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Projectile points have always attracted a lot of attention, but the last few years, efforts have intensified to recog-
nize them in assemblages and to understand the details of their functioning (propulsion mode, hafting method,
…). Debates have increased following the recognition of older projectile points and the use of projectiles as indi-
cators of human behavioural complexity. The most frequently used method for identifying projectiles relies on
the identification of so-called “diagnostic impact fractures”. Although this procedure appears clear, a careful re-
view of the literature reveals numerous inconsistencies in their description and terminology. We discuss some
of these inconsistencies that seem to cause confusion andwe present some first steps toward an improvedmeth-
odology for the identification of projectile points based on new experimental data.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Projectiles, defined here generically as referring to all weapon types
independent of their projectingmode, have always been considered im-
portant in archaeological assemblages. Their suggestive morphology
has attracted the attention of many archaeologists. Thanks to their
rapid and distinct morphological variation across time and space, they
were quickly used to construct the first typo-chronologies and models
of cultural variation (see Knecht, 1997 for an extensive review). Some
points are intensely worked, due to which they often served as a basis
for technological studies (see Knecht, 1997 for an extensive review).
The function of these points has been much debated. Most often they
have been considered as weapon tips, sometimes as knives, but it is
clear that morphological attributes alone are insufficient to determine
their use (Beyries and Plisson, 1998; Brindley and Clarkson, 2015;
Chesnaux, 2014; Clarkson, 2016; De Bie and Caspar, 1996; Hauck et
al., 2013; Hester and Heizer, 1973; Moss and Newcomer, 1982; Nance,
1971; O'Farrell, 1996; Shea, 1988).

Hunting and preparing for the hunt (manufacturing, using and
repairing the equipment, etc.) must have been an important and time
consuming activity in the life of Palaeolithic populations (Bleed, 1986;
Ellis, 1997; Greaves, 1997; Lee, 1968). Studying hunting equipment in
more detail thus has the potential to shedmore light on a crucial aspect
. This is an open access article under
of Palaeolithic human behaviour. Since early on, researchers have
realised the relevance of a closer examination of fractures to identify
projectiles in assemblages (Witthoft, 1968) and their examination has
nourished many earlier debates on the existence of projectiles in the
Middle Palaeolithic/Middle StoneAge and the capacity of different hom-
inids to hunt (Beyries and Plisson, 1998; Shea, 2009, 1988, 2006; Sisk
and Shea, 2011; Villa and Roebroeks, 2014). More recently, these de-
bates have shifted towards the importance of different projecting
modes for understanding behavioural complexity (Brown et al., 2012;
Lombard and Haidle, 2012; Shea and Sisk, 2010). Especially the devel-
opment of long-range hunting weapons is considered to have signifi-
cantly impacted human subsistence and it has been suggested that it
may have been an important factor in the development of our species
(Shea and Sisk, 2010; Shea, 2006). Up until today, projectiles thus
form a crucial element in debates on human behaviour (McBrearty
and Brooks, 2000; Villa and Roebroeks, 2014). In most cases, the key el-
ements of hunting equipment have disappeared, as they were
manufactured out of organic material, and the stone points are the
only evidence that is left. Therefore, an improved comprehension of
their operational details, for example, the appearance and development
of new weapon projecting techniques needs to rely on these stone
points.

While several stone point types have been assumed to have served
as hunting weapons, efforts have been invested over the last decades
to verify these assumptions with empirical data. In the framework of
functional studies of wear traces, a combination of criteria has been
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proposed that would allow the recognition of projectiles in archaeolog-
ical assemblages. The most commonly used procedure to identify pro-
jectiles, however, relies on the identification of tip (apex) or base
fractures, often referred to as so-called “diagnostic impact fractures”.
This method is based on several archaeological and experimental stud-
ies in which particular fractures were observed on the apex of projectile
points and appeared to result from forces upon contact with an animal,
more in particular with bone (Barton and Bergman, 1982; Bergman and
Newcomer, 1983; Frison, 1974; Moss and Newcomer, 1982; Odell,
1978; Witthoft, 1968). The recurrent observation of apex fractures on
experimental projectile points and the realisation that some of these
may be diagnostic for projectile use (Fischer et al., 1984), gradually de-
veloped into a more formalised procedure, even though it remained
based on sparse and very diverse experiments (Beyries and Plisson,
1998; Chesnaux, 2014; Crombé and Caspar, 2001; De Bie and Caspar,
1996; Hutchings, 2011; Lazuén, 2012; Lombard et al., 2004; O'Farrell,
1996; Pargeter, 2007; Pétillon et al., 2011; Rots and Plisson, 2014;
Schoville and Brown, 2010; Shea et al., 2001; Sisk and Shea, 2009;
Soriano, 1998; Wilkins et al., 2012; Yaroshevich et al., 2010). Together
with the shift in the debate toward the potential behavioural implica-
tions of different projecting modes, efforts have recently also been
invested in trying to find empirical data that would allow a reliable
identification of the propulsion mode that was used (Cattelain, 1997;
Geneste and Plisson, 1990; Iovita et al., 2014; Sano and Oba, 2015,
2014; Shea, 2006).

Given the importance of projectile points for understanding broader
technological evolutions and variability, their identification based on
impact fractures gradually gained in popularity. While initial determi-
nations generally remained rather cautious (Fischer et al., 1984), more
ambitious determinations have been proposed more recently (e.g.,
Wilkins et al., 2012). It has been criticised that the latter determinations
relied on a poor understanding of impact fractures and that apex frac-
tures cannot be used as sole arguments for projectile identification
(Rots and Plisson, 2014).
Table 1
Diagnostic impact fracture categories that are taken into account in different publications and

Diagnostic impact
fractures

Flute-
like

Burin-
like

Spin-
offs

Bif spin-
offs

Step
terminating
bending

Hinge
terminating
bending

Witthoft, J., 1968

Bergman, Barton,
1982
Bergman,
Newcomer, 1983
Fischer et al., 1984

Odell, Cowan,
1986
Caspar, De Bie,
1996
O’Farrell, 2004

Lombard, 2005

Lombard,
Pargeter, 2008
Villa, Lenoir, 2006

Villa, Lenoir, 2009

Sano, 2009

Sano, Oba, 2014

Lazuén 2012

Wilkins, et al.,
2012
Chesnaux, 2014
2. Background

Historically, attitudes have changed in terms of the value that was
attributed to diagnostic impact fractures. In order to illustrate these
changes, we review 16 projectile studies in which the diagnostic value
of specific impact fractures considered by the authors was clearly indi-
cated. These studies are considered to be representative of the chrono-
logical development of the discipline (Table 1). In the beginning, the
terms flute-like and burin-like fracture and their diagnostic value
were shared amongst authors (Barton and Bergman, 1982; Bergman
and Newcomer, 1983; Witthoft, 1968). Also the lithic use-wear confer-
ence organised by BrianHayden in Columbia (Canada) resulted in a nice
synthesis about fracture mechanics in siliceous material (Hayden,
1979), on the occasion of which the Ho Ho Committee proposed an at-
tribute-based system for fracture description (Committee, 1979).
Fischer et al. (1984) are the first to apply the Ho Ho terminology to de-
scribe impact fractures. They created three specific categories that they
considered diagnostic to recognize projectiles based on attribute aggre-
gation: step-terminating bending fractures, spin-offs and bifacial spin-
offs. At the same time, they stressed that these “diagnostic” fracture
phenomena can also occur during blank production. Indeed, it was rec-
ognized from the start that these fracture types in themselves are only
characteristic of a specific load and direction of pressure, forces that
may equally occur in circumstances other than projectile use. This is ex-
actly the reason why functional analysts have always sought to corrob-
orate the fractures with other lines of evidence (i.e., wear traces,
residues) (see Rots and Plisson, 2014 for a discussion). Odell and
Cowan (1986) introduced a first mixture of descriptive systems as
they continued to use the old typological system (Barton and
Bergman, 1982; Bergman and Newcomer, 1983; Witthoft, 1968), but
they combined it with the Fischer et al. categories and they added a
hinge-terminating bending fracture as a diagnostic category. De Bie
and Caspar (1996) followed the same idea, but they also added the
feather-terminating bending fracture. Afterwards, most authors
the variation through time.

Feather
terminating
bending

Crushing



Fig. 1. A. A cone initiated scar; B. A bending initiated break initiated from a surface.
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continued to use at least partly the old typological system (Chesnaux,
2014; Lazuén, 2012; Lombard and Pargeter, 2008; Lombard, 2005;
Sano and Oba, 2015a; Sano, 2009; Villa and Lenoir, 2009, 2006;
Wilkins et al., 2012), but opinionsdivergedwith regard to the additional
diagnostic categories: either only the three originally proposed by Fi-
scher et al. (Lombard and Pargeter, 2008; Lombard, 2005; Villa and
Lenoir, 2006; Wilkins et al., 2012), or also an inclusion of hinge- and/
or feather-terminating bending fractures (Chesnaux, 2014; Lazuén,
2012; Sano and Oba, 2015; Sano, 2009; Villa and Lenoir, 2009). Aside
from this variation in the categories considereddiagnostic, the literature
also reveals discrepancies in the terminology used to describe macro-
fractures and in the precision of existing definitions or applications of
this definition. The vagueness or inconsistency in these terminologies
is unintentional; each author uses terms for which each has a specific
definition in mind. Depending on the author, these definitions may
slightly differ from the original (precise or less precise) version. Re-
searchers (including the co-author) have not always explicitly shared
an unequivocal and complete definition associated with a clear illustra-
tion of each of the terms they have used. Unintentionally, it has in some
cases resulted in misunderstandings of what a term exactly represents
with respect to the fracture characteristics. Nobody benefits from this
confusion and the growing popularity of the identification of projectile
points in archaeological assemblages based on fracture characteristics
stresses the need for a shared framework of terms, with precise defini-
tions and explicit illustrations.

In this paper, we highlight some of the observed inconsistencies in
currently used terminologies (DIFs) and we evaluate their effects on
the interpretations. We propose a more transparent attribute-based ter-
minology that directly builds onto the work of the Ho Ho Committee
(1979) and we test the potential of this terminology to explain the rela-
tionship between the impacted material, the strength of the hafting, the
mode of propulsion and the fracture's characteristics. The goal of this
paper is not to discuss the reliability of interpretations based on
macro-fractures analysis, but rather to refine current terminologies and
definitions in order to propose a first step toward an improved method-
ology for the identification of projectile points. After all, a more robust
methodology needs to rely on a precise and shared set of definitions.

3. Methods

The observations and propositions discussed in this paper are based
on a careful review of the literature and on an analysis of a set of exper-
imental points. Even though we consider that the interpretation of ar-
chaeological material needs to rely on several lines of evidence, such
as the archaeological context, residues (if available) (e.g., soft tissues,
embedded bones flakes, remains of glue) and wear traces (fractures,
MLIT's, use polish, striations, hafting traces) (Fullagar et al., 2009; Rots
and Plisson, 2014), we only focus on macro-traces in this article.
Macro-traces are most commonly used to identify projectiles and we
believe that most terminological confusion is linked with these ap-
proaches. We argue that a more attribute-based approach to describe
macro-fracturesmay provide a viable ormore precise alternative to cur-
rent approaches.

For each of the fracture types routinely considered in projectile stud-
ies (grouped under the DIF-approach), the existing literature is examined
andwebriefly reviewcommonly used definitions. Even though the terms
used to describe themmayvary between authors,we try to evaluate their
degree of consistency between authors. While the same or similar terms
are often used, they do not necessarily have the same meaning for each
author. To aid in the evaluation, also published pictures were examined
even though we are aware that not all diagnostic features may be easily
visible on a single photograph. Comments remain cautious and sugges-
tive, and exclusively intended tomove the discussion forward. We stress
that the intention is not to identifywrong from right, but to document the
variation in the use of a term. Perfect descriptions do not exist and all an-
alysts, including the authors, have used incomplete or vague descriptions
in the past. This is not the issue here, as it is largely a historic construct,
but as researchdevelops, one needs to reflect onmethods andprocedures
to seek ways of improvement. Definitions proposed in the past may have
been confusing or incomplete, or their applicationmaynot have been rig-
orous.While thismay not be so problematic for periodswhere projectiles
commonly occur, it may be problematic when older assemblages with
very different point morphologies and sizes are examined with the
same procedures. In addition, it may hinder analyses that try tomove be-
yond the identification of a projectile only, towards projectingmodes, for
instance.

In order to evaluate currently used terminologies and to test the po-
tential of a stricter revised attribute-based terminology that builds on to
the propositions of the Ho Ho Committee (1979), we performed a sys-
tematic projectile experiment with Gravettian and micro-Gravettian
points. We describe the fractures on the experimental points in two dif-
ferent ways: with the aid of the commonly used DIF-approach andwith
the attribute-based terminology (the latter is essentially a revision and
elaboration of attribute systems used up to now). Subsequently, these
different categorisations are compared in order to reveal inconsistencies
and to try to identify ways of avoiding them in the future.

Each fracture identified as having been caused by impact was exam-
inedwith a V12 Zeiss binocular stereoscopic microscope (magnification
between×8 to ×100) and a V16motorized Zeiss Axio Zoommicroscope
(magnification between ×6.5 to ×180). All points were photographed
at ×16 magnification before the experiment to avoid confusion with
production-related fractures. The aim of the analyses was to evaluate
whether the revised system is sufficiently flexible and precise to reduce
the existing confusion.

3.1. Basic definitions

It is important to first explain a few basic definitions concerning a
fracture's characteristics, in particular for the attributes that are most



Table 2
Complete list of the revised attribute system with all considered attributes and attribute states.

Entity Attribute Attribute state

Global Fracture part (Fig. 2) (part of the fracture that is described) Positive; negative
Fracture composition Single; multiple
Fracture group Scar; break

Initiation Initiation type Cone; bending; intermediate; absent
Locus Distal; mesial; proximal
Location of initiation Ventral surface; dorsal surface; apex; right lateral edge; left lateral edge; base;

earlier fracture surface
Profile of initiation Concave; convex; straight

Propagation phase General direction Apex to base; base to apex; perpendicular to the long axis; diagonal towards the
base; diagonal towards the apex

Length Absolute value
Profile of propagation phase Normal; overshot (plunging)

Termination Termination type Snap; feather; hinge; step; absent; complex (hinge to step; hinge and step; …..)
Fissuration of termination Yes; no
Location of termination Right lateral edge; left lateral edge; base; earlier fracture surface; ventral

surface; dorsal surface
Thickness of termination Absolute value
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frequently described. These definitions also form the basis of what we
have termed a revised attribute-based terminology (see below).

Attributes that are often included in fracture descriptions are the ini-
tiation and termination. For the initiation, a distinction is commonly
made between cone and bending initiated fractures (Fig. 1). While sev-
eral phenomena are able to break brittle solids like flint, two fracture
types are principally encountered when a flint point impacts its target:
the initiation either occurs far from the contact area (bending break) or
just under the contact area (hertzian break), as a result of, respectively, a
bending stress and a compressive stress (Bertouille, 1989; Cotterell and
Kamminga, 1987, 1979; Tsirk, 2014). This variation in stress is mostly
generated by a difference in the angle of contact between the flint and
the bone or skin and thus by a difference in the direction of load exerted
on the piece (Cotterell and Kamminga, 1979: Figs. 4, 6; Lawrence, 1979:
Figs. 1, 2 and 3). Hertzian and bending fractures are extreme categories
and several parameters will contribute to guiding the fracturing more
towards one or towards the other. The load, the direction of pressure
and the angle of contact are the main parameters that determine the
fracture phenomenon, but other attributes like the impacted material
or the angle of the tip (apex) of a point will influence whether the frac-
ture will initiate more toward a cone or more toward a bending
(Bertouille, 1989; Cotterell and Kamminga, 1979; Tsirk, 2014). These
phenomena generate two types ofmorphologically distinctive initiation
types. The cone initiation is generated by a compressive stress and has a
narrow point of initiation and a concave profile. The bending initiation is
generated by a bending stress and has a wide point of initiation and a
convex or straight profile. These two categories are on the extremes of
a continuum (Lawrence, 1979) and it is not always easy to place a frac-
ture in one or the other category (see below).

For a fracture's termination, following the definitions proposed by
Crabtree (1972), a step termination is the result of an abrupt (90°)
change in the direction of a propagating crack. When the crack meets
a flaw inside the material, the propagation will be stopped because
the energy involved is not enough for the crack to continue beyond
Table 3
Selection of attributes used during the analysis and their attribute states, which are sometimes

Attribute Grouped attribute states

Fracture group Break; scar
Location of the initiation Initiated from a surface (ventral or dorsal)
Location of the termination Termination on a surface (ventral or dorsa
Type of initiation Bending; cone; intermediate; absent
Type of termination Hinge; step; feather; snap; absent; plungi
Locus Distal; mesial; proximal
the flaw (Cotterell and Kamminga, 1987; Crabtree, 1972). A hinge ter-
mination is also abrupt, but it has a curved profile and it meets the op-
posite surface in a steep or nearly right angle (Cotterell and
Kamminga, 1987). A hinge termination is createdwhen a crack generat-
ed by a forcewith an important bending component suffers a loss of en-
ergy. If the energy had been constant, the crack would have continued
its propagation. The loss of velocity allows the outward component of
the force to act which creates the hinge termination (Cotterell and
Kamminga, 1987; Crabtree, 1972). A feather termination is smooth,
with a minimal ridge where it cuts the opposite surface (Ho Ho
Committee, 1979). The feather termination can be generated by a
wide range of initiations, forces and angles (Cotterell and Kamminga,
1987). The snap termination occurs only under a bending stresswithout
a compressive component. In this case, the fracture propagation will
cross the thickness of the point more or less perpendicularly (Ho Ho
Committee, 1979).

The Ho Ho Committee proposes a provisional use fracture classifica-
tion constituted by these two types of initiation and these four types of
termination (Fig. 1 in Ho Ho Committee, 1979). While this terminology
may appear quite clear, the reality is less obvious, particularly for termi-
nations, and most of the time we deal with combinations of different
types of termination (see below).

3.2. DIF approach

Based on what is commonly used by several authors (De Bie and
Caspar, 1996; Fischer et al., 1984; Lazuén, 2012; O'Farrell, 2004; Odell
and Cowan, 1986; Sano and Oba, 2014; Sano, 2009; Villa and Lenoir,
2009, 2006; Wilkins et al., 2012), we decided to include the following
fractures as diagnostic categories in what we define here as the “DIF ap-
proach”: step-, hinge-, and feather-terminating bending fractures,
burinations and spin-offs. All spin-offs were integrated independent of
their size. We avoided the terms flute-like fractures and crushing
given their poor level of definition (see below).
grouped together for simplification of the analysis given the modest sample size.

; initiated from an edge (lateral right or left); initiated from an earlier fracture surface
l); termination on an edge (lateral right or left)

ng; complex (step and hinge, …; step to hinge, …)



Fig. 2. Synthesis of different parts of a bending and cone initiated fracture.

Fig. 3. A. Spin-off: scar initiated from an earlier fracture surface by a longitudinal
compression load and terminated on a surface; B. Burin-like spin-off: scar initiated from
an earlier fracture surface by a longitudinal compression load and terminated on an
edge; C. Burination: break initiated from an edge by a bending load and terminated on
an edge.
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3.3. Attribute-based system

An attribute-based system forces rigour upon the analyst to be com-
plete in descriptions for all included attributes.While our goal is only to
illustrate some inconsistencies in current terminologies and to demon-
strate the potential of an attribute-based terminology, it is not relevant
to discuss all details of the newly developed attribute system with all
considered attributes states here, but it is summarized in Table 2. We
focus on an aggregation of 6 different attributes: given the moderate
size of the experimental sample included in this study, we decided to
group certain attribute states (Table 3, Fig. 2).

3.3.1. Fracture group
A first difficulty with regard to impact fractures is their nature. We

distinguish between breaks and scars (Fig. 1). A break is a fracture that
cuts the point across its entire width and removes a part of both lateral
edges (apex fractures) or of both surfaces (edge fractures). A scar's
propagation does not reach both lateral edges and only removes a
chip on the surface of the apex or edge. While this distinction is clear
when the apex and edges are compared, it is far more difficult to distin-
guish both groups on the apex itself, in particular with regard to bend-
ing fractures where it may be essentially a matter of size; after all,
these two categories are on the extremes of a continuum.

3.3.2. Location of initiation
The zonewhere the initiation of the fracture occurs needs to be spec-

ified. While several attribute states are available in the complete regis-
tration system, it is limited three groups of attribute states in the
framework of this study: initiated from a surface (Fig. 1b), initiated
from an edge (Fig. 3c), initiated from an earlier fracture surface (Fig. 3a,
3b).

3.3.3. Location of the termination
To locate the termination zone, we use similar groups of attribute

states: termination on a surface (Fig. 3a), termination on an edge (Fig.
3b, c). Locating both the initiation and the termination is essential be-
cause the combination allows us to describe precisely the path of a frac-
ture on a stone point.Most of the time, a fracture initiates on one surface
or edge and terminates on the opposite (another) surface or edge. Ex-
ceptionally, however, a fracture may initiate and terminate on the
same surface. This is typically the case for an overshot (plunging) frac-
ture (Fig. 4c, 5), which has been described before in the context of pro-
jectiles (Geneste and Plisson, 1989). Such a fracture is impossible to
describe correctly without the details on the location of the initiation
and termination.
3.3.4. Type of initiation
Aside from a cone and bending (Fig. 1) initiation, we consider a third,

intermediate attribute state given that a distinction is not always easy. In
addition, fracture initiations are frequently removed or obliterated by
subsequent removals, because the contact between the stone point
and the animal (hide, bone) is rarely unique. This necessitates a fourth
attribute state absent (Fig.4b). It is evident that an initiation should
only be described as a cone or bending initiation when it is truly
preserved.
3.3.5. Type of termination
Given that the reality of fracturing shows that terminations are not

so clear-cut and that we often deal with combinations of different
types of termination, it is relevant to register these combinations and
to add categories to the four “standard” terminations (snap, feather,
step, hinge; Fig. 6) identified by the Ho Ho Committee (cf. Committee,
1979: Fig. 1). When different types of termination occur in a combined
form, they all need to be associated with the same initiation and propa-
gation phase. We distinguish juxtaposed combinations from superpos-
ing combinations in the full attribute system, but given the moderate
size of the experimental sample included in this study, all combined ter-
minations are grouped under one attribute state “complex termination”.
Nevertheless, if terminations are laterally juxtaposed, the standard cat-
egories are combined with “and” (e.g., a combined step and hinge or a
combined step and feather termination; Fig. 4d); if terminations super-
pose one another (see also Odell and Cowan, 1986), the word “to” is
used (e.g., a combined hinge to step termination; Fig. 4a). Aside from
these multiple terminations, a termination can also be absent because
it is removed by subsequent fractures.



Fig. 4. A. Break with a complex termination combining a hinge (1) to step (2) and a fissured zone (3); B. A subsequent scar (1) has removed the initiation of the main fracture and the
initiation of the latter is thus absent; C. Overshot fracture; D. Fracture with a complex termination combining a hinge (1), a fissured step (2) and a feather (3).
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3.3.6. Locus
This attribute is used to locate the trace on the blank: distal, mesial or

proximal.
4. Experiment

The experimental stone tools included in this study are only a sam-
ple of a larger reference collection that has been produced to examine
the influence of different variables, such as point morphology, mode of
projection and strength of hafting systems on macro- and microscopic
wear traces formed during projectile use. The included sample is select-
ed based on its relevance for highlighting terminological problems and
demonstrating the potential of more detailed fracture descriptions,
which is the goal of this paper. Within the complete experimental pro-
gram, the impact of several variables is tested, but we chose to limit the
number of variables for this study. We only focus on one raw material
(flint), one point morphology (Gravette point) but two point size cate-
gories, one hafting mode but three fixing techniques (sinew, resin glue,
sinew + resin glue), two projecting modes (bow and spear-thrower),
each with their own shaft type (pinus arrow shafts and hazel dart
shafts) and one target.

Thirty Gravettian and 30 Microgravettian points have been
reproduced by an experienced knapper, Christian Lepers (ULg) in Bel-
gian Harmignies flint. Fifteen points per type were mounted on pinus
arrow shafts and 15 points per type weremounted on hazel dart shafts,
resulting in a total sample of 60 points. The physical characteristics of
the shafts and the variation amongst them are summarized in Table 4.
Aside from the weight, also the spin was measured. The spin is a
Fig. 5. Profile of an bending overshot fracture.
measure of the stiffness of the shaft. It measures the elastic deformation
of the shaft between two points under the stress of a certain mass (Fig.
7). This measurement is used regularly in archery, because an optimal
stiffness exists for each value of propulsion energy expended. If the
shaft is too rigid, the projectile will deflect from its trajectory; if it is
too flexible, there is a risk of breakage at release or the projectile will
lose too much propulsion energy.

The points were mounted in a split at the extremity of the shaft; 20
were fixed with horse sinew bindings, 20 were fixed with resin glue
(70% spruce resin, 30% beeswax) and 20were fixed with a combination
of both (resin+ horse sinew+ again resin) to reinforce and protect the
sinew (Fig. 8a). The arrows were shot at a distance of 10 m into an arti-
ficial target with a reproduction of a Neolithic Holmegaard bow
(Junkmanns, 2013) made from elm wood with a draw weight of 47 lb
at a draw distance of 30 in. Darts were shot into the same artificial
Fig. 6. Profile of the different types of termination that are considered in the revised
attribute system.



Table 4
Ballistic details for the shafts used in the experiments.

Arrow spin (cm) Dart spin (cm) Arrow weight (gr) Dart weight (gr) Arrow length (cm) Dart length (cm)

Min 1,08 3 29 133 82 210
Q1 1,1775 4 31 152,5
Median 1,21 4,65 31,5 172,5
Q3 1,21 5,35 33,75 186,75
Max 1,5 7,2 40 209
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target, also from a distance of 10 m, with a hazel spear-thrower of a
length of 60 cm.

The artificial target was composed of a nearly complete animal skel-
eton encased in ballistic gelatin (Fig. 8b). Ballistic gelatin has been used
since a long time as a proxy for animal bodies in prehistoric ballistic ex-
periments, following their successful use in military experiments. It has
been used to perform penetration tests in order to compare the efficien-
cy of different point morphologies, raw materials, and propulsion
modes (Carrère and Lepetz, 1988; Carrère, 1990; Waguespack et al.,
2009;Wilkins et al., 2014). It has also been used to evaluate the strength
of certain hafting arrangements or glue recipes (Chesnaux, 2014;
Gaillard et al., 2015). Several composite targets involving ballistic gel
have also been made to explore the formation of wear traces from im-
pact on stone points. One for example consisting of an assemblage of a
polyurethane bone-like plate, 20% of ballistic gelatin and cow leather
(Iovita et al., 2014) or another one from an assemblage of deer skin,
60 mm of ballistic gelatin and cattle scapulae (Sano and Oba, 2015,
2014). While previous studies have used artificial gelatin targets to ad-
dress precise research questions, generally in artificial settings, we
wanted to create a target that is as similar as possible to a real animal
and that mimics the variation in type of contact and contact material
of an animal target. It is our conviction that such a target is required
when examining fracture patterns in detail. For instance, the fact that
a point may slide against a rib instead of only touching it head-on (cf.
bone plate) is one of the crucial elements. The goal is to obtain the
most reliable data attainable in an artificial context on the variation in
fracture types and on fracture frequencies. The experiment included
here is only the first phase of a larger-scale projectile experiment. The
artificial target was made out of a bloc of ballistic gelatin containing a
real pony skeleton and it was covered with a stretched pony skin that
had been rehydrated in water to simulate fresh skin (Fig. 8b). The
pony skeleton was refitted into anatomical position using plastic wire;
no metal was used to avoid potential friction wear on the stone points
during the experiment. The gelatin (Type A, 240–260 bloom) was
mixed with an amount of 10% of weight in water at 45 °C and the bloc
was cooled in a cold chamber at 4 °C during 48 h (see Jussila, 2004 for
details). To the basic recipe, two drops of essential cinnamon oil were
added per 4 l to increase the transparency of the mixture (Davis and
Davis, 2002), which constitutes one of the important advantages of
using gelatin for projectile experimentation as fractures within the tar-
get are perfectly visible (Fig. 8c).

Projectiles were shot with a maximum of 10 times. After each shot,
the stone point was examined while still inside the target to evaluate
whether it had touched bone; if bone was touched, the stone point
was not used any further. If the point touched skin and gelatin only, it
was removed from the target and it was checked for visible damage. If
Fig. 7. Spin measurement.
necessary, a binocular stereoscopic microscope was used for closer in-
spection. If no damage was visible, the projectile was re-used. A total
of 131 shots were performed with the 60 stone-tipped shafts. On aver-
age, points had to be fired twice before showing visible damage. Sixteen
points touched bone without suffering macroscopic damage and 44
points showed macro-traces caused by an impact against different
materials.

5. Analysis

Based on the literature, inconsistencies in the terminology per frac-
ture category are systematically identified and subsequently confronted
with the newly produced experimental data in order to propose poten-
tial solutions.

5.1. Step/hinge/feather/snap-terminating bending fracture

5.1.1. Literature
Since its first use by Fischer et al. (1984), a step-terminating bending

fracture has been most frequently referred to in the literature. A step-
terminating bending fracture is believed to result from impact, as was
also confirmed experimentally (Fischer et al., 1984; Lombard et al.,
2004; O'Farrell, 1996; Odell and Cowan, 1986). Hinge- and feather-ter-
minating bending fractures are less cited, but they are considered as suf-
ficiently “diagnostic” for projectile use by some authors (Chesnaux,
2014; De Bie and Caspar, 1996; Lazuén, 2012; O'Farrell, 2004; Odell
and Cowan, 1986; Sano and Oba, 2014; Sano, 2009; Villa and Lenoir,
2009).

Two attributes are described for this fracture type, its initiation and
its termination. Few authors provide a precise definition of a bending
initiation or of a step-, hinge-, feather-, or snap- termination, but most
seem to follow the definitions proposed by the Ho Ho Committee
(1979) and by Fischer et al. (1984) (cf. Section 3.1). It has been argued
by Fischer et al. (1984) that, considering the orientation of the fracture
propagation and the location of the initiation, a fracture with a bending
initiation and a step termination is diagnostic for projectiles when the
fracture occurs on the apex of the stone point and has a parallel orienta-
tion to the axis of use.

In the literature, inconsistency concerns both the initiation of this
fracture and its termination. Borgia (2009), for instance, appears to
mix the two types of initiation – bending and cone – to describe two
parts of the same fracture event: “The scheme is based on the position
of two main types of complementary fractures, cone and bending (Fig.
10, n°1 a–b), which are formed in the moment of the impact and tend
to have a determined disposition: the fractures cone involve the part
of the instrument turned towards the impact, those bending the part
of the instrument turned towards the base”, in (Borgia, 2009: 54). The
major disagreement, however, concerns the description of the fracture's
termination, as it is not always clear-cut. This reflects an unfortunate re-
ality and the difference between a step and a hinge termination is not
always easy. As a result, what seems to be a hinge termination is some-
times described as a step and vice versa (e.g., Naudinot, 2009: Fig. 48). In
addition, terminations are often more complex than a single term can
describe and it may in reality be composed of different termination
types (e.g., Lombard, 2005: Fig. 7a) for which no commonly shared
term currently exists.



Fig. 8.A. Points hafted in split wooden shafts, from left to right: fixationwith sinewbindings,fixationwith glue – sinew – glue, fixationwith glue; B. Artificial target consisting out of a pony
skeleton incorporated in a ballistic gel; C & D. Evocation of the transparent nature of the target and the advantages on the level of the visibility of the projectiles it offers.
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5.1.2. Experiments
If we try to examine the potential problem of this DIF category by

comparing it with an attribute-based registration based on our experi-
mental dataset, it seems that no confusion is present for the orientation
and localization of this trace type. For the initiation, all bending fractures
are distributed in a unique attribute aggregation category (i.e., break ini-
tiated from a surface and terminating on the opposite surface) (Fig. 9).
By contrast, a fracture's termination could rarely be categorized under
a single term and most terminations in our experimental dataset
prove to be complex in nature (Table 5), which implies that different
types of terminations are either juxtaposed or superposed. One could
therefore wonder how complex terminations are general dealt with if
one is forced to place them in one of four categories (snap, feather,
hinge, step). It is likely that this problem causes a huge variation be-
tween analysts and that percentages presented as a result of an experi-
mentmay be variably affected. The representative nature of this fracture
category can thus be questioned, but at the same time one may argue
that we have perhaps not yet fully exploited the interpretative potential
of fracture terminations.
5.2. Spin-off and bifacial spin-off

5.2.1. Literature
Fischer et al. (1984) are the first to define a spin-off: “a cone fracture

which initiates from a bending fracture andwhich removes parts of the
original surface of the specimen” (Fischer et al., 1984: 23–24, Fig. 7a).
They explain the formation of a spin-off by a compression phenomenon
that occurs just after thefirst bending fracture. The two fracture surfaces
are pressed together and generate several longitudinal removals. The
definition is precise about the initiation and location of the spin-off,
but the termination of the spin-off is not specified.

Most researchers seem to adhere quite strictly to this definition, but
inconsistency nevertheless exists for its initiation and its location.While
a cone initiation is part of the definition, both Sano (2009) and Lombard
(2005) do not distinguish between a cone and bending initiation; ac-
cording to Sano (2009) because the initiations are generally too small
to be clearly visible. This difficultywith the initiation of spin-offs also re-
curs when examining the published pictures on which the cone initia-
tion is not always evident: sometimes it seems to be a bending



Fig. 9. Experimental projectile points: distribution of the traditional diagnostic impact fracture groups compared to the groupings based on the refined attribute system (included
attributes: fracture group, location of initiation, location of termination).
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initiation (e.g., Lombard and Pargeter, 2008: Fig. 5), other times the ini-
tiation seems to be removed by subsequent fractures (e.g., (Borgia,
2009): Fig. 11). While the initiation of a spin-off fracture is, according
to its initial definition, connected with a bending initiated fracture and
corresponds to that bending fracture in terms of its direction of propa-
gation, this relation does not always seem to be respected. Examples
presenting a perpendicular orientationwith regard to the original bend-
ing fracture have been identified (e.g., Sano, 2009: Fig. 18 V2-7.2).

The diagnostic value of spin-offs depends, according to Fischer et al.
(1984), on the length of the spin-offs. They argue that small spin-offs
can be generated by a bending stresswithout an important compressive
component (Fischer et al., 1984: Fig. 6) and they propose a minimal
length for spin-offs before considering them diagnostic for projectile
use. For Fischer et al., this minimal length is relative in nature and de-
pends on the size of the point: “The larger the objet, the larger is the re-
quired spin-off fracture” (Fischer et al., 1984: 24). Other researchers
have proposed absolute values as a minimal length, generally between
1 and 6 mm (Chesnaux, 2014; Villa and Lenoir, 2009), while many re-
searchers do not mention a minimal size.

5.2.2. Experiments
On the condition that the original definition is strictly adhered to, all

spin-off fractures are distributed in a unique attribute aggregation catego-
ry (scar initiated from an earlier fracture surface and terminated on a sur-
face) (Fig. 9). This DIF category should thus not create much confusion.

5.3. Flute-like family

The term “flute-like scar” appears for the first time in Witthoft's Es-
kimo arrow point study (Witthoft, 1968). “Flute-like” is a term derived
fromknapping terminology,more in particular thefluting of paleo-indi-
an points. This process, also called channel-flaking, aims to reduce the
Table 5
Proportion of the types of termination for bending initiated fractures.

Type of termination Percentage and number

Snap 26,67% (8)
Feather 13,33% (4)
Hinge 20,00% (6)
Step 6,67% (2)
Complex termination 33,33% (10)
Total 100,00%
thickness of the proximal part of a point by the longitudinal detachment
of an elongated flake (in the axis of the point) that does not touch the
edges. Fluting can be done on one or both faces using direct or indirect
percussion or pressure flaking (Crabtree, 1966; Inizan et al., 1995).
When the term “flute-like fracture” is used in the context of projectiles,
the term usually describes shallow, large and elongated scars that are
initiated from the ventral or dorsal surface and propagatedwith a paral-
lel orientation to the axis of use (Bergman andNewcomer, 1983; Frison,
1974). Sano (2009) and Villa and Lenoir (2009) add to this definition
that the fracture has to show a bending initiation. The termination is
not specified.

In the literature, this fracture type seems to be one of the most con-
fusing terms and its use is variable. There is no agreement on what this
term actually represents as some authors consider it to be a synonym of
Fischer's bending fracture (Lazuén, 2012; Villa and Lenoir, 2009), while
others consider it as a synonym of a spin-off (Clarkson, 2016) even
though the latter has a cone initiation according to the original defini-
tion. It seems that the morphological resemblance of some fractures
with the negatives resulting from intentional fluting as part of a knap-
ping process has stimulated certain researchers to borrow a well-
known term from knapping technology. It is questionable whether
this term is useful for describing projectile fractures, in particular
given the confusion that proves to surround its definition and use in
the literature. Given that alternative terms exist, we believe it would
be best to abandon the use of terms like “flute-like fractures” in the con-
text of projectiles. In our experimental study, this fracture type was
therefore not considered.
5.4. Burin-like family

5.4.1. Literature
The burin-like fracture family includes the largest variety in broadly

similar terms: pseudo-burin, pseudo-burin spall, pseudo-burination,
burin removal, burin-like fracture, burin-like scar, burin-like break, im-
pact scar burin like fracture, impact burination. All terms evoke the re-
semblance between the morphology of this fracture and the one
resulting from an intentional burin blow. No explicit definition was
ever proposed, but all authors seem to agree that a burin-like fracture
is a removal propagated along one of the lateral edges of a point. Varia-
tions exist, however, concerning its initiation type and location, its ter-
mination, its propagation direction and its exact location on the point.



Table 6
Distribution of the traditional diagnostic impact fractures compared to the refined attribute system. Considered attributes are the fracture group, the location of the initiation and the lo-
cation of the termination.

Bending snap Bending feather Bending hinge Bending step Burination Lateral removal Spin-off Total

Break 8 5 8 9 7 37
Initiate from a surface 8 5 8 9 2 32

Termination on a surface 8 5 8 9 30
Termination on an edge 2 2

Initiate from an edge 5 5
Termination on an edge 5 5

N/A 2 2
N/A 2 2

Termination on an edge 2 2
Scar 7 25 21 53

Earlier Fracture surface 7 21 28
Termination on a surface 21 21
Termination on an edge 7 7

Initiate from a surface 25 25
Termination on a surface 25 25

Total 8 5 8 9 16 25 21 92

118 J. Coppe, V. Rots / Journal of Archaeological Science: Reports 12 (2017) 109–123
A burin-like fracture is generally initiated from a surface or an edge
(Bergman and Newcomer, 1983; Lombard et al., 2004; Odell and
Cowan, 1986; Sano, 2009) (Fig. 3c). For some authors, however, it
may also be initiated from a scar of a preceding fracture (Chesnaux,
2014; Soriano, 1998), in which case it is more specifically referred to
as a burin-like spin-off (for instance “spin-off burinant” in Chesnaux,
2014, Lombard, 2005) (Fig. 3b). The initiation is rarely characterized
(Bergman and Newcomer, 1983; Chesnaux, 2014; Odell and Cowan,
1986; Soriano, 1998), but some specify that it should be in bending
(Lombard et al., 2004; Sano, 2009). The termination is also rarely spec-
ified, but some authors consider that it has to be either a step or a hinge
(Bergman and Newcomer, 1983; Lazuén, 2012; Odell and Cowan,
1986), while others consider the termination as irrelevant (Chesnaux,
2014; Lombard et al., 2004; Sano, 2009; Soriano, 1998). Importantly,
the same term is used independent of the fracture's location, on the
apex or on the base. The fracture may also have a different orientation:
instead of being parallel to the edge, it may also be perpendicular to it.
5.4.2. Experiments
If we consider all “burinations” that we could document on the ex-

perimental points in the dataset, they prove to divide over 6 different at-
tribute aggregation categories in the attribute-based system (Fig. 9).
Since the original “definition” of a burination only includes that the frac-
ture propagation follows one of the lateral edges, this DIF category of
course generates a lot of confusion and proves to group very different
fractures. A little less than half (7) of the burinations that we registered
are initiated from an earlier fracture surface (Table 6). This type of
burination shows a cone initiation and a longitudinal propagation direc-
tion parallel to the edge (Fig. 3b). Consequently, their creation is more
linked to a compression phenomenon than to a bending phenomenon,
which essentially qualifies them as spin-offs. This overlap in the defini-
tion of a spin-off and a burination initiated from an earlier fracture sur-
face is problematic and can significantly modify the results of an
analysis. The other half of the burinations that were registered have a
bending initiation and initiate from a surface or an edge (Fig. 3c).
Table 7
Proportion of traditional diagnostic impact fracture categories per impacted material.

Bone; gelatin; skin

Bending snap-terminating fracture 11,8% (4)
Bending feather-terminating fracture 8,8% (3)
Bending hinge-terminating fracture 5,9% (2)
Bending step-terminating fracture 17,6% (6)
Burination 35,3% (12)
Spin-off fracture 20,6% (7)
Total 100% (34)
5.5. Tip crushing

Tip crushing is a vague term that covers a potentially wide range of
fractures characterized by a small size and/or a superposing nature
hampering a more accurate description. It usually concerns multiple
small scars varying in orientation and initiation on the apex of the
point. They have abrupt terminations (step, hinge) and they either differ
in orientation (e.g., Odell and Cowan, 1986) or they have an orientation
parallel to the long axis of the piece (e.g., Villa and Lenoir, 2009). It is
clear that this fracture category is not very precise and therefore, incon-
sistencies in the use of this term are difficult to evaluate. Overall, little
diagnostic value is attributed to this fracture category and few interpre-
tative problems have generally resulted from its use. Consequently, we
do not consider it for the experimental dataset in this study.

6. Future potential of an attribute-based system

The analysis of the experimental dataset based on a strict and de-
tailed attribute-based system reveals a few new and intriguing correla-
tions. While the experimental dataset included here is limited (but its
elaboration is in progress), it nevertheless appears to hold a lot of poten-
tial. We deal with two correlations in more detail: (1) between the im-
pacted material and the fracture morphology, and (2) between the
mode of propulsion and the fracture morphology. The discussion fol-
lows the same comparative procedure between a DIF-approach and an
attribute system as above. Because only one point morphology was
used in the experiment, no variation in fracture types and patterns
was observed, but the fracture size differed between the two point
sizes. The latter difference was not yet quantified, but the fracture size
appeared broadly relative to the point size. What concerns the hafting
mode, no correlation was observed between the strength of the hafting
system and the fracture characteristics (independent of the descriptive
approach used). By contrast, the fracture frequency appeared to be
linked with the strength of the hafting system. No difference was ob-
served between a resin hafting or a hafting with horse sinew bindings,
but fractures were clearly more abundant in the case of points fixed
Gelatin; skin Total

12,12% (4) 11,94% (8)
6,1% (2) 7,46% (5)
18,2% (6) 11,94% (8)
9,1% (3) 13,43% (9)
12,12% (4) 23,88% (16)
42,4% (14) 31,34% (21)
100% (33) 100% (67)



Fig. 11. Experimental projectile points: location of the damage that is caused per impacted
material.

Table 9

Fig. 10. Experimental projectile points: distribution of the traditional diagnostic impact
fracture groups per impacted material.

119J. Coppe, V. Rots / Journal of Archaeological Science: Reports 12 (2017) 109–123
with a combination of resin and sinew bindings. The reason is that the
stone point is secured more firmly in the shaft due to which the stone
point absorbs more pressure upon impact with less pressure being
transferred to the connection between the point and the shaft.

6.1. Relationship between impacted material and fracture morphology

In total, 114 fractureswere registered on 44 of the 60Gravettian and
micro-Gravettian points, 16 points were de-hafted by the impact itself
or upon touching bone and do not showmacroscopic damage. On aver-
age, about three fractures were recognized per damaged point.

6.1.1. DIF- approach
Thirty-four of the registered fractures were lateral removals, which

fall outside the categories generally considered in a DIF-approach.
Only 80 fractures can thus be included on a total of 44 points. A few ad-
ditional fractures were excluded because they were produced by an ac-
cidental contact against the wooden structure that supported the target
(8) orwith the soil when theymissed the target (5), leaving 67 fractures
formed by a contact with the target, either with bone (34) or with skin/
gelatin (33) (Table 7). Following the DIF-approach, it seems that frac-
tures caused by a contact with bone were principally burinations, sec-
ondly spin-offs, and thirdly various bending initiated fractures. By
contrast, a contact with skin/gelatin mainly resulted in spin-offs, next
to some bending initiated fractures and burinations.

Based on these results, one could conclude that a relation exists be-
tween the formation of burinations and a contact with bone, and anoth-
er one between spin-off's and bending hinge-terminating fractures and
a contact with skin/gelatin (Fig. 10).

6.1.2. Attribute-based approach
The use of an attribute system influences the above conclusion. First-

ly, the lateral fractures can now also be taken into account (34 frac-
tures), resulting in a total of 92 fractures (which again excludes
fractures generated by wood and soil contact). For this sample, 59,8%
of the fractures proved to be generated by bone contact, while 40,2%
were created by a skin/gelatin contact.

Secondly, the correlation observed between bone contact and the
formation of burinations as was identified based on the DIF-approach
Table 8
Distribution of the location (locus attribute) of scars initiated from an earlier fracture sur-
face per impacted material.

Locus Bone; gelatin; skin Gelatin; skin Total

Distal 9 2 11
Mesial 1 10 11
Proximal 1 5 6
Total 11 17 28
is no longer valid. Due to the inconsistency of the burination category
(see above), seven fractures were in reality scars initiated from an ear-
lier fracture. The seven remaining ones disperse over several attribute
groups (Fig. 9).

Thirdly, based on the DIF approach, a more frequent occurrence was
observed of spin-off fractures in the case of a break against skin/gelatin
in comparison to bone, but insufficient detail was available to truly ex-
amine the correlation. Thanks to the higher number of descriptive attri-
butes in the revised attribute approach, it allows to establish a relation
between the fractures initiated from an earlier fracture surface and a
contact with skin/gelatin. In addition, the majority of the fractures
caused by a contact with bone are located on the distal part of the
point, while damage generated by a contact with skin/gelatin is prefer-
entially located on the mesial or proximal part of the point (Table 8, Fig.
11). These results are suggestive for the improved insight in the causes
and characteristics of fracture formation on projectiles that an attribute
system may provide.

6.2. Relationship between mode of propulsion and fracture morphology

6.2.1. DIF-approach
Fifty-five percent of the fractures were created on points shot with a

bow and 45% were formed on points shot with a spear-thrower. Both
types of weapons resulted in the same fracture types and in similar pro-
portions of bending fractures and spin-offs. Burinations, however, were
far more frequent on points shot with a bow than on those shot with a
spear-thrower (Table 9, Fig. 12). By contrast, hinge terminating bending
fractures were somewhat more frequent in the case of the spear-
thrower.

6.2.2. Attribute-based approach
Based on the larger sample of 92 fractures (see above), 57,3% of the

fractures prove to have been created on points shot with a bow and
46,7% on points shot by a spear-thrower. Again, the observed correlation
between burinations and the bow that was supposedly visible based on
a DIF-approach is no longer valid. Seven of the burinations are in reality
frequencies of the traditional diagnostic impact fracture categories per mode of
propulsion.

Bow Spear-thrower

Bending snap-terminating fracture 13,51% (5) 10,00% (3)
Bending feather-terminating fracture 5,41% (2) 10,00% (3)
Bending hinge-terminating fracture 8,11% (3) 16,67% (5)
Bending step-terminating fracture 10,81% (4) 16,67% (5)
Burination 32,43% (12) 13,33% (4)
Spin-off fracture 29,73% (11) 33,33% (10)
Total 100,00% (37) 100,00% (30)



Fig. 12. Experimental projectile points: distribution of the traditional diagnostic impact
fracture groups per mode of propulsion.

Fig. 13. Experimental projectile points: distribution of the traditional burination category
over different fracture groups and location of initiations within the refined attribute
system, viewed per mode of propulsion.
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scars initiated from an earlier fracture surface (Fig. 13) and thus more
related to the formation process of spin-offs than burinations.

With theDIF-approach, spin-offsweremore or less equally represent-
ed for both weapon types and no differences were visible between spin-
offs created by a bow or a spear-thrower. By contrast, based on the attri-
bute system, distinct differenceswere observed in terms of the location of
the fracture termination: only the bow resulted in scars with a termina-
tion located on an edge, while fractures terminating on the surface are
equally divided between the bow and the spear-thrower (Fig. 14).

For scars initiated on an earlier fracture surface and terminating on
the surface, the locus attribute allows to specify that most scars pro-
duced on arrow points are located in the distal part while most scars
on dart points are located on the mesial part (Fig. 15).

6.3. Statistical testing of the correlation between impacted material, mode
of propulsion and fracture morphology

Thanks to the use of an attribute-based approach, we can propose
two assumptions concerning the category of scars initiated from an ear-
lier fracture surface: (1)most scars produced on arrowpoints are located
in the distal part of the points whilemost scars on dart points are located
in the mesial part (Fig. 15); (2) the majority of the fractures caused by a
contact with bone are located in the distal part of the point, while dam-
age generated by a contact with skin/gelatin proves to be preferentially
located in themesial or proximal part of the point (Fig. 11). These corre-
lations were examinedwith amultiple correspondence analysis realized
on IBM SPSS Statistics release 20.0.0 (Costa et al., 2013).

The first dimension (71.29%) groups skin (type of contact responsi-
ble), mesial/proximal (location of fracture), spear thrower (propulsion
mode) on the one hand and bow (propulsionmode), bone (type of con-
tact responsible), distal (location of fracture) on theother hand. The sec-
ond dimension is less significant (22.39%), isolating a mesial/proximal
and skin group and a distal and bone group, but putting in opposition
the two modes of propulsion with the information given by the first
axis (Fig. 16).

The strength of the correlations was subsequently evaluated with a
Yates's Chi2 test,1 which is a conservative test (Costa et al., 2013). The
test was performed on 28 scars initiated from an earlier fracture surface,
which allows observing that:

• a correlation exists between impacted material and the fracture's
locus (χ2 Yates= 13.629; p= 0.000), the strength of which is further
confirmed by the Cramer's V test (Cramer's V = 0.774; p = 0.000).
The comparison between expected and observed frequencies in the
contingency data table indicates that two groups of two variables ap-
pear systematically: one groups skin and mesial/proximal and a sec-
ond groups bone and distal (Table 10).

• a strong correlation exists betweenmode of propulsion and impacted
material (χ2 Yates = 6326; p = 0.012, Cramer's V = 0.554; p =
0.003).The comparison between expected and observed frequencies
in the contingency table indicates that two groups of two variables
1 The Yates Chi2 test was chosen because the expected outcomes are between 3 and 5.
appear systematically: One groups spear thrower and skin and a sec-
ond groups bow and bone (Table 11).

No correlation can be established between the mode of propulsion
and the fracture locus (χ2 Yates = 2096; p = 0.148).

The statistical analysis partially confirms our assumptions. Most of
the scars initiated from an earlier fracture surface and located in the dis-
tal part are preferentially related with a bone contact. By contrast, most
mesial scars initiated from an earlier fracture surface are due to a skin-
gelatin contact. Furthermore, the spear thrower preferentially generates
fractures after only a skin-gelatin contact while the bow generates dis-
tinctively more fractures after a bone contact. However, we are not
able to demonstrate statistically that a direct correlation exists between
mesial scars and the use of a spear thrower and between distal scars and
the use of a bow.

Wemay conclude that an attribute system has more potential to re-
liably examine relationships between variables thanwas possible based
on the poorly defined categories that are generally used within a DIF
approach.

7. Discussion

Damage associated with a projectile impact event is highly variable
(Rots and Plisson, 2014) and it is often difficult to describe in a transpar-
ent and accurateway. Aside fromproblems thatwere highlighted previ-
ously regarding the reliance on macro-fractures only to identify
projectile use (Rots and Plisson, 2014), a careful review of the literature
has shown that several inconsistencies exist in the descriptive frame-
work that is currently used. Some of these inconsistencies are the result
of poorly defined categories or an insufficiently strict application of
existing definitions. In addition, a variety of features appears to be clas-
sified under the same term, the effect ofwhichwasdemonstrated by the
comparative application of two different descriptive approaches to one
experimental dataset (the commonly used DIF approach versus a re-
fined attribute-based system). Burinations proved to represent the
most confusing fracture category. Burinations vary significantly
Fig. 14. Experimental projectile points: location of the termination for scars initiated on an
earlier fracture surface per mode of projection.



Fig. 15. Experimental projectile points: mode of propulsion compared to the location of
the termination and the location of the damage for scars initiated on an earlier fracture
surface.

Table 10
Contingency data table of impacted material/locus.

Locus

TotalMesial/proximal Distal

Impacted material Skin Observed frequencies 16 1 17
Expected frequencies 10.9 6.1 17

Bone Observed frequencies 2 9 11
Expected frequencies 7.1 3.9 11

Total Observed frequencies 18 10 28
Expected frequencies 18 10 28
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amongst them and five attributes proved responsible for this variation:
the fracture group, the location of the initiation, the location of the ter-
mination, the type of initiation and the type of termination (Fig. 9).
While all burinationsmay superficially look the same based onmorpho-
logical parameters, it is a term that masks a high degree of internal var-
iability. It is therefore advisable either to avoid this category or to add
more descriptive detail when using it.

We demonstrated that most problems arise from amixture of terms
derived from a more typological approach with terms derived from an
attribute approach. These terms have varying levels of precision
resulting in unnecessary confusion. A homogenization of currently
used descriptions was therefore needed. In order to do so, the attri-
bute-based approach that was initially proposed by the HoHo Commit-
tee to describe macro-fractures (Ho Ho Committee, 1979) was revised.
An application of this revised system to a modestly-sized experimental
dataset has allowed demonstrating that such an approach permitsmore
accurate and complete fracture descriptions and more flexibility in ex-
amining the correlation between different variables. A similar degree
of precision did not prove to be possible with a DIF approach. Its poorly
defined and more typological categories mask much of the variability,
moreover, illusionary correlations proved to appear. An attribute sys-
tem by contrast, allows detailedmultivariate statistical analysis (if sam-
ple sizes are sufficiently important).
Fig. 16. Experimental projectile points: multiple correspondence analyses for mode of
propulsion, impacted material and locus of the damage in the category of scars initiated
on an earlier fracture surface.
Impact fractures were often considered as predominantly resulting
from a contact with bone. During our experiment, we observed that
this is not necessarily the case. A lot of damage proved to be caused by
a contact with skin and ballistic gelatin only. Regarding the influence
of propulsion mode and impacted material on the creation of specific
fracture patterns, the scars initiated from a previous fracture surface
category reveal interesting elements. First, a strong correlation
proved to exist between this fracture category, a skin-gelatin contact
and the use of a spear thrower as well as between this fracture cate-
gory, a bone contact and the use of a bow. Secondly, we have shown
that this kind of fracture is either linked with a skin-gelatin contact if
it occurs on the mesial-proximal part of a point or with a bone con-
tact when formed on the distal part of points. No direct link between
the mode of propulsion (spear thrower, bow) and the location of the
fracture (mesial-proximal, distal) could yet be established (Fig. 16).
Further analysis involving a larger dataset may perhaps resolve this
problem.

We suggest that the observed patterning is the consequence of the
mechanical and ballistic differences between a spear-thrower and a
bow.When a bow is stretched to shoot an arrow, problems of arrow re-
lease or spin calibrationmay occur. This will generate a deflection of the
projectile that will subsequently hit the target under an oblique angle.
Such a risk is relatively limited with the bow because each shot is per-
formed with similar energy expenditure; it is thus possible to easily
calibrate the spin of the arrow. However, in the case of darts
launched with a spear-thrower the situation is entirely different.
This mode of propulsion involves the movement of the entire body
during the shot, resulting in significant variability in energy expendi-
ture between each shot. In addition, we know that also the spin of
(experimental) darts is much more variable than of arrows, which
significantly increases the risk of the projectile hitting the target
under an oblique angle. We argue that this oblique contact is respon-
sible for the formation of the mesial scars initiated from an earlier
fracture surface. When a dart point hits the skin obliquely, its distal
end penetrates the skin while the important inertia (linked to the
weight and the length of the shaft) of the projectile increases the
bending stress, causing a bending fracture on the mesial part of the
point. Following this first phenomenon, the longitudinal compres-
sion between the two bending fracture surfaces creates longitudinal
scars usually known as “spin-offs” (Fischer et al., 1984: Fig. 3b,c).
Table 11
Contingency data table of mode of propulsion/impacted material.

Impacted
material

TotalSkin Bone

Mode of propulsion Spear thrower Observed frequencies 9 0 9
Expected frequencies 5.5 3.5 9

Bow Observed frequencies 8 11 11
Expected frequencies 11.5 7.5 11

Total Observed frequencies 17 11 28
Expected frequencies 17 11 28
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This phenomenon can also occur with bow propulsion but the risk of
an oblique contact is much lower than in the case of a spear-thrower
and the less important size and weight of arrow an shaft strongly
limit its apparition. Our results thus reveal a detectable difference be-
tween bow and spear-thrower propulsion modes. The observed vari-
ability in fracture patterns could be caused by the mechanics
governing each propulsionmode. If this hypothesis finds further confir-
mation, it opens promising avenues of research to differentiate the ef-
fects of each projecting mode on fracture patterns.

The presented experimental data are thefirst results of a larger-scale
experimental program focusing on the understanding of fracture pat-
terns on projectile points. Of course, the presented results are strongly
influenced by the ballistic characteristics of the projectiles and the pro-
pulsion mode and technique used in the experiments. The results are
therefore not directly transferrable to the analysis of archaeological
points. The sample of 60 points used in this pilot experimental study
allowed promising, but preliminary results. The observed correlations
require further testing based on larger experimental samples. Neverthe-
less, the analysis demonstrates the potential of a refined attribute-based
terminology. After all, these results would have been unattainable if the
poorly defined categories of the DIF-approach would have been used. A
potential inconvenience of an attribute system is the loss of simple
terms useful in discussions, but this could be resolved in the future if
time is invested in defining each term via an aggregation of specific at-
tributes. We consider it crucial to continue developing an attribute sys-
tem, building onto earlier attempts of other researchers. It allows more
accurate and more complete descriptions of macro-fractures, which is
the best basis to progress in the understanding of the variability in frac-
ture formation on stone projectile points.
8. Conclusion

Lately, Paleolithic projectile points have enjoyed renewed attention
among researchers. Many experiments have been undertaken to under-
stand fracture formation and to propose criteria based onwhich projec-
tiles could be recognized in the archaeological record. A number of
fracture categorieswere proposed as having diagnostic value for projec-
tile identification, but we have demonstrated that these categories are
not strictly defined. If we want to guarantee reliable projectile identifi-
cations in the future, we need to try to control the integrity and inter-
pretative value of the descriptive categories we use. A higher level of
precision and an overall clarity in description and interpretation is be-
coming increasingly more important as we move towards older assem-
blages, including those forwhichprojectiles are not commonly accepted
to exist. Also the number of points and the frequency of fractures are
often much lower in older assemblages and interpretations may thus
be more debatable if they are not based on well-founded criteria. It is
thus fundamental to have an efficient, precise and shared terminology
to describe each fracture and its organization. We thoroughly revised
a formerly used attribute system and we added attributes to increase
its precision. While the interpretative potential of some of these attri-
butes is still unknown, we believe that their inclusion will not only
help to avoid confusion in future, but also to identify potential indicative
correlations between variables. One of the great advantages of an attri-
bute-based descriptive system is its flexibility and the possibility to use
multivariate statistical analysis to examine the diagnostic value of each
attribute. In addition, it also facilitates sharing of experimental and ana-
lytical results, which may eventually lead to an integrated and shared
large dataset. It is our conviction that a precise terminologywith shared
definitions is essential for continued investigations of fractures on pro-
jectile points and for evaluating the value of fractures for projectile iden-
tification as well as perhaps for distinguishing between projecting
modes. A mutually shared terminology and set of definitions has all
the potential for truly improving our understanding of past hunting
techniques, their variability and their evolution.
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