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Abstract—This paper presents a computational model of the
mid-term outage scheduling process of electric power transmis-
sion assets, to be used in long-term studies such as mainte-
nance policy assessments and system development studies, while
accounting for the impact of outage schedules on short-term
system operation. We propose a greedy algorithm that schedules
the outages one by one according to their impact on system
operation estimated via Monte-Carlo simulations. The model is
implemented in JULIA and applied to the IEEE RTS-96.

Index Terms—Outage scheduling proxy, transmission systems,
asset management, system development, Monte-Carlo simula-
tions, reliability management.

I. INTRODUCTION

Within asset management, the outage scheduling activity
consists in planning over a mid-term horizon (a few months
to a couple of years) the moments where a set of component
outages requested by a higher-level maintenance policy should
be carried out. Its goal is to comply with logistic resources
(e.g. availability of crews) while at the same time minimizing
the foreseen impact on system operation over the mid-term
horizon (e.g. market congestion and reliability criterion vio-
lations) [1]. In practice this activity is carried out by human
experts, while taking into account the uncertainties about the
expected operating conditions over the mid-term horizon.

In long-term studies (horizons of decades), while aiming at
“optimally” evolving the system structure and/or its mainte-
nance policy, it is necessary to model the outage-scheduling
process in order to enable the assessment of the system
performance over the considered long-term scenarios.

The main contribution of this paper is the formalization of
a well-founded computational model of the outage scheduling
activities, to serve as a proxy of the actual (expert-driven)
outage scheduling process when carrying out such long-term
analyses. The proposed model relies on a heuristic approach,
conceived so as to achieve a compromise between accuracy
and computational tractability. It is based on a combination
of: (i) Monte-Carlo simulations of future operating scenarios
incorporating a lower-level proxy of system operation, and (ii)
a greedy outage scheduling approach that works by succes-
sively placing the outage requests over the horizon, starting
by those that have the strongest impact on system operation,
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and then progressively inserting the other outage requests. We
also propose an implementation in the JULIA programming
language [2] of this model, which is illustrated on a case study
over the IEEE RTS-96 benchmark [3].

The remainder of the paper is organised as follows: Sec-
tion II outlines the proposed computational model of outage
scheduling, Section III describes our case study on the IEEE-
RTS 96, Section IV discusses related works, and Section V
concludes and identifies directions for future work.

II. COMPUTATIONAL MODEL OF OUTAGE SCHEDULING

As mentioned above, the proposed model relies on Monte-
Carlo simulations to assess the impact on system operation of
different outage schedules. They exploit a set of scenarios of
future operating conditions defined over the mid-term outage
scheduling horizon on an hourly basis, together with proxies
of the decision-making carried out by the transmission system
operator (TSO) in the context of short-term operation. We
simulate two successive system operation stages, namely the
day-ahead (DA) and the real-time (RT) context. In the DA
context, the TSO prepares operation for the next day given
the forecasted operating conditions, while in the RT context,
the TSO operates the system for the current hour given
the decisions taken in the DA and the realised operating
conditions. Both stages are modelled as reliability constrained
optimisation problems, and are further denoted respectively by
“DA-proxy” and “RT-proxy”.

Below we formalise our computational model of the outage
scheduling process, by successively describing its inputs, its
goal, and its optimisation strategy.

A. Inputs to the outage scheduling process

1) A list of O outage requests: It contains the outages to be
scheduled over the mid-term horizon of interest. Each outage
is specified by the affected grid component, the duration of
the outage in days, and the amount of daily maintenance crew
resources needed to carry out the task.

2) Manpower constraints: They express the available re-
sources of maintenance crews of the TSO, and are given in
terms of the amount of crew resources available for each area
of the system, and for each day in the scheduling horizon.

3) A set of scenarios over a set of days D: They provide
all the necessary information about exogenous uncertainties
that will condition TSO behaviour when operating the system



along the mid-term horizon. For the DA context, they express
the TSO information about the expected next-day conditions,
while for the RT context they express the information available
in real-time about the conditions actually encountered.

4) Short-term operation proxies: These proxies model the
TSO decision-making processes that take place in the two
system operation contexts, namely DA and RT. Together, they
predict TSO short-term actions and the impact of implement-
ing these actions on operating costs and system reliability.

B. Goal of the outage scheduling process

The goal of the outage scheduling process is to determine
an outage schedule over the mid-term horizon so that the
manpower constraints are satisfied, and so that the overall
impact on operation is minimised in average over the set
of scenarios, while taking into account both expected TSO
operating costs and system reliability over the horizon. To
formulate this as an optimisation problem, we assume the
following:
• Once an outage schedule is postulated, the combination

of short-term proxies allows one to compute, for each
hour of each scenario, a numerical impact indicator; this
number is typically a blending of TSO costs incurred to
comply with the reliability criterion and of the potential
interruption costs in case the reliability criterion is not
achievable.

• The expected impact on operating performance induced
by a given outage schedule can be measured by in-
tegrating the above hourly and scenario-wise indicator
both over time and over the set of scenarios; an optimal
schedule is one that minimises this compound impact.

• The manpower constraints, are acting as “hard con-
straints”; only those schedules that satisfy them are taken
as candidate schedules in the overall process.

C. Greedy outage scheduling algorithm

The proposed algorithm is conceived as a greedy search:
• As a first step, we evaluate for each individual outage

request i, its compound impact on system performance in
operation for each feasible (according to the manpower
constraints) day d. We denote this indicator by Cop

i,d. For
a scheduling problem of O outage requests and a horizon
of D days, this yields an O×D matrix of real-numbers.

• The O outages are then sorted (in descending order)
into a list according to their overall compound impact,
i.e. the difficulty their scheduling imposes on reliability
management. We denote this indicator by Cout

i and
compute it as follows:

Cout
i =

odi
|Di|

∑
d∈Di

Cop
i,d, (1)

where Di is the set of feasible days and odi is the outage
duration. The most difficult outage request is the one that
maximizes Cout

i , i.e. the one that would lead to a maximal
(negative) impact on system performance in average.

• The first outage in the list (most difficult one) is then
scheduled at the moment where its compound impact over
the corresponding outage duration is minimized. This last
indicator is denoted by Csch

i,d and computed as follows:

Csch
i,d =

d+odi∑
s=d

Cop
i,s. (2)

• The outage is forced into the schedule at its determined
moment of minimal impact, the amount of available crews
is adjusted and the matrix of real-numbers is updated.
This is done by removing from the matrix the line
corresponding to the just committed outage request, and
by then updating for all other remaining outages, those
columns of the matrix that are affected (in practice, only
those days where the just committed outage has been
placed).

• The next outage in the list is selected and the two steps
above are repeated, until all outage requests have been
scheduled.

Fig. 1 illustrates the proposed algorithm. Note that man-
power constraints are bypassed in this illustration for sake of
clarity.

III. CASE STUDY

A. Outline

The proposed model is used to schedule a set of five outages
on transmission lines in the single-area IEEE RTS-96 [3], Fig.
2. The number of outages and their durations are selected
based on current TSO maintenance practice [4], whereas the
affected lines are chosen so as to cover a large portion of the
system on the one hand, but also to include a few lines that
might be electrically related, on the other hand. This choice
allows us to induce “difficult” situations from the point of view
of outage scheduling, that the proposed model should be able
to handle.

For sake of interpretability we chose to ignore manpower
constraints in this case study. We use 96 input scenarios, and
a scheduling horizon of 182 days corresponding to the first 26
weeks of the year as per the system specification.

B. Implementation details

The proposed model is implemented in the JULIA program-
ming language [2], including (i) a scenario-generative model,
(ii) the two short-term proxies, and (iii) the proposed greedy
algorithm for outage scheduling. The JULIA package JuMP
[5] is used together with the CPLEX optimizer [6] to solve
optimization problems.

1) Scenario-generative model: Scenarios are obtained from
a generative model that produces random samples of the
following uncertainties with an hourly resolution:

a) Market clearing outcome: It is computed using the
copper-plate market approach, and the methodology developed
in the e-Highway2050 project to determine the outage sched-
ule of generating units [7].
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Fig. 1. Illustration of the main steps in the proposed algorithm: (a) The compound impact of having each outage i occurring at each day d, denoted by Cop
i,d

,
is estimated via Monte-Carlo simulations with the short-term proxies. Then, the overall compound impact of outage i, denoted by Cout

i , is computed by
averaging Cop

i,d
over days and multiplying the result by the outage duration (noted odi). (b) The outage with the highest Cout will be scheduled next, say i0.

To do this, the compound impact of starting outage i0 at each available day d, denoted by Csch
i0,d

, is computed by integrating Cop
i0,d

over succesive periods
of length equal to the outage duration. (c) The outage is scheduled to start at the day where Csch is the lowest, say d0. Afterwards, the Cop of remaining
outages are recomputed on the days between d0 and d0 + odi0 , to acknowledge for the just committed outage request.

Affected line Outage duration (days)
2 35
6 20
21 42
25 22
27 23

Fig. 2. One-line diagram of the single area IEEE RTS-96. The lines affected
by outage requests in our case study are numbered and marked in red.

b) Load forecast and realization: The load forecast is
directly obtained from the original load profile given in the
system specification [3] with a random annual peak uniformely
distributed around 2850 MW ±10%. The realization is com-
puted by asuming a normal distribution with mean equal to
the load forecast, following the methodology described in [8].

c) Hydro-power capacity: It is computed using a heuris-
tic approach, where we assume that hydro-power plants offer
full capacity at the most loaded hours until the energy available
for the current period is completely used up.

d) Forced branch and generator outages: They are com-
puted assuming an exponential distribution of the failure times,
and a normal distribution of the repair times [9].

2) Short-term proxies: Short-term proxies are implemented
using DC security-constrained optimal power flow (SCOPF)
and assuming that the TSO follows the N-1 reliability criterion
in the short-term. (For a recent survey on SCOPF see [10].)

a) Day-ahead operational planning proxy: Available
control actions are DA generator startup, shutdown and
rescheduling, as well as provisional RT corrective rescheduling
to be applied following each N − 1 contingency, the latter
computed in anticipation of the forecast conditions for each
hour in the next day. The operational costs are computed as
the sum of startup and DA rescheduling costs.

b) Real-time operation proxy: Available control actions
are RT preventive generator rescheduling, to be applied prior
to the realization of any contigency, as well as RT corrective
rescheduling, to be applied following each N−1 contingency.
The operational cost is computed as the sum of preventive
rescheduling costs, where any deviation from the DA plan has
a positive contribution to the cost.

c) Infeasibility handling: In case of infeasibility of the
N-1 criterion, load-shedding is introduced as additional control
action in RT pre- and post-contingency state. If this is still



TABLE I
RESULTING OUTAGE SCHEDULE.

Line Starting day Ending day
21 58 99
2 77 111

25 62 83
27 34 56
6 57 76

insufficient to restore feasibility due to generator minimum
output limits, we drop the SCOPF and assume that the entire
system load is shed in the pre-contingency state. Whatever the
case, we only assume one hour of supply interruption. The cost
of these actions is computed as the scalar product of the value
of lost load (extracted from [11]) and the load-shedding. Using
a worst-case approach, the latter is approximated as the sum of
(i) preventive load-shedding and (ii) the maximum corrective
load-shedding among all contingencies.

C. Discussion of results

1) Interpretation: The resulting outage schedule is pre-
sented in Table I, where the outages are ordered by decreasing
difficulty. As we see, the outages of lines 27, 6 and 2 are placed
one after another, tightly filling the interval between days 34
and 111. This points at these days as being especially attractive
from the point of view of system operation to perform outages
on this part of the network, but also suggests that the affected
lines are electrically related since no simultaneous outage is
scheduled on them.

Fig. 3 illustrates the progression of the proposed greedy
algorithm iteration by iteration. Figs. 3(a) to (f) show the best
moment to place different outages at each iteration, given the
decisions commited in previous iterations. Note that as outages
get commited (in red), the best moment to place the pending
ones (in cyan) may change according to the new operating
conditions. For instance, from Figs. 3(a) and 3(b) we observe
that the best moment to place the outages of lines 2 and 27
changes after scheduling the outage of line 21.

Fig. 4 further illustrates the above situation. Figs. 4(a) to (d)
show the impact on the compound performance indicator of
different outages on days 58 to 99, before and after scheduling
the outage of line 21. Note that, on one hand, there is a
significant increase on the impact of the outage of line 27,
which explains the decision of pushing this outage away
from the concerned days. On the other hand, there is only
a slight increase on the impact of the outage of line 2, but
still sufficient to push this outage a few days ahead on the
horizon.

2) Computational requirements: The proposed JULIA im-
plementation is designed to spread among multiple tasks when
running Monte-Carlo simulations, so that each scenario is
treated by a separate task, while we allow CPLEX to use CPU-
multithreading within each task.

In the proposed greedy algorithm, the most time-consuming
part is the first iteration where the compound impact is
computed for all 5 outages × 96 scenarios × 182 days

TABLE II
COMPUTING TIMES IN THE FIRST ITERATION.

Line DA proxy (s/call) RT proxy (s/call) Total (h:m:s)mean std mean std
2 92.17 31.68 0.28 0.08 16:30:44
6 144.16 66.8 0.28 0.07 25:34:04

21 153.44 74.27 0.28 0.08 27:08:40
25 215.04 81.57 0.26 0.05 35:59:09
27 92.18 32.33 0.26 0.06 16:10:27

Total 121:23:04

of 24 hours. Note that for each day in the simulation the
algorithm needs to call once the DA proxy and 24 times the
RT proxy. Table II reports computing times measured during
our case study, using the CECI’s NIC4 computing cluster (see
http://www.ceci-hpc.be/clusters.html#nic4) with 32 tasks and
4 CPU-threads per task 1. The total time spent in the first
iteration is 121 hours and 23 minutes, compared to 22 hours
and 15 minutes spent in all subsequent iterations. Most of
the time in the first iteration is consumed by the DA proxy,
where the average computing time per call is between 92
and 215 seconds (see column 2 in Table II). At the current
implementation state we can speed-up these computations just
by using more resources, such as 96 tasks and 16 CPU-threads
per task, which according to our previous experiments would
allow for a performance gain of 3 to 6.

IV. RELATED WORKS

In [12]–[17] several frameworks for coordinating equipment
maintenance and system operation over the mid- to long-term
are proposed. In [13], [16], uncertainty in the future operating
conditions is considered through a multi-scenario approach.
However, the models of short-term system operation used in
these works only handle the DA context, neglecting the RT.
Moreover, it is unclear whether or not these models could be
replaced by more detailed ones without affecting the solving
procedure.

Another direction is taken in [18]–[20], where the authors
model the impact of maintenance on asset failure rate and
the associated failure costs. Among these works, only [20]
explicitly models the RT context as an additional instance be-
yond the DA, and considers uncertainty in the future operating
conditions by means of Monte Carlo simulations. However,
this leads to tractability issues that the authors handle by using
a reduced number of time periods when generating Monte
Carlo samples.

V. CONCLUSION AND FUTURE WORK

This paper presents a computational model and software
for the mid-term outage scheduling of electric transmission
system assets, based on:

a) Monte Carlo simulations in order to represent the
uncertainty in the operating conditions over the mid-
term.

1With this configuration we require exactly three serial passes to process
all 96 scenarios per simulation.

http://www.ceci-hpc.be/clusters.html#nic4
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Fig. 3. Best moment to place different outages at subsequent iterations: (a) iteration 1; (b) iteration 2; (c) iteration 3; (d) iteration 4; (e) iteration 5; (f)
iteration 6.

b) Proxies to model the short-term contexts, including DA
operational planning and RT system operation.

c) A greedy algorithm that attempts to minimize the neg-
ative impact of the outage schedule on system operation.

A case study on the IEEE RTS-96 benchmark shows that
the proposed model is able to provide a reasonable outage
schedule, which both (i) avoids simultaneously scheduling
outages that could lead to a large degradation of system perfor-
mance, and (ii) exploits favorable conditions for maintenance
to simultaneously schedule multiple outages while ensuring
that system performance does not degrade. Target applications
of the proposed model are long-term studies which need to
simulate a large number of future trajectories, and thus cannot
be carried out by relying on human expertise alone. However,
the method could also be applied to outage scheduling itself,
complementing current expert-driven approaches.

Future work will focus on the following three aspects:
• Studying the convergence behaviour of the proposed

algorithm. We will observe how the performance indi-
cators computed by our model converge as the sample
size grows, and how this impacts on the resulting outage
schedule.

• Validating the proposed model and comparing it with

other outage scheduling models. We will develop an
assessment metholody, possibly based on ST proxies as
the ones presented in this paper, that will allow us to
determine the ‘quality’ of an outage schedule as described
in [4], and thus compare different outage scheduling
models and tools.

• Reducing the computational burden of the proposed
algorithm. We will explore the use of (i) smart stopping
criteria in the Monte-Carlo simulations, and (ii) machine
learning techniques to reduce the number of calls to the
detailed short-term proxies [21].
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