Introduction

Ionospheric signals are widely regarded as nuisance in low-frequency InSAR data, and thus a variety of correction techniques have been proposed. Although band-splitting of range spectrum has been shown to be effective (Bricc et al., 2010; Rosen et al., 2010; Gomba et al., 2015), the band-splitting technique seems to have not been widely used. Whereas this would be partly because the impacts of ionosphere on InSAR data are not necessarily serious, we consider that this could be also because the details of the technique have not been reproducibly shown. Here we show our step-by-step recipe of the band-splitting technique, and demonstrate two case studies that reveal the effectiveness of the technique.

Strong Ionospheric Signal in Polar Region

Yamal Peninsula, NW Siberia, includes numerous thermokarst lakes and characteristic landforms related to permafrost processes. In 2014, several holes with its diameter of ~40 m were identified. Examining any related surface displacements, however, we encountered many anomalous phases that were unlikely due to the deformation but presumably due to the ionosphere. This will be the case at nearly all the L-band InSAR studies at polar region, and the SB-InSAR is indispensable. We show two successful “clean” and one noisy result.

Theory and Processing Steps

(a) Original range spectrum with bandwidth, B_w, around the carrier frequency f_c, but it is baseband-ed. (b) We split the original B_w into two new narrower bands with newer center frequencies, f_1 and f_2. Besides the band pass filtering in (c), we need to further demodulate so it is baseband-ed (d).

(0). Original point target response with the delay τ ($\approx 28/\lambda$)

(1). Band-passed point target response includes modulated phases.

(2). Baseband-ed point target response with the new frequency f_1 and B_w.

(3). We multiply the demodulation phase from the nearest to the farthest range.

Mid-latitude Sporadic-E Episodes Detected by SB-InSAR

Using ALOS1 data, Maeda et al. (2016) first reported the sporadic E (E_s) phases in InSAR with the aid of GNSS TEC, but the InSAR phases were not decomposed into the dispersive and non-dispersive signals. Suzuki et al. (2016) reported the 2nd successful detection of E_s using ALOS2. Comparing the TEC ($\Delta \phi_\text{ion}$) and non-dispersive effect ($\Delta \phi_\text{Nondisp}$), we realize the similarity in the phase anomaly shape. We may associate the $\Delta \phi_\text{Nondisp}$ with the phase delay due to the presence of positive charges around the E_s signals.