kg(c0) ©6)
and
0,4"(e0)
T MR, °7

we easily find by means of Eqs. (42) and (51)—(54) that the above
expressions reduce to

Q, = Mv" T i(level) A(el), (58)

and

R, = | m(AueyFLL dr, (59)
Ri

where n,(r) represents the volume density of the relevant ion in
the lower atomic level. As for the case of a single resonance line
transition, the above results permit to conclude that for n = 1,2
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Table 3. The ratios V/V$, n®(level)/n™(level) and the average quantity X~ ! (see Egs. (50)-(53), n = 0, 2 and
3) for the velocity laws (A)—(C) and the opacity distributions («)—(r) (see Table 1)

n (A (B) ©
VoVe  EMEn XL oy g Xme1o poy0 gy gl
(® 0 3250 10000 20523 21763 10000 13705  0.6419 10000  4.0426
2 02461 10000 03599 03641 10000 05325 04729 10000  0.6917
301792 10000 02104 03483 10000 04090 04917 10000  0.5773
(B) 0 04364 03291 83498 07361 07662 60501 15854 19861  5.0270
2 03430 09890 05073 03531 10024 05151 03676 10117  0.5313
303019 10942 03240 02950 = 1.0069 03440 02816 08805  0.3755
) 0 01754 01531 72116 02955 03814 48785 06419 10000  4.0426
2 04375 09821 06514 04588 09909 06772 04729 10000  0.6917
3 04732 11348 04896 04985 10824 05408 04917 10000  0.5773
@) 0 02926 02366 77860 05009 05766 54712 10840  1.5041  4.5388
2 03862 09855 05731 03990 09972 05850 04140  1.0071  0.6011
303772 11150 03972 03780 10423 04258 03670 09339 04614
€ 0 07847 05231 94474 12767 11214 71704 27207 28648  5.9807
2 02793 09954 04103 02874 10101 04161 02992 10157 04308
302023 10537 02254 01923 0948 02380  0.1775 08022  0.2598
m O 16787 05660 18678 21763 10000 13705  3.6976 22554 10325
2 03441 09908 05079 03641 10000 05325 03815 10042  0.5556
303299 10691 03623 03483  1.0000 04090 03476 09013 04528

and 3,Q, represents the mass-loss rate, an average momentum
rate and (twice) an average kinetic energy rate carried out by the
relevant species in the flow. Except for n = 0, the dependence of
the average fractional abundance 7#™ (level) as a function of the
order n is quite small (see Table 3). It is interesting to compare
at this stage the values V9/V9 #m®/mY and X771
reported in Table 3 with those derived for the case of a single
resonance line transition (cf. Table 2 in Paper III). The similar-
ities and differences existing between those quantities are easily
understood on account of the basic definitions and properties of
the respective moments. Another interpretation of the physical
parameter V2 may be obtained from Eq. (59). Indeed, forn = 1,2,
etc. the quantity R, provides a measure of the column velocity,
(two third of) the column square velocity, etc., of the species under
consideration. For n = 0, we obtain
0

Ry = [ ny(r)4L*W — 1)dr,

*

(60)

and since 4L*W ~ 1, this quantity ceases to provide an estimate
of the column density. This result constitutes a major difference
with that obtained for the case of a single resonance line transi-
tion (cf. Paper III). The necessity to adopt different definitions
for the moments W2 and W (see Introduction) is the main cause
of this.

7. Conclusions

Because most of the P Cygni profiles observed in the ultraviolet
spectra of early-type stars, planetary nebula nuclei and in the
optical spectra of high redshift BAL quasars are due to lines such

as Civi41548.2, 1550.8, Sirv141393.8, 1402.8, N v 111238.8,
1242.8, O vi441031.9, 1037.6, etc., for which 4dv,; = 498, 1939,
965, 1653 km/s, respectively, there is a real need to develop the
theory of the n'® order moment WP? for the particular case of a
resonance doublet transition. The present work merely constitutes
a first step in that direction and we therefore discuss at the end
of this section the limits of the applicability of our method to
real sets of observations.

But first of all, let us summarize the content of this
contribution to the theory of the n'* order moment W?2: deriving
a suitable expression for the resonance doublet profile E(X p)/E,
(see Eq. (15)), we have established the general expression of the
moment W? in Eq.33). We have demonstrated that, in the
optically thin case, the latter equation reduces to the same
expression as that directly obtained for a resonance doublet
approximated by two independent line transitions. This same
result applies in the optically thick approximation provided that
the doublet separation 4 > 2. For 4 < 2, the asymptotic value
WP remains very dependent on 4 as well as on the type of the
velocity field v(r) (see Figs. 2-5).

Adopting realistic expressions for v(r) and for the opacity
distribution 7,(X’), we have performed extensive calculations of
WP(n =0,1,2 and 3). A few diagrams of astrophysical interest
have been presented. We have namely discussed the potential
use of the normalized “log, o( W2/WP") — log, o( W2-°/WP*)” dia-
grams in order to infer the values of the parameters W2 (see
Figs. 8—11). For unsaturated P Cygni line profiles, we recover
(cf. Paper II1) the very useful relation W2-° = WP irrespective of
the choice of v(r), t(X’) and of the doublet separation 4. We
have shown that the physical parameters W2° (and simple linear
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combinations of these) are simply related to quantities of astro-
physical interest. For n = 1,2 and 3, the above parameters are
directly expressed in terms of the mass-loss rate, an average
impulsion rate and (twice) an average kinetic energy rate, respect-
ively, carried out by the relevant species in the expanding at-
mosphere. We have also suggested to use simultaneously the
“logyo(W?) — log,o(—Wg)” and “log;o(Ws) —log,o(W?)” dia-
grams in order to determine the types of v(r) and 7j(X").

As far as the applicability of the present method is concerned,
let us stress here that we did not include yet in the theory the
possible departures from the Sobolev approximation (cf. the
“turbulence” effects discussed by Bertout, 1984 and Lamers et
al., 1987), the effects of underlying photospheric absorption lines
for the resonance doublet transitions (but see Surdej, 1982 for a
discussion of this effect on the first order moment W?). Further-
more, if “shell components” are seen to perturb the observed
absorption trough, they should be taken away before measuring
the moments of the intrinsic P Cygni profiles. Potential users of
the theory of the moments W? should therefore be aware of the
above limitations before applying it to real observations (cf.
TUE spectra of O-type stars). We personnally consider that the
“moments” method should allow one to test efficiently the theory
against observations, in a statistical sense. For instance, compar-
ison between theoretical and observed “log; ( WP) — log,o(W?2)”
diagrams constructed from a large sample of P Cygni profiles
should help in pointing out the existence of systematic departures
and in identifying the physical cause(s). We are presently follow-
ing such an approach in our analysis of the P Cygni profiles
observed in the spectra of high redshift BAL QSOs as well as
those displayed in the IUE Atlas of O-type spectra published
by Walborn et al. (1985). From the analysis of the latter profiles,
we have found out that in addition to the known photospheric
and interstellar contamination due to the resonance doublet line
transitions, a photospheric pollution of the stellar continuum by
several tens of other line transitions is severely affecting each of
the different Si1v, C1v, Heu and N1v P Cygni profiles (Nemry
et al., 1990). As to the improvements to be brought to the model
discussed in this paper, we are presently investigating the ef-
fects of turbulence (cf. Lamers et al., 1987) onto “log,o(W?) —
log;o(WP:%” and “log,(W?) — log,o(W?2)” diagrams similar to
those ulustrated in Figs. 5-13. Of course, no difference should
be found for the most interesting case of unsaturated, resonance
doublet, P Cygni profiles.

Let us still finally mention that since the theory of the mo-
ments WP is particularly well suited to the interpretation of
under-resolved line profiles (see Castor et al., 1981), P Cygni
profiles observed with TUE in the low resolution mode provide us
with a potential set of observations to be analysed in this way. As
a first application of the present results, Hutsemékers and Surdej
(1989) have revisited the mass-loss rates of seventeen central stars
of planetary nebulae observed with IUE.
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Appendix A

By means of Eq. (IL.70), i.e. Equation (70) in Paper II, we easily
establish that the expression for the moment W¥(n = 0,1,2 and
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3) of a single resonance line transition i = j reduces to
1
wWi= [ (X1 —4L*W)dX’,
~Xmin
1
wWi= [ X1;(X)1—-W)dXx', (A.1)

= Xmin

1
N 2
Wi = f X2 2(X) WL+ (1= 2W)Y)
= Xmin

—1+ (1 —2W)P)L*dX’,

1
wi= | X/%;,.(X’)<1-

~Xmin

1
m)(l-—W)dX’.

Since the fictitious radial opacity ti; is proportional to the oscil-
lator strength f}; (see Eq. (I1.19)), we also have Wi f "

Appendix B

Inserting expression (16) for E,,(X)/E, into Eq. (5) for the mo-
ment WP leads to the result

ed 1
weiz— [ Xxj
—1+ed max(|Xp — 4|, — Xmin)
ax’
“PYX)Po(X', Xp — ed) 51, dXp
2X
XO+ed 1
+ [ x
ed max(]XN|, = Xmin)

ax’
- PY, (X)) Pyo(X', X p — €4) X aXp.

(B.1)
We have sketched in Fig. B1 the domain of integration defined
by the above sets of integrals in the plane (X, X”). Interchanging
the order of integration between X ;, and X in the last equation,
we find

1 r ’
WD'12 - f PI:Z(X )dX

2X’
—Xmin ed—X'
“PL(X, Xp — ed) XBdX,.

X'(1—-2W(L(X")+ed

(B2)

Xp=X'(1-2WIL(X )+ A

min

T el 0 | ea X! xued
xmin"'eA XD
Fig. B1. Domain of integration in the plane (X, X’) of the integrand
" PY,(X') P, 5(X', X, — e4)/2X’ appearing in Eq. (B.1)
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Applying the variable transformation (cf. Eqgs. (6) and (24))
Xp=—Xu+ed,
dX, = —X'du, (B3)

and with the help of expressions (22) and (23), we obtain the
desired expression for W212 (cf. Eq. (33))

Wh12 _ fl T(X)(B1(X) + J1(X)/1) 4L*(X)
. Bia(X')
| 1
C= (—X'u + edy
—(1-2W(L(X"))
(1 — exp(—74,(X", 1))
: : dudX’. (B4
712X, 1) a )
Appendix C

Under the assumption that the expanding atmosphere is optically
thin to the spectral line radiation in the transitions 1 =2 and
1 = 3, the following approximations:

LX) =W,
ﬁiz(xl) ~1,
J1X) =0,
(1 — exp(—12(X", )
712X, )
(1 = exp(—=7,5(X' ) _ |
T13(X, 1) ’
HBX) =W,
Bia(X) ~1,
exp(—71i,) ~ 1,

~1,

(C.1)

can be conveniently used in the two first sets of integrals of Eq.
(33). By means of the variable transformations (6), (7) and (31),
(32) and since for constant values of u, we have the relations

i = T _ax
712X, 12) By
gy = - ¥) d¥ (C2)

Ty3(X' py3) s’

we obtain the third set of integrals in Eq. (33)

1 Xminps +ed
2 f 1, dp, f xn
0 ~V1=(1~pd)/LEax— (1 -£)4

“(exp(—1 12X, p12)) exp(—1,3(Y', py3)) — 1)d X
1 1 dX’
=-2|p.d —X'p+ ey T(X
ofu* u*[ | Xt eayaa00 =
; ay’
+ [ (Y- -9areym) ]
u

~Xmin
~Xmin

(C3)

Interchanging the order of integration between u, and X', and
Uy and Y’ and using afterwards the variable transformation

p=+1—01—pud)/L?,

pdp = pydp,/L?, (C4
the right member of Eq. (C.3) is easily reduced to the result given
in Eq. (35).
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